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Abstract. We present a new algorithm that can output the rank-decomposition of width at
most k of a graph if such exists. For that we use an algorithm that, for an input matroid represented
over a fixed finite field, outputs its branch-decomposition of width at most k if such exists. This
algorithm works also for partitioned matroids. Both of these algorithms are fixed-parameter tractable,
that is, they run in time O(n3) where n is the number of vertices / elements of the input, for
each constant value of k and any fixed finite field. The previous best algorithm for construction
of a branch-decomposition or a rank-decomposition of optimal width due to Oum and Seymour
[J. Combin. Theory Ser. B, 97 (2007), pp. 385–393] is not fixed-parameter tractable.
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1. Introduction. Many graph problems are known to be NP -hard in general;
however, for practical application we still need to solve them. One method to solve
them is to restrict the input graph to have a certain structure. Clique-width, defined
by Courcelle and Olariu [4], is very useful for that purpose. Many hard graph problems
(in particular all those expressible in monadic second-order logic (MSOL) of adjacency
graphs) are solvable in polynomial time as long as the input graph has bounded
clique-width and is given in the form of the decomposition for clique-width, called
a k-expression [3, 24, 6, 15, 10]. A k-expression is an algebraic expression with the
following four operations on a vertex-labeled graph with k labels: create a new vertex
with label i, take the disjoint union of two labeled graphs, add all edges between
vertices of label i and label j, and relabel all vertices with label i to have label j.
However, for fixed k > 3, it is not known how to find a k-expression of an input graph
having clique-width at most k. (If k ≤ 3, then it has been shown in [2, 1].)

Rank-width is another graph structural invariant introduced by Oum and Sey-
mour [19], aiming at the construction of an f(k)-expression of the input graph having
clique-width k for some fixed function f in polynomial time. Rank-width is defined
(section 7) as the branch-width (see section 2) of the cut-rank function of graphs.
Rank-width turns out to be very useful for algorithms on graphs of bounded clique-
width, since a class of graphs has bounded rank-width if and only if it has bounded
clique-width. In fact, if rank-width of a graph is k, then its clique-width lies between
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k and 2k+1 − 1 [19] and an expression can be constructed from a rank-decomposition
of width k.

In this paper, we are mainly interested in the following problem.

Find a fixed-parameter tractable algorithm that outputs a rank-
decomposition of width at most k if the rank-width of an input graph
(with more than one vertex) is at most k.

The first rank-width algorithm by Oum and Seymour [19] finds only a rank-
decomposition of width at most 3k + 1 for n-vertex graphs of rank-width at most
k in time O(n9 log n). This algorithm has been improved by Oum [18] to output a
rank-decomposition of width at most 3k in time O(n3). Using this approximation
algorithm and finiteness of excluded vertex-minors [17], Courcelle and Oum [5] have
constructed an O(n3)-time algorithm to decide whether a graph has rank-width at
most k. However, this is only a decision algorithm; if the rank-width is at most k,
then this algorithm verifies that the input graph contains none of the excluded graphs
for rank-width at most k as a vertex-minor. It does not output a rank-decomposition
showing that the graph indeed has rank-width at most k.

In another paper, Oum and Seymour [20] have constructed a polynomial-time
algorithm that can output a rank-decomposition of width at most k for graphs of
rank-width at most k. However, it is not fixed-parameter tractable; its running time
is O(n8k+12 log n). Obviously, it is very desirable to have a fixed-parameter tractable
algorithm to output such an “optimal” rank-decomposition, because most algorithms
on graphs of bounded clique-width require a k-expression on their input. So far, the
only known efficient way of constructing an expression with bounded number of labels
for a given graph of bounded clique-width uses rank-decompositions.

In this paper, we present an affirmative answer to the above problem (Theo-
rem 7.3). An amusing aspect of our solution is that we deeply use submodular func-
tions and matroids to solve the rank-decomposition problem, which shows (somehow
unexpectedly) a “truly geometrical” nature of this graph-theoretical problem. In fact
we solve the following related problem on matroids, too (Theorem 6.7).

Find a fixed-parameter tractable algorithm that, given a matroid
represented by a matrix over a fixed finite field, outputs a branch-
decomposition of width at most k if the branch-width of the input
matroid (with more than one element) is at most k.

So to give the final solution of our first problem, Theorem 7.3, we are going to bring
together two previously separate lines of research: We will combine Oum and Sey-
mour’s above sketched work on rank-width and on branch-width of submodular func-
tions with Hliněný’s recent works [13, 14] on parametrized algorithms for matroids
over finite fields.

Namely, Hliněný [13] has given a parametrized algorithm which in time O(n3)
either outputs a branch-decomposition of width ≤ 3k + 1 of an input matroid M
represented over a fixed finite field or confirms that the branch-width of M is more
than k + 1 (Algorithm 6.1). Using the ideas of [14] and minor-monotonicity of the
branch-width parameter, he has concluded with an O(n3) fixed-parameter tractable
algorithm [13] for the (exact value of) branch-width k of an input matroid M repre-
sented over a fixed finite field (Theorem 5.1). Similarly as above, this algorithm is
only a decision algorithm and does not output a branch-decomposition of width k.

We last remark that the following (indeed widely expected) hardness result has
been given only recently by Fellows et al. [7]: It is NP -hard to find graph clique-
width. To argue that it is NP -hard to find rank-width, we combine some known



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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results: Hicks and McMurray Jr. [11] and Mazoit and Thomassé [16] independently
proved that the branch-width of the cycle matroid of a graph is equal to the branch-
width of the graph if it is 2-connected. Hence, we can reduce (section 7) the problem
of finding branch-width of a graph to finding rank-width of a certain bipartite graph,
and finding graph branch-width is NP -hard as shown by Seymour and Thomas [23].
Still, the main advantage of rank-width over clique-width is the fact that we currently
have a fixed-parameter tractable algorithm for rank-width but not for clique-width.

Our paper is structured as follows: The next section briefly introduces definitions
of branch-width, partitions, matroids, and the amalgam operation on matroids. In
section 3, we explain the notion of so-called titanic partitions, which we further use
in section 4 to “model” partitioned matroids in ordinary matroids. At this point it
is worth noting that partitioned matroids present the key tool that allows us to shift
from a branch-width-testing algorithm [13] to a construction of an “optimal” branch-
decomposition (see Theorem 5.7) and of a rank-decomposition. In section 5, we will
discuss a simple but slow algorithm for matroid branch-decompositions. In section 6,
we will present a faster algorithm. As the main application, we then use our result to
give an algorithm for constructing a rank-decomposition of optimal width of a graph
in section 7.

2. Definitions. Branch-width. Let Z be the set of integers. For a finite set V ,
a function f : 2V → Z is called symmetric if f(X) = f(V \ X) for all X ⊆ V , and
is called submodular if f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for all subsets X,Y of
V . A tree is subcubic if all vertices have degree 1 or 3. For a symmetric submodular
function f : 2V → Z on a finite set V , the branch-width is defined as follows (see
Figure 1).

A branch-decomposition of the symmetric submodular function f is a pair (T, μ)
of a subcubic tree T and a bijective function μ : V → {t : t is a leaf of T}. (If
|V | ≤ 1, then f admits no branch-decomposition.) For an edge e of T , the connected
components of T \ e induce a partition (X,Y ) of the set of leaves of T . (In such a
case, we say that μ−1(X) (or μ−1(Y )) is displayed by e in the branch-decomposition
(T, μ). We also say that V and ∅ are displayed by the branch-decomposition.) The
width of an edge e of a branch-decomposition (T, μ) is f(μ−1(X)). The width of (T, μ)
is the maximum width of all edges of T . The branch-width of f , denoted by bw(f),
is the minimum of the width of all branch-decompositions of f . (If |V | ≤ 1, we define
bw(f) = f(∅).)

eX

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Y

Fig. 1. An illustration of the definition of a branch-decomposition (T, μ) of f : An edge e of the
tree T displays the sets μ−1(X) and μ−1(Y ), and the width of e is f(μ−1(X)).

A natural application of this definition is the branch-width of a graph, as intro-
duced by Robertson and Seymour [22] along with better known tree-width, and its
direct matroidal counterpart below in this section. We also refer to further formal
definition of rank-width in section 7.
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Partitions. A partition P of V is a collection of nonempty pairwise disjoint subsets
of V whose union is equal to V . Each element of P is called a part. For a symmetric
submodular function f on 2V and a partition P of V , let fP be a function on 2P (also
symmetric and submodular) such that fP(X) = f(∪Y ∈XY ). The width of a partition
P is f(P) = max{f(Y ) : Y ∈ P}.

We will often denote a partition by a function as follows. For a function π : V →
W , let πy = {x : π(x) = π(y)} for y ∈ V , and let [π] = {πx : x ∈ V } be the partition
of V induced by π.

Matroids. We refer to Oxley [21] in our matroid terminology. A matroid is a
pair M = (E,B), where E = E(M) is the ground set of M (elements of M), and
B ⊆ 2E is a nonempty collection of bases of M , no two of which are in an inclusion.
Moreover, matroid bases satisfy the “exchange axiom”: if B1, B2 ∈ B and x ∈ B1\B2,
then there is y ∈ B2 \ B1 such that (B1 \ {x}) ∪ {y} ∈ B. We consider only finite
matroids. A typical example of a matroid is given by a set of vectors (forming the
columns of a matrix A) with usual linear independence. The matrix A is then called
a representation of the matroid.

All matroid bases have the same cardinality called the rank r(M) of the matroid.
Subsets of bases are called independent, and sets that are not independent are depen-
dent. A matroid M is uniform if all subsets of E(M) of certain size are the bases,
and M is free if E(M) is a basis. The rank function rM (X) in M is the maximum
cardinality of an independent subset of a set X ⊆ E(M). The dual matroid M∗ is
defined on the same ground set with the bases as set-complements of the bases of M .
For a subset X of E, the deletion M \X of X from M , or the restriction M � (E \X)
of M to E \X, is the matroid on E \X in which Y ⊆ E \X is independent in M \X
if and only if Y is an independent set of M . The contraction M/X of X in M is the
matroid (M∗ \X)∗. Matroids of the form M/X \ Y are called minors of M .

To define the branch-width of a matroid, we consider its (symmetric and submod-
ular) connectivity function

λM (X) = rM (X) + rM (E \X) − rM (E) + 1

defined for all subsets X ⊆ E = E(M). A “geometric” meaning is that the subspaces
spanned by X and E\X intersect in a subspace of dimension λM (X)−1. Branch-width
bw(M) and branch-decompositions of a matroid M are defined as the branch-width
and branch-decompositions of λM . Notice that λM∗ ≡ λM .

Partitioned matroids. A pair (M,P) is called a partitioned matroid if M is a
matroid and P is a partition of E(M). A partitioned matroid (M,P) is representable
if M is representable. A connectivity function of a partitioned matroid (M,P) is
defined as λP

M . We note that λP
M is symmetric and submodular ; in other words,

λP
M (X) = λP

M (P \X),

λP
M (X) + λP

M (Y ) ≥ λP
M (X ∩ Y ) + λP

M (X ∪ Y ).

Branch-width bw(M,P) and branch-decompositions of a partitioned matroid (M,P)
are defined as branch-width, branch-decompositions of λP

M .
Amalgams of matroids. Let M1, M2 be matroids on E1, E2, respectively, and

T = E1 ∩ E2. Moreover, let us assume that M1 � T = M2 � T . If M is a matroid on
E1 ∪ E2 such that M � E1 = M1 and M � E2 = M2, then M is called an amalgam of
M1 and M2 (see Figure 2).

It is known that an amalgam of two matroids need neither exist nor be unique.
However, there are certain interesting cases when an amalgam is known to exist.
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We show one such example here, and we use another one in Proposition 5.4 with
representable matroids. Let r1, r2 be the rank function of M1, M2, respectively. Let
r be the rank function of M1 � T . Let

η(X) = r1(X ∩ E1) + r2(X ∩ E2) − r(X ∩ T )

and

ζ(X) = min{η(Y ) : Y ⊇ X}.

Proposition 2.1 (see [21, Proposition 12.4.2]). If ζ is submodular, then ζ is the
rank function of a matroid that is an amalgam of M1 and M2.

If ζ is submodular, then the matroid on E1 ∪ E2 having ζ as its rank function is
called the proper amalgam of M1 and M2.

Lemma 2.2. If M1 � T is free, then ζ is submodular and therefore the proper
amalgam of M1 and M2 exists.

Proof. Since M1 � T is a free matroid, we have r(X ∩ T ) = |X ∩ T | and therefore
η is submodular. We will show that this implies that ζ is submodular, that is to
show that ζ(X1) + ζ(X2) ≥ ζ(X1 ∩ X2) + ζ(X1 ∪ X2). For i ∈ {1, 2}, let Yi be a
set such that Yi ⊇ Xi and ζ(Xi) = η(Yi). Then ζ(X1) + ζ(X2) = η(Y1) + η(Y2) ≥
η(Y1 ∩ Y2) + η(Y1 ∪ Y2) ≥ ζ(X1 ∩X2) + ζ(X1 ∪X2). By Proposition 2.1, the proper
amalgam of M1 and M2 exists.

⊕ →

Fig. 2. A “geometrical” illustration of an amalgam of two matroids, in which hollow points are
the shared elements T .

3. Titanic partitions. This technical section is about general symmetric sub-
modular functions. Let V be a finite set and f be a symmetric submodular function
on 2V .

A set T ⊂ 2V of subsets of V is called an f-tangle of order k + 1 if it satisfies the
following three axioms.

(T1) For all A ⊆ V , if f(A) ≤ k, then either A ∈ T or V \A ∈ T .
(T2) If A,B,C ∈ T , then A ∪B ∪ C �= V .
(T3) For all v ∈ V , we have V \ {v} /∈ T . Robertson and Seymour [22] showed

that tangles are related to branch-width.
Theorem 3.1 (Robertson and Seymour [22]). There is no f-tangle of order k+1

if and only if the branch-width of f is at most k.
A subset X of V is called titanic with respect to f if whenever A1, A2, A3 are

pairwise disjoint subsets of X such that A1 ∪A2 ∪A3 = X, there is i ∈ {1, 2, 3} such
that f(Ai) ≥ f(X).

Lemma 3.2. Let V be a finite set and f be a symmetric submodular function on
2V . Let X be a titanic set with respect to f . If X1 ∪X2 ∪X3 = X, then there exists
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i ∈ {1, 2, 3} such that f(Xi) ≥ f(X). (Note that X1, X2, X3 are not required to be
pairwise disjoint.)

Proof. Suppose not. We pick a counterexample with minimum |X1|+ |X2|+ |X3|.
If X1, X2, X3 are pairwise disjoint, then by definition the lemma is true.

We may assume that X1 ∩X2 �= ∅. Let Y1 be a set minimizing f(Y1) subject to
the condition X1 \X2 ⊆ Y1 ⊆ X1. Then f(X1) ≥ f(Y1) and f(X1 \X2) ≥ f(Y1). Let
Y2 = X2 \ Y1. By the submodular inequality,

f(Y1) + f(X2) ≥ f(X1 \X2) + f(Y2) ≥ f(Y1) + f(Y2),

and therefore f(X2) ≥ f(Y2). Since Y1∪Y2∪X3 = X, |Y1|+|Y2|+|X3| < |X1|+|X2|+
|X3|, and f(X3) < f(X), we conclude that either f(Y1) ≥ f(X) or f(Y2) ≥ f(X).
But both cases lead to the conclusion that either f(X1) ≥ f(X) or f(X2) ≥ f(X), a
contradiction.

A partition P of V is called titanic with respect to f if every part of P is titanic
with respect to f . The following lemmas are equivalent to a lemma by Geelen, Ger-
ards, and Whittle [9, Proposition 4.4], which generalizes a result of Robertson and
Seymour [22, Proposition (8.3)].

Lemma 3.3. Let V be a finite set and f be a symmetric submodular function on
2V of branch-width k. Let Q be a nonempty titanic set with respect to f . Let y ∈ Q.
Let π(x) = x if x /∈ Q and π(x) = y if x ∈ Q. If f(Q) ≤ k, then the branch-width of
f [π] is at most k.

Proof. Suppose that the branch-width of f [π] is larger than k. Then by Theo-
rem 3.1, there is an f [π]-tangle T [π] of order k + 1. Let T ′ = {∪Z∈Y Z : Y ∈ T [π]}.

We would like to construct an f -tangle T of order k + 1 as follows:

T =
{
X ⊆ V : f(X) ≤ k and either X ∪Q ∈ T ′ or X \Q ∈ T ′}.

To show that T is an f -tangle of order k + 1, it is enough to verify the three axioms
(T1)–(T3).

For (T1), suppose that f(X) ≤ k and X,V \ X /∈ T . Since Q is titanic, either
f(X ∩ Q) ≥ f(Q) or f(Q \ X) ≥ f(Q). We may assume that f(X ∩ Q) ≥ f(Q) by
replacing X with V \X if necessary. By the submodular inequality,

f(X) + f(Q) ≥ f(X ∪Q) + f(X ∩Q) ≥ f(X ∪Q) + f(Q),

and therefore f(X ∪Q) ≤ f(X) ≤ k. Since T [π] is an f [π]-tangle, we know that either
X ∪ Q ∈ T ′ or V \ (X ∪ Q) ∈ T ′. If X ∪ Q ∈ T ′, then X ∈ T . If V \ (X ∪ Q) =
(V \X) \Q ∈ T ′, then V \X ∈ T . So, (T1) is proved.

To show (T2), suppose that there are X1, X2, X3 ∈ T such that X1∪X2∪X3 = V .
By Lemma 3.2, there exists i ∈ {1, 2, 3} such that f(Xi∩Q) ≥ f(Q). We may assume
that i = 1. By the submodular inequality, we deduce that f(X1 ∪ Q) ≤ f(X1) ≤ k.
Since T ′ has no three sets whose union is V , we have X1 ∪ Q /∈ T ′. Therefore,
X1 \ Q ∈ T ′ and V \ (X1 ∪ Q) ∈ T ′. By (T3) of T [π], we have V \ Q /∈ T ′. Since
f(Q) ≤ k, we have Q ∈ T ′ by (T1) of T [π]. However, (V \(X1∪Q))∪(X1\Q)∪Q = V ,
contradictory to the fact that T [π] is an f [π]-tangle.

To show (T3), suppose that X = V \{v} ∈ T for some v ∈ V . Since V, V \Q /∈ T ′

and V \ {v} /∈ T ′ when v /∈ Q, we deduce that v /∈ Q and V \ {v} \Q ∈ T ′. We know
that {v}, Q ∈ T ′. Then the union of three sets {v}, Q, V \ {v} \ Q is equal to V , a
contradiction.

Now we conclude that T is an f -tangle of order k + 1. However, this is a contra-
diction to Theorem 3.1, because we assumed that the branch-width of f is k.
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Lemma 3.4. Let V be a finite set and f be a symmetric submodular function
on 2V of branch-width at most k. If P is a titanic partition of width at most k with
respect to f , then the branch-width of fP is at most k.

Proof. Suppose that there is a counterexample. We pick a counterexample with
a minimum number of parts having at least two elements. If all parts have exactly
one element, then it is trivial.

Choose one member from each part of P and consider a function π : V → V that
maps each element x of V to a representative of the part containing x. Then [π] = P.

Let y be an element of V such that |πy| ≥ 2. Then let π′ : V → V be a function
such that

π′(x) =

{
π(x) if x /∈ πy,

x if x ∈ πy.

By definition, [π′] = {πx : x /∈ πy} ∪ {{x} : x ∈ πy}. Since the number of parts in
[π′] having at least two elements is strictly smaller than that of [π] = P and [π′] is
a titanic partition of width at most k, we know that the branch-width of f [π′] is at
most k.

Then Q = {{x} : x ∈ πy} is titanic with respect to f [π′], because P is a titanic

partition and πy ∈ P. In addition, f [π′](Q) = f(πy) ≤ k. Therefore, by Lemma 3.3,

the branch-width of f [π′] is at most k. This contradicts the assumption that P is
chosen as a counterexample with a minimum number of parts with more than one
element.

4. Replacing each part by a gadget. The purpose of this section is to show
how a partitioned matroid may be “modeled” by an ordinary matroid having the same
branch-width.

Lemma 4.1. Let M be a matroid and T be a subset of E(M). If |T |+1 > λM (T ),
then there is e ∈ T such that one of the following is true:

1. λM/e(X) = λM (X) for all X ⊆ E(M) \ T , or
2. λM\e(X) = λM (X) for all X ⊆ E(M) \ T .

Proof. Let X be a subset of E(M) \ T . If there is an element e ∈ T that is not
spanned by E(M) \ T , then rM/e(X) = rM (X). Therefore, λM/e(X) = rM/e(X) +

rM/e

(
E(M)\({e}∪X)

)
−r(M/e)+1 = rM (X)+rM

(
E(M)\X

)
−rM ({e})−

(
r(M)−

rM ({e})
)

+ 1 = λM (X).
So, we may assume that E(M) \T spans T . Since |T |+ 1 > λM (T ) = rM (T ) + 1,

T is dependent in M , and hence in the dual matroid M∗ the set T is not spanned by
E(M∗) \ T . We apply the previous argument to M∗. (Note that (M \ e)∗ = M∗/e
and λM∗ ≡ λM .)

Corollary 4.2. Let M be a matroid, and let T be a subset of E(M). Then there
exist disjoint subsets C,D of T such that λM/C\D(T \ (C ∪D)) = |T \ (C ∪D)| + 1,
and λM/C\D(X) = λM (X) for all X ⊆ E(M) \ T .

We aim to transform a partitioned matroid (M,P) to another partitioned matroid
(M#,P#), such that they have the same branch-width and P# is a titanic partition
with respect to λM# . To do so, we use an amalgam operation on matroids, described
in section 2.

Let (M,P) be a partitioned matroid. We may assume each part T of P satisfies
λM (T ) = |T | + 1 if |T | > 1, because otherwise we can contract or delete elements
in T while preserving bw(M,P) by Corollary 4.2. This means that M � T is a free
matroid. For each part T of (M,P), if |T | > 1, then we define a matroid UT (a titanic
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gadget of T ) as a rank-|T | uniform matroid on the ground set ET = E(UT ) such that
|ET | = 3|T | − 2, E(M) ∩ ET = T , and ET ∩ ET ′ = ∅ if T ′ �= T is a part of P and
|T ′| > 1. Since M � T = UT � T is a free matroid, an amalgam of M and UT exists by
Lemma 2.2.

Lemma 4.3. Let M be a matroid and T be a subset of E(M) such that λM (T ) =
|T | + 1. Let M ′ be an amalgam of M and UT . Then the following are true:

1. If T ⊆ X ⊆ E(M ′), then rM (X ∩ E(M)) = rM ′(X).
2. λM (X) = λM ′(X) for all X ⊆ E(M) \ T .
3. The set E(UT ) is titanic in the matroid M ′.

Proof. 1. Because M ′ � E(M) = M , we have rM (X ∩E(M)) = rM ′(X ∩E(M)) ≤
rM ′(X).

Since T is independent in UT , we can pick a maximally independent subset I of
X in M ′ such that T ⊆ I. Since M ′ � E(UT ) = UT , the set I ∩E(UT ) is independent
in UT , and therefore I ∩ E(UT ) = T . So, I ⊆ E(M). Therefore, rM (X ∩ E(M)) ≥
|I| = rM ′(X).

2. Let Y = E(M ′) \X. We note that E(UT ) is a subset of Y . By definition,

λM (X) = rM (X) + rM (Y ∩ E(M)) − r(M) + 1,

λM ′(X) = rM ′(X) + rM ′(Y ) − r(M ′) + 1.

Since M ′ � E(M) = M , we have rM (X) = rM ′(X). By 1, rM (Y ∩ E(M)) = rM ′(Y )
and r(M ′) = r(M). Thus λM (X) = λM ′(X).

3. We claim that if X is a subset of E(UT ) and |X| ≥ |T |, then λM ′(X) ≥
λM ′(E(UT )). Since UT is a uniform matroid of rank |T |, we have

rM ′(X) = |T | = rM ′(E(UT )),

rM ′(E(M ′) \X) ≥ rM ′(E(M ′) \ E(UT )).

Therefore, λM ′(X) ≥ λM ′(E(UT )).
Now suppose that X1, X2, X3 are pairwise disjoint subsets of E(UT ). Then

there is i ∈ {1, 2, 3} such that |Xi| ≥
⌈
|E(UT )|/3

⌉
= |T | and therefore λM ′(Xi) ≥

λM ′(E(UT )). Therefore, E(UT ) is titanic in M ′.
Using Corollary 4.2, we first obtain a minor M0 of M such that λM0

(T∩E(M0)) =
|T ∩ E(M0)| + 1 for all parts T ∈ P, and if a subset X of E(M) satisfies that
X ∩ T ∈ {∅, T} for all parts T ∈ P, then λM0(X ∩ E(M0)) = λM (X). Let P0

be the partition of E(M0) induced by P. Then we deduce from Corollary 4.2 that
the branch-width of (M,P) is equal to the branch-width of (M0,P0). However, the
branch-width of the matroid M0 may still be different from the branch-width of the
partitioned matroid (M0,P0).

In the following theorem, we will extend (M0,P0) by amalgamating uniform ma-
troids in the fashion of Lemma 4.3 so that the obtained partitioned matroid (M#,P#)
has the same branch-width as the matroid M# itself.

Theorem 4.4. Let (M0,P0) be a partitioned matroid, and let T1, T2, . . . , Tm be
the parts of P0 having at least two elements. Assume that λM0(Ti) = |Ti|+1 for every
i ∈ {1, 2, . . . ,m}. For all i = 1, 2, . . . ,m, let Mi be an amalgam of Mi−1 and UTi .
Then the branch-width of Mm is equal to the branch-width of the partitioned matroid
(M0,P0).

We call the resulting M# = Mm the normalized matroid of the partitioned ma-
troid (M0,P0).

Proof. Let Pi = (Pi−1 \ {Ti}) ∪ {E(UTi)}. By 2. of Lemma 4.3, the branch-
width of (Mi,Pi) is equal to that of (Mi−1,Pi−1), and therefore the branch-width
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of (Mm,Pm) is equal to the branch-width of (M0,P0). By 3. of Lemma 4.3, Pm is
a titanic partition. Let k be the branch-width of Mm. It is easy to see that the
branch-width of the uniform matroid UTi is |Ti| + 1 = λMm(E(UTi)). Since UTi is a
minor of Mm, the branch-width of Mm is at least |Ti| + 1 for all i, and therefore the
width of Pm is at most k. We conclude that the branch-width of (Mm,Pm) is at most
k by Lemma 3.4.

To finish the proof, we need to show that the branch-width of (Mm,Pm) is at
least k. Let (T, μ) be the branch-decomposition of (Mm,Pm) of width at most w.
From (T, μ), we would like to obtain a branch-decomposition (T ′, μ′) of Mm whose
width is at most w as follows. Let vi be the leaf of T corresponding to E(UTi

).
We prepare a rooted binary tree with a bijection from its leaves to E(UTi) and then
identify the root with vi. Let T ′ be the new tree obtained by the above process for
all i. A bijection μ′ from E(Mm) to leaves of T ′ is easily obtained from the above
process. Since λMm

(X) = |X|+1 ≤ λMm(E(UTi)) ≤ w for all X ⊆ E(UTi), the width
of (T ′, μ′) is at most w.

5. Branch-decompositions of represented partitioned matroids. We now
specialize the above ideas to the case of representable matroids. We aim to provide
an efficient algorithm for testing small branch-width on such partitioned matroids.
For the rest of our paper, a represented matroid is the vector matroid of a (given)
matrix over a fixed finite field. We also write an F-represented matroid to explicitly
refer to the field F. In other words, an F-represented matroid is a set of points (a
point configuration) in a (finite) projective geometry over F. To begin, we restate a
previous result of Hliněný.

Theorem 5.1 (see [13, Theorems 4.14 and 5.5]). Let k > 1 be a constant, and let
F be a fixed finite field. There is a parametrized algorithm that, for a given matroid M
represented by an r×n matrix over F for some r ≤ n, tests whether the branch-width
of M is at most k in time O(n3).

We remark that the algorithm for Theorem 5.1 in [13] is purely of theoretical
importance. First, it uses the result of Geelen et al. [8] stating that minor-minimal
matroids of branch-width larger than k have size at most (6k − 1)/5. Second, it
tests whether the input matroid contains such a minor-minimal matroid as a minor
by encoding the question in a monadic second-order logic formula on matroids and
using a generic algorithm to solve an MSOL formula for F-represented matroids of
branch-width at most k. Since our algorithm will use Theorem 5.1, it will be purely
theoretical and difficult to implement.

Not all matroids are representable over F. Particularly, in the construction of the
normalized matroid (Theorem 4.4) we apply amalgams with uniform matroids which
need not be F-representable. To achieve their representability, we extend the field F

in a standard algebraic way.
Remark 5.2. Let F be a fixed finite field with q elements and d be a fixed

positive integer. We assume that one can perform arithmetic operations over F in
time depending only on q. Then, one can construct by brute force an extension
(finite) field F

′ = F(α) with qd elements by searching for a polynomial root α of
degree d over F. This can be done by searching through all polynomials in F[x] of
degree d for the irreducible ones.

Lemma 5.3. The n-element rank-r uniform matroid Ur,n is representable over a
(finite) field F if |F| ≥ n− 1.

Proof. Let |F| = q. It is trivial to represent U0,n, U1,n, Un−1,n, or Un,n over
every field. Furthermore, standard arguments of projective geometry show that a
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so-called normal rational curve in a projective geometry over F is a representation of
the uniform matroid Ur, q+1, for every 1 < r < q; see, for instance, [12, section 3].
Although it is not useful in our context, it is worth noting that the size bound q+1 is
almost optimal in most cases. Finally, if q + 1 > n, then we delete arbitrary q + 1−n
points from the representation to get Ur,n.

Recall the notion of a matroid amalgam from section 2 from the perspective of
represented matroids. We shall use the following proposition.

Proposition 5.4. Let M1,M2 be two matroids such that E(M1) ∩ E(M2) = T
and M1 � T = M2 � T . If both M1,M2 are F-represented, and the matroid M1 � T has
a unique F-representation up to linear transformations, then there exists an amalgam
of M1 and M2 which is also F-represented.

Proof. We denote by [A1 |AT ] the matrix over F representing M1, where the
columns of AT represent the set T . Analogously we denote by [A2 |A′

T ] the matrix
representing M2. Since M1 � T = M2 � T has a unique F-representation, there is
a linear transformation carrying A′

T onto AT . This transformation takes a whole
[A2 |A′

T ] to an equivalent matrix [A′
2 |AT ] representing the same matroid M2. It

is now trivial to verify that the matroid M which is F-represented by the composed
matrix [A1 |AT |A′

2] is an amalgam of M1 and M2.

We remark that representable matroids typically do have inequivalent vector rep-
resentations, but we are using Proposition 5.4 only in the case when M1 � T is a free
matroid which clearly has a unique F-representation for every field F.

We now outline a simple fixed-parameter tractable algorithm for testing branch-
width ≤ k on F-represented partitioned matroids.

Algorithm 5.5. Testing branch-width of a represented partitioned matroid.

Parameters: A finite field F, and a positive integer k.
Input: A rank-r matrix A ∈ F

r×n and a partition P of the columns of A. (Assume
n ≥ 2.)

Output: For the vector matroid M = M(A) on the columns of A partitioned by P, a
correct answer whether the branch-width of (M,P) is at most k.

1. First, we extend F to a nearest field F
′ such that |F′| ≥ 3k− 6 (Remark 5.2).

2. If the width of the partition P in given (M,P) is more than k, then we answer
NO.

3. Otherwise, we directly construct the normalized matroid M# (Theorem 4.4),
together with its vector representation over F

′ (Lemma 5.3 and Proposi-
tion 5.4).

4. Finally, we use Theorem 5.1 to test whether the branch-width of M# is at
most k.

Hence, we can conclude with the following theorem.

Theorem 5.6. Let k > 1 be a constant, and let F be a fixed finite field. There is
a parametrized algorithm that, for a partitioned matroid (M,P) represented over F,
tests in time O(|E(M)|3) whether the branch-width of (M,P) is at most k.

Proof. We refer to Algorithm 5.5. Denote n = |E(M)|. In the first step we find
the extension field F

′ which takes only constant time by Remark 5.2. Since F
′ ⊇ F,

we do not need to touch the input vector representation of M . Step 2. of Algorithm
5.5 is trivial.

The technical part comes in step 3. of Algorithm 5.5. For each part X ∈ P of more
than one element, we compute the intersection of the spans of X and of E(M) \X,
called the guts of the separation (X,E(M) \ X), in the representation of M . The
reader should understand that we deal with represented matroids, that means we
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x x

Fig. 3. Splitting x.

compute with actual vectors and subspaces in a projective geometry over F
′. If the

dimension λM (X)−1 of these guts was at least k, then each branch-decomposition of
(M,P) should have width at least λM (X) > k, and we have answered NO in step 2. of
Algorithm 5.5 in such a case. Therefore, the dimension of the guts of (X,E(M) \X)
is bounded by a constant k, and a set T of its independent generator vectors can be
easily computed in time O(n2) (see, e.g., [13, Algorithm 4.4]), per each part of P.

In order to get the situation anticipated in Theorem 4.4—each part representing
a free matroid—we replace the vectors of each nonsingleton part X ∈ P by the re-
spective vectors T computed in the previous paragraph. Let the resulting represented
partitioned matroid be denoted by (M0,P0), and note that bw(M0,P0) = bw(M,P).
For each T ∈ P0 we construct an F

′-representation of the titanic gadget (uniform
matroid) UT from section 4 using Lemma 5.3, and then construct an amalgam of M0

with UT according to Proposition 5.4. Since UT is of bounded size, this last step can
be computed in time proportional to the vector length O(n), per each part of P0.

After processing all O(n) nonsingleton parts in P0 by the previous procedure,
we get a vector F

′-representation of the normalized matroid M# for (M0,P0). By
Theorem 4.4, bw(M#) = bw(M0,P0) = bw(M,P). So, we call the algorithm of
Theorem 5.1 to determine whether the branch-width of M# (as well as the branch-
width of (M,P)) is at most k. This takes only O(n3) time since both k, F

′ are of
bounded size here.

We are now able to test branch-width of partitioned matroids. We show how this
result can be extended to finding an appropriate branch-decomposition.

Theorem 5.7. Let K be a class of matroids, and let k be an integer. If there is
an f(|E(M)|, k)-time algorithm to decide whether a partitioned matroid (M,P) has
branch-width at most k for every pair of a matroid M ∈ K and a partition P of E(M),
then a branch-decomposition of the partitioned matroid (M,P) of width at most k, if
it exists, can be found in time O

(
|P|3 · f(|E(M)|, k)

)
.

The idea of the proof is due to Jim Geelen, published by Oum and Seymour in
[20]. Details of the algorithm follow. Clearly, we may assume that the branch-width
of the partitioned matroid (M,P) in question is at most k, since otherwise there is
nothing to compute. A splitting of a leaf x of a subcubic tree is an operation that
creates two new leaves and makes them adjacent to x (see Figure 3).

Algorithm 5.8. Computing a branch-decomposition of a partitioned matroid.
Oracle: A subroutine for testing the branch-width of a partitioned matroid (M,P),

where M belongs to a given class K, and P is a partition of E(M).
Input: A partitioned matroid (M,P) of branch-width at most k, where M ∈ K.
Output: A branch-decomposition of (M,P) of width at most k.

1. If |P| ≤ 2, then it is trivial to output a branch-decomposition.
2. We find a pair X,Y of disjoint parts of P such that a partitioned matroid

(M, (P \ {X,Y }) ∪ {X ∪ Y }) has branch-width at most k. Let P ′ = (P \
{X,Y }) ∪ {X ∪ Y }.

3. Let (T ′, μ′) be the branch-decomposition of (M,P ′) of width at most k ob-
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tained by calling this algorithm recursively.
4. Let T be a tree obtained from T ′ by splitting the leaf μ′(X∪Y ) into two leaves

which we denote by μ(X) and μ(Y ). Let μ(Z) = μ′(Z) for all Z ∈ P\{X,Y }.
We output (T, μ) as the resulting branch-decomposition of (M,P ) of width
at most k.

Proof of Theorem 5.7. We start by estimating the running time of the algorithm.
At each level of recursion, we call our oracle (the decision algorithm) at most

(|P|
2

)
=

O(|P|2) times. The depth of recursion is |P|− 1, and therefore the number of calls to
the decision algorithm is at most O(|P|3). Thus, the running time of the algorithm
is O

(
|P|3 · f(|E(M)|, k)

)
.

It remains to show correctness of the algorithm. It is obvious that in every
subcubic tree with at least three leaves, there are two leaves that have a common
neighbor. Suppose that (T, μ) is a branch-decomposition of (M,P) of width at most
k. Then there are two leaves μ(X) and μ(Y ) having a common neighbor z in T . It
is easy to see that if we remove μ(X) and μ(Y ) from T and map X ∪ Y to z by μ,
then (T, μ) is a branch-decomposition of (M,P ′) of width at most k. Therefore, the
branch-width of (M,P ′) is at most k.

Conversely, suppose that (T ′, μ′) is the branch-decomposition of (M,P ′). Since
(M,P) has a branch-width of at most k, we know that λM (X) ≤ k and λM (Y ) ≤ k.
Thus (T, μ) is a branch-decomposition of (M,P) of width at most k.

Corollary 5.9. For a constant k and a fixed finite field F, we can find a
branch-decomposition of a given F-represented matroid M of branch-width at most k,
if it exists, in time O(|E(M)|6).

Proof. Let P = {{x} : x ∈ E(M)}. Then the branch-decomposition of M is one-
to-one correspondent to the branch-decomposition of a partitioned matroid (M,P).
By Theorem 5.6, the problem of deciding whether branch-width is at most k can be
done in time O(|E(M)|3), and therefore we can construct the branch-decomposition
of width at most k in time O(|P|3 · |E(M)|3) = O(|E(M)|6) by Theorem 5.7.

Remark 5.10. One can actually improve the bound in Theorem 5.7 to O
(
|P|2 ·

f(|E(M)|, k)
)

time. The basic idea is the following: At the first level of recursion we
find not only one pair of parts but a maximal set of disjoint pairs of parts from P
that can be joined (pairwise) while keeping the branch-width at most k. This again
requires O(|P|2) calls to the decision algorithm. At the deeper levels of recursion
we then use the same approach but process only such pairs of parts that contain
one joined at the previous level. An amortized complexity analysis shows that only
additional O(|P|2) calls to the decision algorithm are necessary at all subsequent levels
of recursion together. Detailed arguments of this approach can be found further in
Theorem 6.7, part (III) of the proof.

6. Faster algorithm for branch-decompositions. Even with Remark 5.10
in account, the approach of section 5 results in an O(n5) parametrized algorithm for
constructing a branch-decomposition of an n-element matroid represented over a fixed
finite field. That is still far from the cubic running time of the decision algorithm in
Theorem 5.1. Although not straightforwardly, we are able to improve the running
time of our constructive algorithm to asymptotically match cubic time of that and
[5].

It is the purpose of this section to present a detailed analysis of such a faster
implementation of Algorithm 5.8 using Remark 5.10. For that we have to dive into
fine details of the ideas and algorithms in [13]. To be consistent, we also adopt the
writing style of [13] for this section and recall a few necessary technical definitions
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here. More technical details are given along with a formal setting of Algorithm 6.6.
We first give a brief informal outline of our faster algorithm, which seems necessary
since Algorithm 6.6 itself is quite long and complex. We also collect formal state-
ments of useful subroutines from [13], and then we conclude with the main algorithm
(Algorithm 6.6) and a proof of its correctness.

One key point in the approach of [13, 14] is that a matroid M , which is F-
represented by a matrix A, is equivalent to a projective point configuration over F,
and therefore we can speak about M in schematic geometric terms. Briefly speaking,
a parse tree [14] of an F-represented matroid M is a rooted tree T , with at most two
children per node, such that the leaves of T hold nonloop elements of M represented
by points of a projective geometry over F, or loops of M represented by the empty
set. The internal nodes of T , on the other hand, hold suitable “composition operators
over F.”

Such a composition operator � is a configuration in the projective geometry over
F such that � has three subspaces (possibly empty) distinguished as its boundaries;
two of which are used to “glue” the matroid elements represented in the left and right
subtrees, respectively, together. The third one, upper boundary, is then used to “glue”
this node further up in the parse tree T . Our “glue” operation, called the boundary
sum by Hliněný [14], is analogous to the amalgam of matroids in Proposition 5.4.
The ranks of adjacent boundaries of two composition operators in T must be equal
for “gluing.” A parse tree T is ≤ t-boundaried if all composition operators in T have
boundaries of rank at most t. Such a parse tree actually gives a branch-decomposition
of width at most t + 1 and vice versa, by [14, Theorem 3.8]. See [14] for additional
details.

We will use the following algorithm shown by Hliněný [13].

Algorithm 6.1 (see [13, Algorithm 4.1]). Computing a parse tree of a repre-
sented matroid.

Parameters: A finite field F, and a positive integer k.
Input: A rank-r matrix A ∈ F

r×n representing a matroid M over F. (Assume n ≥ 2.)
Output: Computed in time O(n3); either a ≤3k-boundaried parse tree T of the ma-

troid M , or a proof that the branch-width of M is more than k + 1.

The basic idea of Algorithm 6.1 is as follows: We start with a basis Ir of the
input matrix A = [Ir |A′] ∈ F

r×n, and assign an arbitrary parse tree T to Ir. Then
we are adding, one by one, the remaining elements of A′ arbitrarily to T . Whenever
the largest boundary rank (the width) of T exceeds certain constant threshold, say
10k, we “compress” T into a new parse tree T ′ of width at most 3k again. However, if
the compression step fails, then we have a certificate that the branch-width of M(A)
is more than k + 1. The compression routine, [13, Algorithm 4.1, step 3] and [13,
Lemma 4.13], is crucial also in our new algorithm, and thus we restate it explicitly
here.

Algorithm 6.2 (see [13, Algorithm 4.1]). “Compressing” a parse tree of bounded
width.

Parameters: A finite field F, and a positive integer k.
Input: A ≤ ck-boundaried parse tree T (of an n-element matroid M represented

over F), where c > 3 is a fixed constant, say c = 10.
Output: Computed in time O(n2); either a ≤3k-boundaried parse tree T ′ of the same

matroid M , or a proof that the branch-width of M is more than k + 1.

Outline of the faster algorithm. Before giving full details of our new Algorithm 6.6
for computing a branch-decomposition of a represented partitioned matroid, we sketch
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its main ideas with respect to the previous Algorithms 6.2 and 6.1.

Parameters: A finite field F, and a positive integer k.
Input: A rank-r matrix A ∈ F

r×n and a partition P of the columns of A. (Assume
n ≥ 2.)

Initial phase. Let M = M(A) be the vector matroid on the columns of A. We run
Algorithm 5.5 to obtain the represented normalized matroid M# for our M
and P, and to decide whether bw(M#) ≤ k. In the positive case, we also call
Algorithm 6.1 to obtain a ≤3(k− 1)-boundaried parse tree T for the matroid
M#.

Construction phase. We construct a branch-decomposition of (M,P) as a rooted for-
est D which is initialized to the set of disconnected nodes P1 := P. A rooted
forest is a forest in which every connected component has a specified vertex
called a root.
In the first iteration, we find an inclusion-wise maximal collection of pairwise
disjoint pairs {Xi, Yi}, i = 1, 2, . . . , c, of parts of P1 such that the branch-
width of (M,P ′

1) is at most k, where P ′
1 is obtained from P1 via replacing

parts Xi, Yi with Xi ∪ Yi for i = 1, 2, . . . , c. The meaning is that these pairs
{Xi, Yi} simultaneously correspond to pairs of leaves of distance two in some
branch-decomposition of width ≤ k. We let Q1 = {Xi ∪ Yi : i = 1, 2, . . . , c},
and add the new nodes from Q1 to our forest D connected to the appropriate
Xi, Yi’s. Then we set P1 := P ′

1.
In each of the subsequent iterations, we again find an inclusion-wise maximal
collection of pairwise disjoint pairs {Xi, Yi}, i = 1, 2, . . . , c, of parts of P1 such
that the branch-width of (M,P ′

1) is at most k, but now we restrict Yi ∈ Q1

(whereas Xi ∈ P1). Then we continue analogously to the first iteration, until
D becomes a tree.

Output: Either a branch-decomposition D of (M,P) of width at most k, or the answer
NO if bw(M,P) > k.

There are two important points to notice in the above outline, which make the
whole algorithm run in time O(n3). First, we only consider altogether O(n2) pairs
{Xi, Yi} of parts for possible merging, throughout all iterations of the algorithm. A
formal proof of this fact in included as part (III) of the proof of Theorem 6.7. Second,
to be able to run a quick test whether the branch-width of (M,P ′

1) exceeds k or not,
we need to maintain a certain “working” parse tree T1 of bounded width. Then, as
noted already after Theorem 5.1, such a test can be done by looking for the excluded
minors for branch-width at most k because each excluded minor has size at most
(6k − 1)/5, shown by Geelen et al. [8].

Theorem 6.3 (see [14, Theorem 6.1] and [13, Corollary 5.4]). Let t > 1 be a
constant, and let F be a fixed finite field. There is a parametrized algorithm that, for
every k ≤ t and for a given ≤ t-boundaried parse tree T of an n-element matroid M ,
decides whether the branch-width of M is at most k in time O(n).

We have skipped, for simplicity, an explicit reference to the “working” parse tree
T1 in the above outline; however, one can roughly say that T1 is maintained as a
parse tree of the normalization of the current partitioned matroid (M,P1). This will
be precise in Algorithm 6.6. It is essential that we keep the width of T1 bounded
throughout the computation, for which we use to call Algorithm 6.2 after each of the
O(n) major updates to T1.

Therefore, to quickly test whether merging a pair of parts Xi, Yi ∈ P1 increases
the branch-width of (M,P1) above k or not, we temporarily modify the parse tree T1
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each time by replacing W = Xi ∪ Yi with the titanic gadget (amalgamated according
to section 4). As this (Algorithm 6.4) does not increase the width of T1 much, we
then solve the task in time O(n) using Theorem 6.3.

To make a precise statement of this procedure, we introduce an additional tech-
nical definition inspired by section 4: Let M be a matroid and X ⊆ E(M). Let
F = E(M) \X and Y be disjoint from E(M). Assume M ′ is a matroid on E(M)∪Y
such that M ′ � F = M � F , rM ′(X ∪ Y ) = rM (X) (i.e., Y is spanned by X), and
λM ′\X(Y ) = |Y | + 1 = λM (X) > 1. If a matroid N is an amalgam of M ′ \ X
and the titanic gadget UY , then we say that N is obtained from M by a (titanic)
normalization of the set X. If, on the other hand, λM (X) = 1, then a normal-
ization of the set X in M results in M \ X. The point is that, by Lemmas 3.3
and 4.3, part 3., the branch-width of N equals the branch-width of (M,PX), where
PX =

{
{X}

}
∪

{
{y} : y ∈ E(M) \X

}
.

Algorithm 6.4. Computing a titanic normalization of a point set on the parse
tree.

Parameters: A finite field F, and an integer k ≥ 1. (We may assume that |F| ≥ 3k−6
as in Remark 5.2.)

Input: A ≤ (3k − 1)-boundaried parse tree T1 representing a matroid M1 with n ele-
ments, and a set W ⊆ E(M1) such that λM1

(W ) = � ≤ k.
Output: A ≤ (3k + � − 2)-boundaried parse tree T2 of an F-represented matroid M2

such that M2 can be obtained from M1 by the normalization of W .

Algorithm 6.4 is an immediate extension of [13, Algorithm 4.9] for computing
λM1(W ). We describe it in terms of a projective geometry and the point configuration
representing a matroid M1 via the parse tree T1. If � = 1, then we return T1 without
W , immediately.

At the beginning we make T2 a copy of T1. The idea is to “enlarge” all of the
composition operators in T2 to fully contain the guts Γ (a projective subspace of
rank �− 1 with a basis Y ) of the separation

(
W, E(M1) \W

)
, and then to “glue” or

amalgamate a decomposition of the titanic gadget UY � U�−1,3�−5 to the root of T2

so that it matches Y in Γ. For that we apply leaf-to-root dynamic programming on
T2 with constant-time operations at each node.

At a node x ∈ V (T2), we compute the subspace Σx of Γ spanned by the elements
of W held in the leaves below x. Knowing Σx′ and Σx′′ for the children x′, x′′ of
x in T2, it is a constant-time manipulation to determine Σx using the composition
operator � at x. Notice that as our algorithm is set up, Σx is spanned by �. If the
upper boundary of � does not fully contain Σx, we enlarge it accordingly and also
freely extend the matching boundary at the parent node of x. Note that Σr = Γ will
become the upper boundary of the root node r.

After finishing that computation, we take an arbitrary parse tree T3 of the titanic
gadget (i.e., uniform matroid) UY � U�−1,3�−5, and add to T2 a new root node r′

adjacent to the former root r of T2 and to the root of T3. The composition operator
at r′ “glues” UY directly to Σr. Finally, we strip from T2 all leaves holding the points
of W . This is trivial since our definition of a parse tree allows nodes with only one
descendant.

Since we use only constant-time operations at each node of T2, we conclude with
the following lemma.

Lemma 6.5. Algorithm 6.4 computes correctly in time O(n).

We are now ready to restate the above algorithmic outline in a formal setting.
Our notation of variables in Algorithm 6.6 essentially follows the outline, but we need
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X1 X2

W = X1 ∪ X2

M

M1

M2

(T1)

(T2)

titanic gadgets

E(UY )

τ

P

P1M1

P1 ∪ {W} \ {X1, X2}

titanic gadget (UY )
P2

bw(M2) = bw(M2,P2) = bw(M1,P1 ∪ {W} \ {X1, X2})

Fig. 4. An illustration of Algorithm 6.6.

a few more of them. For instance, Q2 at each round holds the set of all pairs of parts
among which we are looking for the admissible ones. See also an informal hint in
Figure 4.

Algorithm 6.6. Computing a branch-decomposition of a represented parti-
tioned matroid.

Parameters: A finite field F, and a positive integer k.
Input: A rank-r matrix A ∈ F

r×n and a partition P of the columns of A. (Assume
n ≥ 2.)

Output: For the vector matroid M = M(A) on the columns of A, either a branch-
decomposition of the partitioned matroid (M,P) of width at most k, or the
answer NO if bw(M,P) > k.

1. Using brute force, we extend the field F to a (nearest) finite field F
′ such that

|F′| ≥ 3k − 6 (Remark 5.2 and Lemma 5.3).
2. We check whether bw(M,P) ≤ k, using Algorithm 5.5. If bw(M,P) > k,

then we answer NO. Otherwise we keep the normalized matroid M# and its
F
′-representation A# obtained at this step. We denote by P1 the (titanic)

partition of E(M#) corresponding to P, and by τ(X) ∈ P for X ∈ P1 the
corresponding parts.

3. Calling Algorithm 6.1, we compute a ≤3(k − 1)-boundaried parse tree T for
the matroid M# which is F

′-represented by A# (regardless of P1).
4. We initially set T1 := T , Q1 := ∅, Q2 :=

{
{X1, X2} : X1 �= X2, X1, X2 ∈ P1

}
,

and create a new rooted forest D consisting so far of the set of disconnected
nodes P1.
Let M1 (M2) denote the matroid represented by T1 (T2, respectively) at each
step. Then we repeat the following steps (a), (b), until P1 contains at most
two parts:
(a) While there is {X1, X2} ∈ Q2 such that X1, X2 ∈ P1, we perform the

following steps:
i. Let Q2 := Q2 \

{
{X1, X2}

}
. Calling [13, Algorithm 4.9] in linear

time, we compute connectivity value � = λM1
(X1 ∪ X2) over the

parse tree T1. If � > k, then we continue this cycle again from (a).
ii. We call Algorithm 6.4 on T1 and W = X1∪X2 to compute a ≤ (3k+

�− 2)-boundaried parse tree T2 of a matroid M2 which is obtained
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by a titanic normalization of the part W .
By Lemmas 3.4 and 4.3 we have bw

(
M1, P1 ∪ {W} \ {X1, X2}

)
=

bw(M2).
iii. We check whether branch-width bw(M2) ≤ k by applying Theo-

rem 6.3. If bw(M2) > k, then we continue this cycle again from (a).
iv. If bw

(
M1, P1 ∪ {W} \ {X1, X2}

)
= bw(M2) ≤ k, then we add

a new node Z = E(UY ) (UY given by the normalization of W in
Algorithm 6.4) adjacent to X1 and X2 in the rooted forest D, and
make Z the root for its component. We update P1 := P2 = P1 ∪
{Z} \ {X1, X2}, and Q1 := Q1 ∪ {Z}.

v. Last, by calling Algorithm 6.2 on T2, we compute in a new ≤3(k−1)-
boundaried parse tree T3 for the matroid M2, and set T1 := T3.

(b) When the “while” cycle (4.a) is finished, we set Q2 :=
{
{X1, X2} : X1 �=

X2, X1 ∈ P1, X2 ∈ Q1

}
and Q1 := ∅, and continue from (4.a).

5. Finally, if |P1| = 2, then we connect by an edge in D the two nodes X1, X2 ∈
P1. We output (D, τ) as the branch-decomposition of (M,P).

Theorem 6.7. Let k be a fixed integer and F be a fixed finite field. We assume
that a vector matroid M = M(A) is given as an input together with a partition P
of E(M), where n = |E(M)| and |P| ≥ 2. Algorithm 6.6 outputs in time O(n3)
(parametrized by k and F) a branch-decomposition of the partitioned matroid (M,P)
of width at most k, or confirms that bw(M,P) > k.

Proof. We refer to the above outline. Our proof of the theorem constitutes the
following three claims holding true if bw(M,P) ≤ k.

(I) The computation of Algorithm 6.6 maintains invariants, with respect to the
actual matroid M2 of T2, the rooted forest D, and the current value P2 of the
partition variable P1 after each call to step (4.a.iv), such that

• P2 is the set of roots of D, and a titanic partition of M2 such that
bw(M2,P2) = bw(M2) ≤ k,

• λM

(
τD(S)

)
= λP2

M2
(S) for each S ⊆ P2, where τD(S) is a shortcut for the

union of τ(X) with X running over all leaves of the connected components
of D whose root is in S (see Algorithm 6.6, step 2. for τ).

(II) Each iteration of the main cycle in Algorithm 6.6 (4.) succeeds to step (4.a.iv)
at least once.

(III) The main cycle in Algorithm 6.6 step 4. is repeated O(n) times. Moreover, the
total number of calls to the steps in (4.a) is O(n2) for steps i, ii, iii, and O(n)
for steps iv, v.

Having all of these facts at hand, it is now easy to finish the proof. It is immediate
from (I) that the resulting (D, τ) is a branch-decomposition of width at most k of
(M,P). Note that all parse trees involved in the algorithm have constant width less
than 4k (see in steps (4.a.ii,v)). The starting steps (1.), (2.), (3.) of the algorithm are
already known to run in time O(n3) (Theorem 5.6 and Algorithm 6.1), and the partic-
ular steps in (4.a) need time (III) O(n2) ·O(n)+O(n) ·O(n2) = O(n3) by Lemma 6.5
and Algorithm 6.2. The size of the matroid M1 clearly stays linear in n after O(n)
constant-size updates. Hence, our Algorithm 6.6 runs correctly in parametrized time
O(n3), provided that (I)–(III) hold true.

The proof of (I) essentially extends the arguments of Theorem 5.7. Initially, with
M1 and P1 in place of M2, P2, all the claims of (I) obviously hold true, analogously to
Theorem 5.6. Each call to step (4.a.iv) then adds a new titanic set E(UY ) to P2 (see
Lemma 4.3 (3)), and hence the partition P2 remains titanic for M2 and, subsequently,
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bw(M2,P2) = bw
(
M1, P1∪{W}\{X1, X2}

)
= bw(M2) ≤ k follows from Lemma 3.4.

The most complex claim of (I) is the last assertion, that λM (τD(S)) = λP2

M2
(S) for

each S ⊆ P2. By induction, we may assume that λM (τD(S1)) = λP1

M1
(S1) holds for

all S1 ⊆ P1 just before this call to (4.a.iv). Now, by Algorithm 6.4, the titanic gadget
E(UY ) in the representation spans exactly the same subspace because it is the guts
of the separation (X1 ∪ X2, E(M1) \ (X1 ∪ X2)) in M1. Therefore, for all S1 ⊆ P1

such that |S1 ∩{X1, X2}| �= 1, the corresponding S ⊆ P2 satisfies λP2

M2
(S) = λP1

M1
(S1).

This proves the assertion.

To prove (II), we use that bw(M1,P1) ≤ k at each iteration of the main cycle (4.),
which directly follows from above bw(M2,P2) ≤ k. Then, by the same arguments as
in Theorem 5.7, there is a pair {X1, X2} ⊂ P1 for which (4.a) would succeed up to step
(4.a.iv), which happens if bw

(
M1, P1∪{X1∪X2}\{X1, X2}

)
≤ k. We call such a pair

X1, X2 admissible. It remains to argue that all admissible pairs {X1, X2} ⊂ P1 belong
also to Q2, which is trivial only during the first round of (4.). For a contradiction,
assume that {X1, X2} �∈ Q2 at the least round i > 1. Consider now the values of
our variables P1,Q1,Q2 at the previous round i − 1: It was {X1, X2} ∩ Q1 = ∅ by
the assignment to Q2 in (4.b), and so {X1, X2} ⊂ P1 is already there. That means
the pair X1, X2 has been admissible since round i − 1 started, but it has not been
processed only due to {X1, X2} �∈ Q2 at round i−1, which contradicts our least choice
of i.

Concerning (III), each iteration of (4.) adds at least one new node to the de-
composition D by (II), and hence no more than O(n) iterations occur. The same
argument also bounds the total number of calls to the crucial steps (4.a.iv–v). The
situation with steps i, ii, iii is more versatile, and we bound the total number of calls
to them from above by the total number of iterations of the cycle in (4.a): During
the initial round of the main cycle (4.), there are clearly at most |Q2| = O(n2) itera-
tions of (4.a). For each subsequent round i > 1, the number of iterations is at most
|Q2| ≤ qi · |P1|, where qi = |Q1| at the end of the previous run i − 1. Hence, the
total number of iterations of the cycle in (4.a) is at most O(n2)+O(n) ·

∑r
i=2 qi since

|P1| = O(n) always. It remains to argue that
∑r

i=2 qi = O(n), which follows from
the fact that each element ever assigned to Q1 in step (4.a.iv) appears as an internal
node of the decomposition D, and |V (D)| = O(n).

This also finishes the whole proof of Theorem 6.7.

7. Finding a rank-decomposition of a graph. In this last section, we present
a fixed-parameter tractable algorithm to find a rank-decomposition of width at most k
or confirm that the input graph has rank-width larger than k. It is a direct translation
of the algorithm of Theorem 6.7. Let us first review necessary definitions from [19]
and [17]. We assume that all graphs in this section have no loops and no parallel
edges.

We have seen in section 2 that every symmetric submodular function can be used
to define branch-width. We define a symmetric submodular function on a graph,
called the cut-rank function of a graph. For an X × Y matrix R and A ⊆ X, B ⊆ Y ,
let R[A,B] be the A× B submatrix of R. For a graph G = (V,E), let A(G) be the
adjacency matrix of G, that is a V ×V matrix over the binary field GF(2) such that an
entry is 1 if and only if vertices corresponding to the column and the row are adjacent
in G. The cut-rank function ρG(X) of a graph G = (V,E) is defined as the rank of the
matrix A(G)[X,V \X] for each subset X of V . Then ρG is symmetric and submodular;
see [19]. Rank-decomposition and rank-width of a graph G is branch-decomposition
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V

V ∗

Fig. 5. Graph G and the associated bipartite graph bip(G) with its canonical partition.

and branch-width of the cut-rank function ρG of the graph G, respectively. So, if the
graph has at least two vertices, then the rank-width is at most k if and only if there
is a rank-decomposition of width at most k.

Now let us recall why bipartite graphs are essentially binary matroids. Oum [17]
showed that the connectivity function of a binary matroid is exactly one more than
the cut-rank function of its fundamental graph. The fundamental graph of a binary
matroid M on E = E(M), with respect to a basis B, is a bipartite graph on E such
that two vertices in E are adjacent if and only if one vertex v is in B, another vertex
w is not in B, and (B \ {v}) ∪ {w} is independent in M . Given a bipartite graph G,
we can easily construct a binary matroid having G as a fundamental graph; if (C,D)
is a bipartition of V (G), then take the matrix

⎛
⎜⎝

C D

C

1 0
. . .

0 1

A(G)[C,D]
C ×D submatrix of

the adjacency matrix

⎞
⎟⎠

as the representation of a binary matroid. Thus, the column indices are elements of
the binary matroid, and a set of columns is independent in the matroid if and only
if its vectors are linearly independent. After all, finding the rank-decomposition of
a bipartite graph is equivalent to finding the branch-decomposition of the associated
binary matroid, that is essentially Theorem 6.7.

To find a rank-decomposition of nonbipartite graphs, we transform the graph into
a canonical bipartite graph. For a finite set V , let V ∗ be a disjoint copy of V , that is,
formally speaking, V ∗ = {v∗ : v ∈ V } such that v∗ �= w for all w ∈ V and v∗ �= w∗ for
all w ∈ V \{v}. For a subset X of V , let X∗ = {v∗ : v ∈ X}. For a graph G = (V,E),
let bip(G) be the bipartite graph on V ∪ V ∗ such that vw∗ are adjacent in bip(G) if
and only if v and w are adjacent in G (see Figure 5). Let Pv = {v, v∗} for each v ∈ V .
Then Π(G) = {Pv : v ∈ V } is a canonical partition of V (bip(G)).

Lemma 7.1. For every subset X of V (G), 2ρG(X) = ρbip(G)(X ∪X∗).
Proof. This is clear from the construction of bip(G). Let Y = V (G) \ X. Let

N = A(G)[X,Y ]. Since

ρbip(G)(X ∪X∗) = rank

( Y Y ∗

X 0 N
X∗ N t 0

)
,

we conclude that ρbip(G)(X ∪X∗) = 2 rankN = 2ρG(X).

Corollary 7.2. Let p : V (G) → Π(G) be the bijective function such that

p(x) = Px. If (T, μ) is a branch-decomposition of ρ
Π(G)
bip(G) of width k, then (T, μ ◦ p)
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is a branch-decomposition of ρG of width k/2. Conversely, if (T, μ′) is a branch-

decomposition of ρG of width k, then (T, μ′ ◦p−1) is a branch-decomposition of ρ
Π(G)
bip(G)

of width 2k. Therefore, the branch-width of ρG is equal to half of the branch-width of

ρ
Π(G)
bip(G).

Let M = mat(G) be the binary matroid on V ∪ V ∗ represented by the matrix

( V V ∗

V
Identity
matrix

A(G)
)
.

Since the bipartite graph bip(G) is a fundamental graph of M , we have λM (X) =
ρbip(G)(X) + 1 for all X ⊆ V ∪ V ∗ (see Oum [17]) and therefore (T, μ) is a branch-
decomposition of a partitioned matroid (M,Π(G)) of width k + 1 if and only if it is

a branch-decomposition of ρ
Π(G)
bip(G) of width k. Corollary 7.2 implies that a branch-

decomposition of ρ
Π(G)
bip(G) of width k is equivalent to that of ρG of width k/2. So, we

can deduce the following theorem from Theorem 6.7.

Theorem 7.3. Let k be a constant. Let n ≥ 2. For an n-vertex graph G, we can
output the rank-decomposition of width at most k or confirm that the rank-width of G
is larger than k in time O(n3).

Proof. We apply Theorem 6.7 to find a branch-decomposition of a partitioned
matroid (mat(G),Π(G)) of width at most 2k + 1. If such a branch-decomposition
is found, then one can canonically transform it into a rank-decomposition of G of
width at most k by Corollary 7.2. If there is no such branch-decomposition, then the
rank-width of G is larger than k.
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