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Abstract

This paper draws attention for the fact that traditional Data Envelopment Analysis (DEA)
models do not provide the closest possible targets (or peers) to inefficient units, and presents
a procedure to obtain such targets.

It focuses on non-oriented efficiency measures (which assume that production units are
able to control, and thus change, inputs and outputs simultaneously) both measured in
relation to a Free Disposal Hull (FDH) technology and in relation to a convex technology.
The approaches developed for finding close targets are applied to a sample of Portuguese
bank branches.
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 Introduction

Efficiency measurement in Data Envelopment Analysis (DEA) requires both the identifi-
cation of a reference point on the boundary of the production possibility set (PPS) and
the use of some measure of distance from that point to another being analysed. The two
issues (identification of the boundary point and the distance measure used) are traditionally
performed simultaneously. The basic DEA model as introduced by Farrell (1957) and later
developed by Charnes et al. (1978), uses an oriented radial measure of efficiency, which
identifies a point on the boundary with the same mix of inputs (input orientation) or outputs
(output orientation) of that of the observed unit. The conservation of the mix in movements
towards the boundary of the PPS is the characteristic that makes the resulting distance
measure radial.
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In many practical situations, however, it is desirable to use measures of efficiency that
are non-oriented and non-radial in character. Any measure of efficiency that does not
assume equiproportional reductions of inputs or outputs is non-radial. The first non-radial
measure of technical efficiency dates back to 1978 and is due to Färe and Lovell (1978).
The interest of researchers in non-radial measures arises mainly from the fact that radial
(or Farrell) efficiency measures do not correspond to the Pareto-Koopmans definition of
technical efficiency.1 This issue is known in the DEA literature as the indication or slacks
problem, as the main characteristic of radial efficiency measures is that they ignore the
possible existence of slacks associated with the projected points on the production frontier.
This issue motivated a discussion (see e.g., Russell, 1985; Lovell and Schmidt, 1988;
Kerstens and Vanden-Eeckaut, 1995) and although many authors still favour the use of
radial measures (mainly because of its many useful properties), non-radial efficiency mea-
sures are increasing in popularity. A weakness of radial measures, is the perceived arbi-
trariness in imposing targets preserving the mix within inputs or within outputs, when the
firm’s very reason to change its input/output levels might often be the desire to change that
mix (Chambers and Mitchell, 2001, p. 32).

The non-radial Färe-Lovell efficiency measure is oriented. That is, it aims at changing
inputs or outputs but not both. To the authors’ knowledge, the first (non-radial) non-oriented
measures of efficiency were introduced in 1985. One of these, the hyperbolic measure of
technical efficiency, is due to Färe et al. (1985) and the other, the additive model, is due to
Charnes et al. (1985). Non-oriented measures are relevant in many practical situations. Take
for example the banking context were the use of an intermediation approach (see Colwell
and Davis, 1992, for details) specifies inputs in the form of costs and outputs in the form of
revenues. Some of the costs and revenues are controllable, and so the obvious approach to
follow is non-oriented, i.e., permitting at the same time reduction of inputs and increase of
outputs (which in this case would translate in an increase in profits).2

As pointed out by one of the referees to this paper, the distinction between oriented and
non-oriented measures of efficiency is mainly of theoretical interest only, because in practice
the analyst needs to identify the variables which can be modified, and then efficiency is
measured with reference to those variables. Non-radial oriented measures assume a priori
that the variables to be modified are only on the input or on the output side, while in practice
they are often on both sides. Non-oriented measures are, therefore, more general and more
flexible in the sense that they allow for changes in all the factors.

One of the key practical outcomes in an efficiency assessment is the identification of
targets. However, one of the drawbacks of the traditional non-oriented DEA models is that
they either impose strong restrictions on the movements towards the efficient frontier, or
they aim at maximising slacks. Both these facts contribute to finding targets and peers that
are not the closest to the units being assessed. We will define measures of closeness later;
suffice is to say at this point that the closer the targets to a unit, the less the change in its
operations needed to reach its targets. If Pareto-efficiency can be achieved by imposing
inefficient units less effort than that demanded by traditional efficiency measures, then it is
at least of practical value to find the closest targets for each inefficient unit we can. Close
targets in this sense are in line with the original spirit of DEA of showing each production
unit in the best possible light. The idea of finding closest targets and peers has appeared
in the literature both associated with oriented models (see e.g., Coelli, 1998; or Cherchye



and Puyenbroeck, 2001a) and non-oriented models (see e.g., Frei and Harker, 1999; Golany
et al., 1993). It is our intention to explore this issue for the most general case of non-oriented
efficiency measures. In addition, we will restrict our analysis to technical efficiency. In this
sense, we shall allow production units to move in all directions to improve their technical
efficiency, as long as inputs are not increased and outputs are not decreased.

This paper analyses the issue of finding closest targets both in Free Disposal Hull (FDH)
and in convex technologies. The next section introduces these production technologies
and presents some existing non-oriented measures of efficiency. Section 2 discusses the
concept of closeness of targets. Section 3 explains the approach developed to find closest
targets for FDH technologies, while Section 4 presents the equivalent approach for convex
technologies. In Section 5 these procedures are applied to a set of Portuguese bank branches,
and Section 6 summarises the conclusions.

Non-Radial-Non-Oriented Measures of Efficiency

Consider a technology represented by T = {(x, y) ∈ Rm+s
+ | x can produce y}, where, for

each unit j (1, . . . , n), x j = (x1 j , . . . , xmj ) ∈ Rm
+ is an input vector producing an output

vector yj = (y1 j , . . . , ys j ) ∈ Rs
+. This paper addresses the two production correspondences

T (x, y)FDH and T (x, y)BCC, which can both be specified by equation (1). When S equals
{0, 1}, then T corresponds to an FDH technology (T (x, y)FDH) (Deprins et al., 1984), while
when S equals [0, +∞[, T corresponds to a BCC technology (T (x, y)BCC) (Banker et al.,
1984).

T (x, y) =

(x, y) ∈ Rm+s

+

∣∣∣∣∣
n∑

j=1

λ j yj ≥ y,

n∑
j=1

λ j xj ≤ x,

n∑
j=1

λ j = 1, λ j ∈ S, j = 1, . . . , n


 (1)

T (x, y)FDH assumes only free disposability of inputs and outputs being, therefore, a non-
convex technology. T (x, y)BCC, on the other hand, is convex and assumes variable returns
to scale (VRS). If the constraint normalizing the sum of lambdas was dropped in T (x, y)BCC

one would have a constant returns to scale (CRS) technology.
Each of the two production possibilities sets (PPS) above is bounded by a frontier, where

target points are located. A number of measures exist to calculate the distance between
observed points and target points. The ones in DEA are known as efficiency measures.
Radial measures may find targets that, although lying on the frontier, are not on its Pareto-
efficient subset. On the other hand, non-radial measures have the purpose of assuring that
the identified targets lie on the Pareto-efficient subset of the frontier. Most of the studies
that apply non-radial measures of efficiency use their oriented version (like the Färe-Lovell
(see Färe and Lovell, 1978; Färe et al., 1985) or the Zieschang (1984) efficiency measures).
Such studies can be found for example in Dervaux et al. (1998), Ruggiero and Bretschneider
(1998), Kerstens and Vanden-Eeckaut (1995), De Borger and Kerstens (1996) or Cherchye
and Puyenbroeck (2001b), both in the FDH context and in the context of convex frontiers.



The non-oriented DEA models in the literature share the common feature of maximising
slacks. As a consequence, the targets these models identify are the furthest rather than the
closest from each production unit being assessed. For some models, like the additive model
of Charnes et al. (1985) or its variant the RAM (Range Adjusted Measure) as proposed
by Cooper et al. (1999), this objective of slack maximisation is explicit in the objective
function of the DEA models. See for example the objective function of the RAM model
that is shown in (2), where slacks (normalised by the ranges) are being maximised. The
traditional additive model simply maximises the sum of slacks, or alternatively, in one of its
units invariant versions, it maximises slacks normalised by the observed input and output
levels (see Charnes et al., 1985; Green et al., 1997).

RAMo = min

{
1− 1

m + s

(
s∑

r=1

(
sro

Rr

)
+

m∑
i=1

(
eio

Ri

))}
,

where Rr = max
j

{yrj}−min
j

{yrj}, Ri = max
j

{xij}−min
j

{xij} (2)

The model of Färe et al. (1985) defined in (3) in reference to T (which can be both
T (x, y)FDH or T (x, y)BCC) also maximises slacks, though this is not explicit in the objective
function.

FGLo =
{

min

∑m
i=1 hio +∑s

r=1 1/gro

m + s

∣∣∣∣ (hioxio, gro yro) ∈ T, gro ≥ 1, 0 ≤ hio ≤ 1

}
(3)

This model is a generalisation of the hyperbolic measure of efficiency,3 where inputs and
outputs are allowed to change by different proportions. Using the relationship shown in (4)
(see Cooper et al., 1999, for details)

hi xio = xio − ei ⇔ hi = 1− ei

xio
and gr yro = yro + sr ⇔ gr = 1+ sr

yro
(4)

it is possible to show that the objective function of (3) is equivalent to:

1

m + s

(
m −

m∑
i=1

ei

xio
+

s∑
r=1

yro

yro + sr

)
≈ 1− 1

m + s

(
m∑

i=1

ei

xio
+

s∑
r=1

sr

yro

)
(5)

meaning that model (3) also maximises slacks.
The well known directional distance function introduced by Chambers et al. (1996, 1998)

is also a non-oriented measure of efficiency that aims at maximising slacks. Indeed, it
is defined as Diro = {max βo | (xio −βogxi , yro +βogyr ) ∈ T }, where g = (−gx, gy) is a di-
rectional vector chosen a priori. Dividing all inputs and outputs by the directional vector,
reduces this measure to the maximisation of a normalised slack value. The directional model
is, however, more restrictive than the measures referred to previously in the sense that it
strongly limits the direction to be followed towards the production frontier. This means that
an optimal solution to Diro will potentially result in targets that do not lie on the Pareto-
efficient subset of the production frontier, as β cannot account for all the sources of ineffi-
ciency. Some references on the use of the above mentioned measures both in FDH and in
convex technology settings can be found in De Borger and Kerstens (1996), Bardhan et al.
(1996), or Cherchye et al. (2001).



The above mentioned measures will not be used in this paper for finding closest targets.
Our objective is on the one hand to find an appropriate measure of efficiency and, on the
other hand, to operationalise this measure so that closer targets can be found. For reasons that
will be explained bellow, the above measures have some drawbacks in measuring efficiency
in a non-oriented context.

An appropriate measure of efficiency in a non-oriented context should be capable of
incorporating all the sources of inefficiency, while at the same time retaining the meaning
of radial efficiency measures. The directional and hyperbolic measures do not satisfy the
first requirement, while the RAM, additive model, and FGL model do not satisfy the second
requirement. Before showing why this is so, we will present a measure that satisfies both
requirements. This is the measure developed by Brockett et al. (1997), which will be referred
to as BRWZ throughout this paper. This measure was originally developed to be used a
posteriori, that is, after targets have been found, but it can also be used directly in any DEA
model. The BRWZ efficiency measure is shown in (6).

BRWZo = 1

m

(
m∑

i=1

xio − e∗
i

xio

)
× 1

s

(
s∑

r=1

yro

yro + s∗
r

)

⇔ BRWZo =
∑m

i=1 hio ×∑s
r=1 1/gro

m × s
(6)

The first expression in (6) assumes that all inefficiencies are captured by additive slack val-
ues (e∗

i and s∗
r , where the star means an optimal value of the input and output slacks as result-

ing from the solution of some DEA model which projects on the Pareto-efficient boundary).
The equivalent second expression (see relationships in (4)) for the BRWZ measure in (6)
makes it possible to show its similarity to oriented measures under certain circumstances.4

The multiplicative version of the BRWZ measure is similar to the FGL model in (3), but
instead of adding the factors on the numerator and denominator it multiplies them. The
multiplication of these factors makes the BRWZ measure closer to oriented efficiency
measures. To illustrate this fact, Figure 1 presents two units in a single input/output space.

Unit A is inefficient and it can be projected on the CRS efficient boundary in three different
ways. The input oriented efficiency measure (IO) of unit A is 45% which obviously equals
its output oriented efficiency measure (OO). Let us assume that the non-oriented (NO)
movement of unit A leads to point B. This means that the inputs of unit A should be contracted
by 0.6 and outputs expanded by 1.33. With these values the BRWZ efficiency measure equals
0.6× 1

1.33 = 45%.5 The FGL efficiency measure equals
0.6+ 1

1.33
2 = 67.5%, and the RAM

measure equals 1−0.5( 2
2 + 1

1 ) = 0% if we assume that our sample consists only of A and B,
or 1−0.5( 2

2.75 + 1
3.67 ) = 50% if we assume that our sample consists of A, B, A′ and A′′. If the

target NO point was point A′′ then one would expect non-oriented measures to coincide with
the output oriented measure as the projection is the same. This coincidence only happens for
the BRWZ efficiency measure which would still be 45%. The FGL efficiency measure would
equal 1+0.45

2 = 72.5%, and the RAM would equal 1−0.5(0/2.75+3.67/3.67) = 50% or it
would be negative if our sample consists only of units A and B.

This simple example shows that the BRWZ measure is indeed closer to the meaning
of radial measures as it encompasses as special cases the Farrell radial input and output
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Figure 1. Single input output example.

oriented measures. For example, assuming that all inputs change equiproportionaly (and so
each hi = θ) and that outputs are not allowed to change (and so each gr = 1), the BRWZ
measure reduces to θ , which coincides with the Farrell measure of input efficiency. In
addition the BRWZ measure is units invariant which is a considerable advantage. The RAM,
as Cooper et al. (2001) note, was defined in a VRS technology and should not be applied
when CRS prevail. This constitutes an important limitation of this measure. Apart from this,
the RAM measure has also the disadvantage of being very sensitive to the composition of
the sample as we show above. The inclusion of one unit with an unusually small or large
amount of one input (or output) could greatly change the results for many units (see also
Steinmann and Zweifel, 2001).

One possible disadvantage of the BRWZ efficiency measure is that it weights equally all
ratios of target to observed input or output level. Yet not all ratios reflecting short falls from
target input-output levels may represent equal ‘worth.’ This is especially true in contexts
where input and output prices are known and shares of inputs and outputs are substantially
different between units. While we acknowledge this shortcoming of our measure of distance
we do note that it is cast here in the framework of reflecting distance from a technically
efficient boundary rather than from some value (cost or revenue) frontier. Distances from
value frontiers and associated concepts of allocative efficiency are important but not being
addressed in this paper.

Closer Targets and Efficiency

The objective of finding closest targets implies the definition of closeness. In general, one
says that unit B is closer to A than to C, if in order to move from A to B, the changes
required in inputs and outputs are smaller than the changes required in order to move from



A to C. Such changes can be expressed, for example, in terms of ratios of inputs and output
levels at the two different points concerned. Thus the larger the ratios x∗/x and y/y∗, where
the star denotes a target point, the closer the target (x∗, y∗) will be to the unit at (x, y).
Obviously in a non-oriented space with multiple inputs and outputs one needs to choose a
form of aggregating the above ratios. In our case, the BRWZ efficiency measure was chosen
for this aggregation. Thus, the closer the target point to an observed point the higher the
BRWZ efficiency as a measure of the distance between the two points.

The closeness between two points can also be measured using an L p metric. Such metrics
are not expressed in ratio form but in difference form. Therefore they have the disadvantage
of not being units invariant. The L p distance between two points (A and B) is given by
[
∑n

i=1 |Ai − Bi |p]1/p. If A is an observed point and B is a target point on the Pareto-efficient
frontier, then L1 is simply the sum of slacks, as yielded by the additive DEA model. Most of
the traditional efficiency measures can be related to L p metrics as shown by Briec (1998).

We can illustrate concepts of closeness between points using a single input/output example
as shown in Figure 2. Unit F is FDH and BCC inefficient. In the FDH case unit F is dominated
by units B and C. Unit C is closer to F than is unit B. This can be seen in Table 1 where
the BRWZ measure and some metric distances between points F and C, and F and B are
presented. Clearly point B is the point that maximises the sum of slacks (see L1 metric),

Table 1. Distance of F from points C, B, and (5, 5.33).

Point BRWZ L1 L2 L∞

B 45% 3
√

5 2
C 60% 2

√
2.5 1.5

(5, 5.33) 56.25% 2.33
√

5.44 2.33
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Figure 2. FDH frontier for a one input/output example.



meaning that the non-oriented models mentioned previously—additive, RAM, and FGL—
identify point B as the target of unit F rather than point C. This happens both for the case of
FDH and convex technology. In the convex context the closest point in terms of the BRWZ
measure is point (5, 5.33)—a convex combination between points B and D. Table 1 shows
that this point is closer to F than the target point B in terms of the BRWZ measure and in
terms of the L1 norm. As far as the other norms are concerned point B seems closer to point
F than point (5, 5.33).

We favour the BRWZ measure because it is units invariant—a characteristic that is im-
portant when units of measurement are subjective. The example also shows that traditional
DEA models do not necessarily provide targets that are as close as might be possible to
the inefficient unit being assessed. As noted earlier, DEA models need to assure that units
are projected on the Pareto-efficient frontier and for that purpose maximize slacks. This
means that a single stage procedure using the BRWZ incorporated into a DEA structure
(see model (7)) would not necessarily identify, in the same way as other DEA models, the
closest targets.

BRWZo = min

{∑m
i=1 hio ×∑s

r=1 1/gro

m × s

∣∣∣∣ (hioxio, gro yro) ∈ T

}
(7)

Model (7) aims at minimising the BRWZ, because this is the only way to assure si-
multaneously that efficiency is measured and targets lying in the Pareto-efficient frontier
are identified. However, these targets are not the closest, as the BRWZ efficiency result-
ing from (7) is not the maximum but the minimum (in the above example the solution
of (7) identifies unit B as the target of unit F, making the BRWZ measure 45%). To find
closest targets one needs to use multi-stage procedures so that we can maximise the objec-
tive function in (7), while at the same time assuring projection on the efficient frontier. The
next two sections will provide means to achieve this, both in FDH technologies and in convex
technologies.

Calculating Closer Targets in FDH Technologies

The interest in finding closer targets in relation to an FDH technology is twofold. First, the
targets resulting from efficiency measurement in such a technology correspond to observable
units, which might be desirable in some circumstances (for example when inputs and outputs
are integer, or when it is likely that the production unit will be more comfortable comparing
itself with a real unit rather then with a virtual one—farmers could be such a case). This
characteristic makes FDH suitable for benchmarking purposes. Secondly, the non-convex
nature of the FDH efficient frontier usually results in higher slack values than those obtained
in convex technologies when the direction towards the frontier is restricted in some sense.
As noted by De Borger and Kerstens (1996, p. 46) “empirical studies confirm that the
amount of unmeasured technical efficiency or slacks is pervasive in FDH.” This is a sign
that the use of efficiency measures that capture all the sources of inefficiency is potentially
more important in FDH than in convex technologies.

The approach developed in this paper takes advantage of the fact that in FDH targets
correspond to a single observed unit (peer), which simplifies their identification and the



calculation of efficiency. Calculating efficiency requires first the knowledge of the set of
dominating units for each dominated unit, and then the selection of the one (the closest)
that should be used as the peer.

Our approach follows three steps (note that these steps are usually followed in practical
applications of the FDH approach, although not necessarily using the same techniques nor
the same criteria for finding peers):

Step I. Determine the set of non-dominated units (100% FDH efficient);

Step II. Determine a peer unit for each dominated unit;

Step III. Calculate the efficiency score.

Step I classifies all the units into one of two sets: ND or D. ND is the set of non-dominated
(or dominating) units (units in relation to which no other unit exists presenting lower or
equal inputs and higher or equal outputs) and D is the set of the remaining units, called
dominated. Although this operation can be performed for each unit by comparing it with
all the other units or with the current non-dominated set, such implementations become
inefficient as the number of units grows. Techniques to handle dominant free sets are
also relevant for multiple objective combinatorial optimization, where the state of the art
implementations use structures like quad trees for drastically reducing the computational
effort spent in such operations (Borges, 2000; Habenicht, 1982). In a quad tree representation
of a dominant free set, each node represents a non-dominated unit and can have up to
(2s+m −2) branches, which are themselves also quad trees. Each one of those branches
corresponds to a particular combination of inputs and outputs in order to guarantee that
all units in a branch are dominated by the parent node only in exactly the same outputs
and inputs. The discriminatory power of these structures, together with additional bounding
techniques, makes them very efficient for handling domination relations and calculating
L∞ metrics. Our implementation uses an algorithm presented in Borges (2000), together
with other well known quad tree algorithms to discriminate non-dominated units. These
will also be used in step II, to find the units in ND that dominate the unit being assessed.
Since these aspects are beyond the focus of the present paper, whose experiments could just
as well have been performed using enumeration, we will not elaborate on them here, for
the sake of conciseness.

Step II finds a peer unit for each inefficient or dominated unit. In order to find this
unit, we consider a subset of ND, named K , consisting of the units that dominate the unit
being assessed. For each inefficient unit, its closest peer is determined through the BRWZ
efficiency criterion, that is, calculating (8) for every unit k ∈ K .

Peer of unit o = max
k

(∑m
i=1 xik/xio

m
×

∑s
r=1 yro/yrk

s

)
(8)

Step III generates the efficiency of the unit being assessed in reference to the peer unit
identified in the previous step. The measure of efficiency is given directly from the value
obtained in (8). Therefore, steps II and III take place simultaneously.



The Case of Convex Frontiers

Extending the above procedure to convex boundaries is not straightforward because in this
case target points may not correspond to observed units but to convex combinations of
efficient units. This means that an enumeration oriented procedure which calculates the
BRWZ measure for a set of potential target points can no longer be applied. The analogous
approach to follow in the case of convex frontiers is to use model (7) but with a modified
objective function so that the BRWZ is maximised instead of minimised.

Golany et al. (1993) and Frei and Harker (1999) also used DEA models for the case of
convex frontiers where the objective function was the minimisation of slacks rather than
their maximisation. In the first case, the authors minimised L1 and L2 norms in the non-
oriented space, and in the second case the authors used L2 norms for finding the closest
targets for each unit, also in the non-oriented space. A concern we share with these authors,
is that when distances as the above are being minimised (instead of maximised as is usual
in DEA models) it is important to assure that the projected point lies on the Pareto-efficient
boundary. For this purpose it is necessary to identify the efficient facets, or at least to have
some knowledge about which units belong to which facet. Both, Golany et al. (1993) and
Frei and Harker (1999) used the multiplier form of the additive model for the purpose of
identifying these facets in the spirit of Ali and Seiford (1993, p. 130) (see also Huang et al.,
1997; and Yu et al., 1996 who used similar procedures for determining efficient facets).
The problem with the use of the additive model is that it does not assure the complete
characterisation of the efficient facets. Take the example in Ali and Seiford (1993, p. 122),
where solving the multiplicative additive model for units 1, 4 and 7 (belonging to the same
facet) results in 2 hyperplanes: one spanning through units 1 and 4, and the other through
units 4 and 7. The full dimension efficient facet (1, 4, 7) is not identified (see also Olesen
and Petersen, 1996, who discuss full dimension and non-full dimension efficient facets).
This is a direct result of the existence of multiple optimal solutions, which poses a problem
in the identification of all efficient facets. Our approach departs from that of Golany et al.
(1993) and Frei and Harker (1999) in the procedure used for identifying efficient facets,
and also in the distance measure used. The latter is the units invariant BRWZ measure.

In order to identify efficient facets we recommend the use of the procedure proposed by
Olesen and Petersen (2001): QHull (see Barber et al., 1996). QHull is a freely available
software that is designed to identify all full dimension efficient facets (FDEF) in a DEA
model. Each facet is identified in terms of the convex hull of the Pareto-efficient DMUs
whose input-output levels span the facet. The procedure also identifies a supporting hyper-
plane equation for each facet (for details on the principles behind QHull see Olesen and
Petersen, 2001, pp. 27–30). The procedure can also be modified to identify non-full di-
mensional efficient facets (private correspondence with Olesen). This involves the use of
an augmented data set using artificial DMUs in addition to those observed. The details are
beyond the scope of this paper.

Our procedure for finding the closest targets in convex technologies consists of three
steps:

Step I. Determine the set of Pareto-efficient units (E) by solving the additive model;

Step II. Determine all Pareto-efficient facets (Fk) using QHull;



Step III. For each Fk, k = 1, . . . , K solve model (9) to find the closest targets for inefficient
unit o.

max


BRWZo =

∑m
i=1 hio ×∑s

r=1 1/gro

m × s

∣∣∣∣∣
∑
j∈Fk

λ j yrj = gro yro,
∑
j∈Fk

λ j xij = hioxio,

∑
j∈Fk

λ j = 1, λ j ≥ 0, gro ≥ 1, 0 ≤ hio ≤ 1


 (9)

In order to assure projection of the efficient frontier only points on Fk are considered as
potential projections of unit o in (9). The final BRWZ efficiency measure of unit o is the
maximum value found for the measure after model (9) is solved for all K facets. Step III is
repeated for each inefficient unit for which we wish to identify the closest targets. We can
also formulate (9) as a single mixed integer linear program that should be solved only once
for DMUo in respect of all facets K, but in the interest of brevity we omit this formulation.

The foregoing procedure has been developed in a VRS context. It is, however, equally
applicable to a CRS context. Model (9) will change in that the convexity constraint will be
dropped. Further, the Pareto-efficient units and the efficient facets will change as we move
from a VRS to a CRS technology.

Model (9) is non-linear and is not easily linearised. Nevertheless, there are several solvers
that can handle non-linear models, whose constraints are linear. We used GAMS and its
non-linear programming solver (CONOPT). Nevertheless, for computational convenience
a model minimising the sum of normalised slacks, such as that in (10), could be used
instead.

min

{
s∑

r=1

γro +
m∑

i=1

βio

∣∣∣∣∣
∑
j∈Fk

λ j yrj = yro +γro yro,
∑
j∈Fk

λ j xij = xio −βioxio,

n∑
j∈Fk

λ j = 1, λ j ≥ 0

}
(10)

Such a model, although not equivalent to model (9), would likely result in similar targets
as a normalised L1 norm is being minimised. Note that this model is a generalisation of the
directional distance function, that assumes a directional vector equal to the observed input
and output vectors, and different expansion and contraction factors associated with each
input and output. There is one important difference between (10) and directional distance
function or additive DEA models. The contraction of inputs and expansion of outputs is
minimised rather than maximised in (10) and this is only made possible by the constraints
that ensure the projection point to lie on an efficient facet. The model in (10) is also similar
to the preference model introduced by Thanassoulis and Dyson (1992). If there are any



preferences for moving towards the frontier these can be incorporated in the model in (10)
as detailed in Thanassoulis and Dyson (1992).

Illustrative Application to Bank Branches

This section applies the above procedures to a sample of 24 Portuguese bank branches
which are located in mid-sized cities (as classified by the bank) in the northern region
of Portugal. We use an intermediation approach of banking activities as this requires in
principle non-oriented models. In this sense on the input side cost related variables are used
(staff costs and other operating costs), and on the output side revenue related variables are
used (value of current accounts, value of credit, and interest revenues).6 We assume that all
inputs and outputs are discretionary. The data correspond to the month of July 2001 and
values are expressed in thousands of Euros. Our input-output set here is only illustrative.
Table A1 in Appendix A contains the data used, as well as some descriptive statistics. The
units that were identified as efficient both under FDH and under a convex VRS technology
are also identified in Appendix A (see Table A1). Here we will only detail on the results of
some inefficient units.

For the FDH case, the application of the additive units invariant model, the RAM model,
and the FGL model result in the same peers for inefficient units in all the cases. This is
illustrated in Table 2 which shows the BRWZ measure calculated a posteriori in relation to
the targets identified by these models. It also shows the BRWZ efficiency measure obtained
under our closer target (CT) FDH procedure. The BRWZ measure has the same value under
all the procedures for identifying targets, except in two cases. The reason for this is simple:
unit B10 dominates most of the units in the sample and most of them are solely dominated
by this unit. As the set of potential referents consists of a single unit there is not much
for the alternative procedures to choose. Only in two cases is there a genuine choice of
targets to be made: the case of inefficient units B19 and B22. The first unit is dominated
by B10 and also by B20, and the second unit is dominated by B10, B26, B50 and B52.
The application of our CT procedure clearly identifies closer targets to units B19 and B22
(B20 and B52, respectively) as testifies a higher value of the CT BRWZ efficiency score in

Table 2. Results from additive-FDH, RAM-FDH, FGL-FDH and CT procedure.

Peer BRWZ BRWZ CT
Unit Unit Efficiency Efficiency

Unit B3 B10 67.02% 67.02%
Unit B5 B10 77.26% 77.26%
Unit B9 B16 64.70% 64.70%
Unit B13 B10 74.85% 74.85%
Unit B15 B10 53.57% 53.57%
Unit B19 B10 68.15% 81.30% (B20)
Unit B21 B10 71.87% 71.87%
Unit B22 B10 52.76% 78.00% (B52)
Unit B59 B10 74.00% 74.00%



Table 3. Comparison between models based on L p metrics.

Additive, RAM, and FGL CT FDH Procedure

Unit Peer L1 L2 L∞ Peer L1 L2 L∞

Unit B19 Unit B10 4044.94 2920.62 2468.72 Unit B20 800.05 602.98 554.51
Unit B22 Unit B10 6514.76 5367.91 5213.83 Unit B52 1355.58 1004.59 900.77

Table 2. These higher efficiency scores also correspond to lower metric distances as can be
seen in Table 3.

The above example shows that easier-to-achieve targets can be provided to some bank
branches, showing them in a better light. If we relied on the traditional models to establish
targets we would advise branch B22 to reduce (in thousands of Euros) its staff costs by
6.06 and its other operating costs by 2.96, while at the same time increasing the value
of deposit accounts by 1276.8, the value of credit by 5213.83, and its interest revenues
by 15.12. Such targets are more demanding than the alternative, which also renders B22
efficient, and corresponds to decreasing staff costs only by 2.02 and operating costs by 3.77,
while increasing the value of current accounts by 444.73, the value of credit by 900.77, and
interest revenues by only 4.29. Only for the case of other operating costs is the target more
demanding in this second case, a fact that is more than compensated for by the much less
demanding targets in the remaining variables.

In the convex VRS technology case, the application of the CT procedure to the bank
branches example results (in its first step) in a set of efficient units that is shown in the last
column of Table A1 in Appendix A. After obtaining the set of efficient units QHull was
used to identify the set of efficient facets. These are: F1 = {B10, B16, B20, B29, B50};
F2 ={B20, B27, B29, B50, B57}; F3 ={B10, B20, B27, B29, B50}; F4 ={B10, B27, B56,

B57}; F5 = {B10, B11, B16, B29}; F6 = {B10, B11, B26, B29}; F7 = {B10, B26, B27,

B29}, where the first three facets are full dimensional and the last four are not. In the
third step, model (9) was applied to each inefficient unit in relation to each efficient facet.
The facet chosen for projection in each case was the one maximising the objective function
of model (9). Note that in some cases projection on some facets might be infeasible, but at
least one facet shall result in a feasible solution.

The detailed results of applying the additive units invariant model, the RAM model and our
CT convex procedure are shown in Appendix B.7 The results in terms of the various BRWZ
efficiency measures show that BRWZ CT procedure ≥ BRWZ Additive ≥ BRWZ RAM. We
will sidestep the discussion of the relationship between the additive and RAM measures
since is not the aim of this paper to analyse it. Concerning the results from our model, they
confirm that it shows each inefficient unit in a much better light than the other two models
not only in terms of the BRWZ measure but also in terms of L p metric measures. Take for
example units B15 and B59 shown in Table 4.

Results for these units show closer targets identified by the CT convex procedure than
those identified by the additive model (the same being true for the RAM model). This fact
is expressed in higher BRWZ efficiency scores and smaller L p metrics, as illustrated for



Table 4. Distance to targets for inefficient units for the VRS case.

B15 B59

Targets Targets Targets Targets
Observed Additive CT Convex Observed Additive CT Convex

x1 11.717 11.717 11.487 13.338 13.338 12.606
x2 29.314 24.726 16.122 24.820 24.820 19.030
y1 4070.630 5682.936 4070.630 4354.301 6073.258 4475.281
y2 6418.995 14409.226 6418.995 10889.840 14368.013 10889.840
y3 40.328 69.268 45.086 57.033 74.865 57.033

L1 9636.066 18.181 5214.962 127.502
L2 8151.330 14.027 3879.796 121.121
L∞ 7990.231 13.193 3478.173 120.980
BRWZ 53.58% 73.83% 74.56% 84.82%

the two cases above (this fact can however be generalised to the entire sample of units).
Interestingly the additive model tends to identify most of the inefficiencies associated with
outputs, while the CT procedure for convex technologies identifies most of the inefficiencies
associated with inputs. For the additive model the average BRWZ-input efficiency is 98.27%
and the average BRWZ-output efficiency is 73.36%, while the corresponding values for
the CT procedure are 90.72% and 92.03%, respectively (the RAM model also identifies
most of the inefficiencies associated with outputs but to a lesser extent than the additive
model: BRWZ-input efficiency is 93.67% and BRWZ-output efficiency is 75.89%). This
clearly indicates that our procedure and the additive model identify different directions for
improvement of inefficient units. The choice of the model to use should not, thus, be taken
lightly.

As a final note on this example one can observe that BRWZ efficiency scores are higher
for the convex than for the FDH case, for units that are inefficient under both technologies.
The typical result in pure radial models is precisely the reverse because, as it is well known,
FDH closely envelops the data and thus provides higher efficiency measures. In our example
the closer envelopment resulted in more efficient units for the FDH case but not in higher
BRWZ efficiency scores for inefficient units. Note that the range of targets in FDH is limited
to observed units, while in the convex case this range is greatly expanded through convex
combinations of Pareto-efficient units. This means that we can actually find closer targets in
the convex case than in the FDH case, when we are not restricted to move in any direction
and when the measure of efficiency used captures all the sources of inefficiency (that is,
when it restricts targets to lie on the Pareto-efficient subset of the frontier).

Conclusion

The analysis of non-oriented measures of efficiency and their use to identify the clos-
est targets for inefficient units was performed both considering FDH technologies and
convex technologies. The chosen criterion of closeness is based on the maximisation of



the BRWZ efficiency measure, which has the advantage over other efficiency measures
of capturing all the sources of inefficiency and retaining a meaning that is close to that
associated with oriented efficiency measures. In order to use this measure multi-stage pro-
cedures are required both in the FDH and in the convex case to find the closest targets.
As our analysis restricts targets to lie on the Pareto-efficient subset of the production fron-
tier, the multi-stage FDH procedure starts by choosing potential target units and then it
takes the one maximising the BRWZ efficiency measure as the adopted target and peer.
In the convex case the aim is also the maximisation of the BRWZ efficiency measure,
which results in a non linear programming model, that requires knowledge on the effi-
cient facets of the PPS. The application of our procedure to a real bank branch example
shows that it provides closer and easier-to-achieve targets in both, the FDH and convex,
cases.

Appendix A

Table A1. Bank branches data.

Staff Other Operating Current Interest FDH VRS
Unit Costs Costs Accounts Credit Revenue Eff. Eff.

B3 16.819 24.471 4892.629 10238.760 52.234
B5 11.243 23.558 4777.107 8756.227 52.449
B9 18.441 35.090 6450.385 12479.115 64.644
B10 10.106 23.104 5223.611 12572.231 61.332 100% 100%
B11 15.129 32.781 7666.449 10221.426 67.682 100% 100%
B13 12.979 23.658 4991.984 10194.377 48.583
B15 11.717 29.314 4070.630 6418.995 40.328
B16 18.306 31.359 7561.477 21922.138 101.725 100% 100%
B17 16.505 31.574 6322.393 17323.595 81.404 100%
B19 12.211 24.411 3663.067 10103.516 49.062
B20 11.981 17.857 3899.831 10658.024 51.052 100% 100%
B21 12.689 25.489 4797.797 10281.063 48.822
B22 16.166 26.062 3946.813 7358.401 46.214
B26 12.041 19.688 5524.905 7393.716 48.912 100% 100%
B27 10.021 16.780 3394.509 8269.236 39.565 100% 100%
B29 12.739 18.505 5635.758 6667.397 63.048 100% 100%
B50 12.505 17.508 4745.698 9603.156 48.199 100% 100%
B51 15.178 21.418 5758.861 6007.936 64.210 100%
B52 14.146 22.291 4391.541 8259.170 50.503 100%
B53 12.959 20.117 5372.053 7323.490 64.076 100%
B56 9.073 19.259 2888.434 8694.691 39.974 100% 100%
B57 9.747 13.004 2107.062 5012.420 24.202 100% 100%
B58 10.639 22.566 3344.774 10293.887 43.311 100%
B59 13.338 24.820 4354.301 10889.840 57.033

Average 13.195 23.529 4824.253 9872.617 54.523
Max 18.441 35.090 7666.449 21922.138 101.725
Min 9.073 13.004 2107.062 5012.420 24.202
Stdev 2.646 5.494 1356.082 3640.361 15.456



Appendix B

Table B1. Results from Additive Units Invariant Model (values are rounded).

BRWZ
Unit Peers Slacks (e1, e2, s1, s2, s3) Efficiency

B3 B16(0.503), B50(0.497) (1.39, 0, 1268.6, 5557.1, 22.87) 68.30%
B5 B10(0.80), B16(0.113), B50(0.086) (0, 0, 670.53, 4620.72, 12.33) 78.04%
B9 B16 (0.135, 3.73, 1111.09, 9443.02, 37.08) 64.70%
B13 B10(0.431), B16(0.247), B29(0.323) (0, 0, 941.5, 2780.4, 23.3) 76.77%
B15 B10(0.804), B16(0.196) (0, 4.6, 1612.31, 7990.23, 28.94) 53.58%
B17 B10(0.22), B16(0.78) (0, 2.03, 725.72, 2545.43, 11.45) 85.36%
B19 B10(0.67), B16(0.22), B29(0.11) (0, 0, 2122.7, 3870.92, 21.38) 68.42%
B21 B10(0.66), B16(0.31), B29(0.03) (0, 0, 1152.3, 4970.8, 24.9) 71.42%
B22 B16(0.62), B50(0.38) (0.078, 0, 2537.8, 9852.6, 35.04) 53.37%
B51 B16(0.26), B29(0.32), B50(0.42) (1.09, 0, 0, 5859.3, 2.6) 79.29%
B52 B10(0.077), B16(0.314), B50(0.61) (0, 0, 1276.16, 5444.8, 15.5) 71.41%
B53 B10(0.078), B16(0.11), B20(0.25), (0, 0, 0, 2521.204, 0) 91.46%

B29(0.55), B50(0.006)
B58 B10(0.83), B16(0.02), B29(0.15) (0, 0, 1980.7, 1564.91, 18.98) 73.05%
B59 B10(0.462), B16(0.326), B29(0.212) (0, 0, 1718.96, 3478.2, 17.84) 74.56%

Table B2. Results from RAM Model (values are rounded).

BRWZ
Unit Peers Slacks (e1, e2, s1, s2, s3) Efficiency

B3 B10(0.83), B16(0.17) (5.36, 0, 718.04, 3881.43, 15.79) 66.28%
B5 B10(0.945), B16(0.055) (0.69, 0, 575.05, 4330.11, 11.11) 77.14%
B9 B16 (0.13, 3.73, 1111.1, 9443.02, 37.08) 64.70%
B13 B10(0.933), B16(0.067) (2.32, 0, 388.43, 3004.95, 15.5) 74.62%
B15 B10(0.804), B16(0.196) (0, 4.6, 1612.31, 7990.23, 28.94) 53.58%
B17 B10(0.22), B16(0.78) (0, 2.03, 725.72, 2545.43, 11.45) 85.36%
B19 B10(0.842), B16(0.158) (0.81, 0, 1930.65, 3948.88, 18.66) 67.63%
B21 B10(0.71), B16(0.29) (0.22, 0, 1101.04, 4991.63, 24.18) 71.23%
B22 B10(0.642), B16(0.358) (3.12, 0, 2114.5, 8563.9, 29.6) 51.89%
B51 B10(0.285), B16(0.125), B29(0.59) (2.5, 0, 0, 4243.7, 3.18) 77.68%
B52 B10(0.823), B29(0.177) (3.6, 0, 904.9, 3269.15, 11.13) 68.87%
B53 B10(0.25), B16(0.04), B29(0.72) (0.66, 0, 234.62, 1365.72, 0) 91.00%
B58 B10(0.883), B29(0.117) (0.225, 0, 1927.1, 1586.7, 18.22) 72.71%
B59 B10(0.79), B16(0.21) (1.53, 0, 1355.25, 3625.82, 12.7) 73.24%



Table B3. Results from CT procedure (values are rounded).

BRWZ
Unit Facet/Peers (h1, h2, g1, g2, g3) Efficiency

B3 F6/B10(0.41), B11(0.26), B26(0.33) (0.72, 1, 1.22, 1, 1.13) 77.50%
B5 F7/B10(0.25), B26(0.36), B27(0.21), B29(0.17) (1, 0.84, 1.05, 1, 1) 90.42%
B9 F5/B11(0.81), B16(0.19) (0.85, 0.93, 1.185, 1, 1.15) 80.52%
B13 F1/B16(0.06), B29(0.07), B50(0.86) (0.994, 0.78, 1, 1, 1.085) 86.42%
B15 F2/B29(0.45), B50(0.14), B57(0.41) (0.98, 0.55, 1, 1, 1.118) 73.83%
B17 F5/B10(0.1), B11(0.32), B16(0.59) (1, 0.98, 1.165, 1, 1.07) 92.27%
B19 F2/B20(0.9), B29(0.02), B57(0.08) (0.967, 0.715, 1.0337, 1, 1) 83.22%
B21 F6/B10(0.37), B11(0.35), B26(0.28) (0.98, 1, 1.28, 1, 1.23) 85.45%
B22 F6/B11(0.49), B26(0.51) (0.84, 1, 1.664, 1.2, 1.26) 68.49%
B51 F5/B11(0.19), B16(0.01), B29(0.8) (0.87, 1, 1.05, 1.24, 1) 86.03%
B52 F6/B10(0.07), B11(0.18), B26(0.75) (0.88, 1, 1.34, 1, 1.053) 84.52%
B53 F5/B10(0.03), B11(0.09), B16(0.02), B29(0.86) (1, 1, 1.086, 1.015, 1) 96.87%
B58 F4/B10(0.41), B56(0.59) (0.89, 0.924, 1.15, 1, 1.126) 83.45%
B59 F1/B16(0.08), B20(0.76), B29(0.16) (0.945, 0.767, 1.0278, 1, 1) 84.82%

Notes

1. Pareto-Koopmans, technical efficiency is attained when an increase in any output (or a decrease in any input)
requires a decrease in at least another output (or an increase in at least another input) (see e.g., Lovell, 1993).

2. Profit analysis has been recently advocated in the context of measuring efficiency in banking (see Berger et al.,
1993), a field where cost oriented efficiency analysis has been the dominating approach.

3. Assuming that each hio is constant and equal to θ , and that each gro is also constant and equal to 1
θ

reduces (3)
to the hyperbolic efficiency measure.

4. The BRWZ measure is very similar to the slack based measure (SBM) of Tone (see Tone, 1993; and Tone,
2001). The SBM equals ( 1

s

∑s
r=1(

yro+sr
yro

))−1 × ( 1
m

∑m
i=1(

xio−ei
xio

)), which is equivalent to
∑m

i=1 hi /m ×
s/

∑s
r=1 gr , when the slacks are replaced by multiplying factors. We prefer the BRWZ to the SBM because

the former uses an arithmetic mean of the input efficiency hi and an arithmetic mean of the output efficiency
1/gr . The SBM uses an harmonic mean of the output efficiency whose rationale is not easy to understand.

5. It is easy to demonstrate that under constant returns to scale the BRWZ measure will provide the same efficiency
measure (45%) for all non-oriented efficient targets in the line between A′ and A′′ in Figure 1. Replacing a
point in the line segment between A′ and A′′ by (x, y), and knowing that the line passing through point A′
and A′′ is y = yA′′

xA′′ x = yA′
xA′ x , then we have BRWZA = x

xA
× yA

y = x
xA

× yA
yA′′
x A′′ x

= yA
xA

× xA′′
yA′′ = yA

yA′′ because the
input at point A and A′′ is equal.

6. The interest revenues are net of interest costs and this is the reason why these are not considered on the input
side. The bank could not provide interest costs and revenues disaggregated.

7. All results reported concern the use of model (9). Model (10) was also used and results are equal except
for 4 units (B5, B9, B22, B53). In all the cases except B22 the facet of projection was the same both using
model (9) and model (10). Obviously the BRWZ is maximum when model (9) is used.
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