
Finding Collisions on a One-Way Street:
Can Secure Hash Fhnctions Be Based on

General Assumptions?

Daniel R. Simon*

Abstract

We prove the existence of an oracle relative to which there exist sev-
eral well-known cryptographic primitives, including one-way permuta-
tions, but excluding (for a suitably strong definition) collision-intractible
hash functions. Thus any proof that such functions can be derived from
these weaker primitives is necessarily non-relativizing; in particular, no
provable construction of a collision-intractable hash function can exist
based solely on a "black box" one-way permutation. This result can be
viewed as a partial justification for the common practice of treating the
collision-intractable hash function as a cryptographic primitive, rather
than attempting to derive it from a weaker primitive (such as a one-way
permutation).

Key words: Hash functions, oracle, cryptography, complexity theory

1 I n t r o d u c t i o n

Modern practical cryptography is built on a number of basic primitives, which
include, in addition to asymmetric cryptosystems, both symmetric ciphers and
cryptographic hash functions. The theory and practice of ciphers has been
explored extensively; much experience has been accumulated regarding practical
design principles for them, and the simple theoretical primitive of the one-way
function has been shown to be a necessary and sufficient building block for
constructing one. In contrast, cryptographic hash functions are relatively new
and unexplored as both theoretical and practical objects. It is therefore natural
to ask whether the body of knowledge available for the former can be applied
to the latter.

Cryptographic hash functions are actually used in a number of ways (so
many, in fact, that they are often modeled as random oracles, as in [BR93]).
Their most important attributed property, however (analogous to "security" for
ciphers), is collision intractability, roughly defined as the intractability of finding

*Microsoft Research, One Microsoft Way, Redmond v~rA 98052 USA, email
dansimon~microsoft, com

335

a pair of inputs that produce the same output. Whether used in message au-
thentication codes (MACs) ([Tsu92]), signature schemes ([De80]) or compound
asymmetric primitives (IBR94]), collision intractability is the most important
property which they are relied upon to provide. Collision intractability can be
defined in a number of ways; functions exhibiting the weakest variant can be
constructed easily from any one-way permutation ([NY89]), and somewhat less
easily from any one-way function (see [Rom90]). However, the uses of collision-
intractable hash functions generally require them to meet a stronger definition.
Such strongly collision-intractable hash functions are only known to be prov-
ably constructible from specific assumptions such as the hardness of particular
number-theoretic problems, or from stronger general primitives such as claw-free
permutat ion pairs ([DamS7], [Rus92]) or fixed functions whose behavior is indis-
tinguishable from that of random functions ([AV96], [AHV98]). The construc-
tions in common use ([Riv92], [NIST94]) are typically obtained by applying the
Merkle-Damg~rd iteration "meta-method" ([Mer89], [Dam89]) to fixed-length,
heuristically designed "compression functions" whose collision-intractability is
itself not inferrable from any weaker assumptions.

In this paper, we offer an explanation for this state of affairs: we present
an oracle relative to which there exists a one-way permutation, and hence (for
instance) a universal one-way hash function (as defined in [NY89]), but relative
to which there are no strongly collision-intractable hash functions (in the sense of
[Dam87]). It follows that any provable construction of the latter from one of the
former would necessarily not relativize. Moreover, as we will show, the existence
of the oracle implies that no provable construction of a collision-intractable hash
function can exist based on a "black box" one-way permutation, i.e., a one-way
permutat ion treated as an oracle, with no assumption made about it beyond
its "one-wayness". (Constructions based on stronger assumptions about the
permutation, such as certain algebraic or statistical properties, are not thus
ruled out.) This result can therefore be viewed as a partial justification for
the common practice of treating the collision-intractable hash function as a
cryptographic primitive, rather than as a compound derived from a weaker
primitive (such as the one-way permutation or any of its equivalents).

2 D e f i n i t i o n s

The weakest definition of collision intractability in common use is the one given
for universal one-way hash function families in [NY89]: under this definition,
no polynomial-time algorithm can find a collision with a random input, given
a hash function selected randomly from a family. (In [NY89] it is shown that
a family of hash functions consisting of a one-way permutat ion composed with
a random 2-universal hash function meets this definition.) Alternatively, one
could require the intractability of finding a collision with a random input given
a fixed function, rather than one selected randomly from a family; we will call
such a function a universal one-way hash function. A stronger definition appears
in [Dam87] for collision-intractable hash function families: no polynomial-time

336

algorithm can find a pair of inputs which form a collision, given a hash function
selected randomly from a family. Finally, the strongest definition is the asymp-
totic version of the one assumed for real-world cryptographic hash functions: a
single function for which it is intractable to find a single collision pair. We will
call such a function a collision-intractable hash function.

Def in i t ion 1 A hash function is a uniform family F = {Cn} of circuits of size
polynomial in n, taking input of size n and producing output of size m < n. A
hash function family is a hash function in which the input is divided into two
pieces, x and k, such that n is polynomial in Ixl and m < Ixl.

Def in i t ion 2 An n-specific collision for a hash function F and an n-bit input x
(resp., for a hash function family F and an n-bit input (k, x)) is a value y such
that C,~(x) = C~(y) (resp., a pair (k,y) such that C,~(k,x) = C~(k,y)). An
n-existential collision for a hash function F (resp., for a hash function family
F and a partial input k) is a pair (x, y) such that Cn(x) = C,~(y) (resp., such
that C~(k, x) = C~(k, y)).

Def in i t ion 3 ([NY89]) A hash function (resp., hash function family) F is a
universal one-way hash function (resp., universal one-way hash function family)
if every probabilistic polynomial-time algorithm finds an n-specific collision for
F and an input x (resp., (k, x), for any x with k) chosen uniformly from {0, 1} n
with probability n-~(1) (over the algorithm's probabilistic choices and the choice
of input).

Note that a universal one-way hash function family is itself automatically
a universal one-way hash function. Also, a construction similar to the one in
[NY89] can be used to construct the former from the latter. Hence, in the case
of universal hash functions (as opposed to collision-intractable hash functions),
the existence of a family and the existence of a single function are equivalent, in
that either can be constructed from the other. The same is not known to hold
for collision-intractable hash functions and function families.

Def in i t ion 4 ([Dam87]) A hash function (resp., hash function family) F is a
collision-intractable hash function (resp., a collision-intractable hash function
family) if every polynomial-time algorithm finds an n-existential collision for
F (resp., for F and a partial input k chosen uniformly from (0, 1} Ikl) with
probability n -w(1) (over the algorithm's probabilistic choices and the choice of
k).

3 T h e M a i n R e s u l t

The intuition underlying the theorem and proof is quite simple: since our goal
is to find an oracle relative to which no collision-intractable function exists, we
define an oracle which, given any function description, returns a collision (two
inputs with the same output). And since we also wish to show that one-way

337

permutations exist relative to this oracle, we also provide a random permutat ion
oracle f . It remains only to show that the collision-finding oracle does not help
to invert f .

It turns out that the wrong choice of collision-finding oracle actually makes
f invertible. For example, an oracle which simply returns a random collision
(i.e., a uniformly chosen entry in the list of colliding pairs) would allow f to be
inverted. (The space of collisions can be manipulated by use of a cleverly chosen
query circuit, so that a constant fraction of all collisions involve an exponentially
small fraction of the outputs.) On the other hand, if a collision is chosen by
selecting a uniformly chosen input followed by a uniformly chosen collision with
it (including perhaps itself), then the individual colliding inputs are themselves
uniformly distributed. Receiving such a pair of uniformly (though not indepen-
dently) distributed inputs gives essentially no information about the inverse x
of any particular permutation output y.

In order to prove that this information really is of negligible value, we must
measure the information obtained from each such query about x in particular, as
opposed to any other miscellaneous information we might obtain about f in the
process. To do so, we imagine that f has been composed with a transposition
5 that transposes y = f (x) with a randomly chosen image value. We are then
given the resulting permutation 77 = f o 5, together with a sequence R of query
results, and ask what distribution on such transpositions 5 can be inferred from
77 and R. For example, if we know x exactly, then we know exactly which 5 was
chosen to produce 77. Conversely, if we know nothing about x, then any 5 is
as likely to be correct as any other. We will show that even after polynomially
many queries to the collision oracle, the inferred likelihood of the correct value
of 5, given 7r and R, remains exponentially small except with exponentially
small probability. Hence the probability that x can be guessed correctly almost
always remains negligible.

T h e o r e m 1 There exists an oracle A relative to which there exist universal
one-way hash functions and universal one-way hash]unction families, but no
collision-intractable hash functions or collision-intractable hash]unction fami-
lies.

P r o o f The oracle A will "contain" a permutation f , and accept queries which
consist of a circuit description; the circuit may contain special "f-gates"
which denote a request to the oracle ("f-query") to compute f on the
gate 's input, as well as oracle gates ("A-gates") which denote submission
of the gate 's input as a normal query of A ("A-query"). Given such a
circuit description, the oracle first verifies that the input length is greater
than the output length. If so, it chooses a random input x to the circuit,
selecting uniformly from the set of inputs of the correct length, and then
selects a value x I chosen uniformly from the set of inputs (including x
itself) for which the circuit produces the same output as x. The oracle
returns the collision (x, x I, C(x)), together with a query list consisting of
the inputs and outputs of all f-queries made during the computation of the

338

circuit's outputs on inputs x and x I. Note that both x and x I are uniformly
distributed over all possible inputs to C (although not independently).

A-queries, rather than being unit-cost, cost a number of computation
steps equal to the cost of computing the circuit's output and verifying
the collision-that is, twice the size of the input circuit (f-gates being
treated as unit-cost gates). This cost prevents the oracle from being used
to speed up ordinary computations, rather than to find collisions.

We will consider the permutation f , as well as the input values chosen
by the oracle, to be chosen randomly. More precisely, we define for every
n a family {A~} of oracles of this type "containing" a permutation f :
{0, 1} ~ -~ {0, 1} n, with each using a table of the necessary length to
determine its choices for every possible query circuit of size up to n w(1) ,
and prove that the theorem is true with probability 1 - n-"~(1)over the
choices of A,~ taken uniformly from this family.

We model polynomial-time algorithms relative to this oracle by uniform
polynomial-size circuit families that may contain both f-gates and A
-gates. It is clear that relative to this oracle, there are no collision-
intractable hash functions or function families, since n-existential colli-
sions can be found (with constant probability) for any such function or
family by constructing the circuit for the function and using it as the input
for an A-gate. (Since the function is length-decreasing, at least half of its
inputs must collide with some other input, and the oracle's response to the
query will therefore provide a collision with constant probability.) We will
show, moreover, that the permutation f , which can easily be computed in
polynomial time by a simple circuit that includes a single A-gate, is, for
any polynomial-time algorithm, invertible only with negligible probabil-
ity (over the choices of A). Thus (by a simple counting argument) there
exists an A for which f is a one-way permutation (from which a univer-
sal one-way hash function family can be constructed using the method of
[NY89]).

The outline of this proof is as follows: Consider a polynomial-size oracle-
querying circuit family C; it inverts f if it successfully outputs the pre-
image of, say, 0 n under f with significant probability (over choices of
A; since we are considering f as a random permutation, the choice of
image to invert is arbitrary). It may make f-queries and A-queries in any
order, including A-queries that themselves contain A-query gates (up to
logarithmically many recursions, given the defined cost of queries). At the
end of its computation it outputs a guess for f- l(0 '~), and succeeds if its
guess is correct with probability at least n -c, for some constant c.

Now, the only source of information available to the circuit about f - 1 (O n)
comes from the results of A-queries. These results consist of collision/query
list pairs. Both of these may give information about f that may be useful
in guessing f - l (0n) . We measure the information obtained so far from
these sources as follows: suppose that a permutation r is chosen by com-

339

posing f with a transposition ~ that transposes 0 '~ with an image chosen
uniformly at random (including possibly itself). Then for a sequence R of
query results, the value Pr[5[r, R] is a measure of the information about
f - l (0 n) obtained from R, given r (as distinct from all other information
gleaned about f from R). In particular, an optimal circuit cannot guess
f - l (0 n) with probability greater than Pr[~[r, R] if R is the complete se-
quence of query results it has obtained. Similarly, no individual f-query
Q in the circuit can get a response of 0 '~ with probability greater than
Pr[5[r, RQ], where RQ is the sequence of query results preceding Q in the
computation of C, and hence available to C when determining its input
to Q.

Note that if some f-query in C has the input r- l(0 '~), then ~ is obvious
given ~r, and Pr[~l~r , R] = 1 if R contains such a query result. (We will
call such an event a "r-hit".) However, the probability that such a query
is made at some point is always at most 2-~[CI, since R never reveals
any information about r-l(0 n) (after all, for each f , r - l (0 ~) is equally
likely to be any value). Hence the effect of this event on our probability
calculations will be negligible.

Similarly, if some f-query in C actually has the result 0 N, then b is again
obvious given lr, and Pr[Sbr , R] -- 1 if R contains such a query result.
(We will call such an event a "~-hit", or more succinctly, a "hit".) How-
ever, the probability that this event occurs for a given f-query preceded
by result sequence R is at most Pr[~[r, R]. We will show that for any C,
Pr[~l~r, R] always remains exponentially small (except with exponentially
small probability, over choices of A's query results table). In particular,
we will show that for each query Q, if Pr[~br , RQ] is exponentially small,
then (except with exponentially small probability) Pr[~lr, R~] is also ex-
ponentially small, where R~ is RQ with the result of Q appended. This
proof has two steps; first, we show that if for a given f-gate Q Pr[~[~, RQ]
is exponentially small, then not only will Q be a ~-hit with only exponen-
tially small probability, but as long as it is not a ~-hit, Pr[~[~r, R~] will also
be exponentially small. Second, we use this fact to show that if a given
A-query circuit Q (for which Pr[~[r, RQ] is exponentially small) produces
a ~-hit with only exponentially small probability (over choices of its ran-
domly, uniformly chosen input), then Pr[6[Tr, R~] will also be exponentially
small. From these two facts it follows that every query gate will produce
an exponentially small Pr[~[Tr, R~] from an exponentially small [517r, RQ].
Hence [517r, RQ], which begins at 2 -n before any queries have been sub-
mitted, will never become non-negligible, and the circuit will therefore
be able to produce a correct guess for f- l (0 '~) with only negligible (i.e.,
exponentially small) probability.

An important fact we use is that the conditional probabilities on the pos-
sible values of 5 are unlikely to be highly "misleading"; that is, Pr[flTr , R]
is not likely to be too much less than Pr[~'[r, R] for some incorrect value
of 6'. Pr[/~[r, R] therefore can serve as a (very) rough approximation of

340

the overall entropy of the conditional distribution on 5 given r and R.

De f in i t i on 5 For oracle-querying uniform circuit family C = {Ca} rel-
ative to an oracle A defined as above, with qn queries in Ca, a query
ordering is a polynomial-time-computable mapping from pairs (n, i) to par-
ticular f - or A-queries Q~ in Ca, such that ira < b < qn, then (n, a) maps
to a query Qa, which can be computed without first receiving the entire re-
sponse to the image Qb of (n, b). For an oracle A and query ordering 12,
a k-response prefix R<a is the sequence of A ' s responses R1, ..., Rk to the
k-query prefix Q = Q1,..., Q~.

Note that in recursive queries (say, an A-query whose circuit itself contains
A-queries), one or the other of the inputs x and x ~ in a "higher-level" A-
query may be required to compute the query contained within it (i.e.,
construct its query circuit); however, both x and x ~ need not be known.
Moreover, the single inputs to the higher-level queries are nothing more
than uniformly distributed variables. Hence we can consider the response
to such an A-query as being distributed as if these higher-level query
inputs were simply distributed uniformly.

Def in i t i on 6 For oracle A, a k-event (5, 7r, k, R) consists of a choice of
a random transposition 5 (one of whose transposed elements is 0 '~) that
turns the permutation f contained in A into the permutation ~, and a
k-response prefix R.

Def in i t i on 7 For a circuit family C with query ordering ~, a (5-)hit is
an f -query response whose value is 0 n, or an A-query response containing
an f -query input-output pair the output of which is 0 n. Within k-event
(6, 7r, k, R), a 7r-hit is a query response that would have been a b-hit had 5
been the identity transposition.

First we prove that Pr[5'[w, R] for some incorrect 5 ~ is not likely to lead
the querying circuit "down the garden path" by being too much larger
than Pr[5[r, R] for the correct value of 5.

L e m m a 2 For any fixed 6, lr and query prefix length k, let S be the set of
all k-response prefixes R for which there exists a 5' such that Pr[5[r, R] <
m Pr[5'[Ir, R]. Then Pr[R_<k e S[5, 7r] < m.

P r o o f If Pr[Sbr, R] < m Pr[5'lTr, R], then Pr[5, Tr, R] < m Pr[5',~r,R];
hence Pr[R<k e S[5, zr] = ~-~Res Pr[R[5, r] = ~/~es Pr[5, 7r, R]/Pr[5, ~] <
m ER sPr[5', ,RI/Pr[5,] _< m (since Pr[5,] = Pr[5' , .] for all
6,5 ,~).

Def in i t i on 8 The k-event (5, 7r, k, R) is a c-garden path i f there exists a
5' such that Pr[@r, R] < m Pr[5'lzr , R], where m = 2 -*'~ (0 < c < 1).

341

Note that for any particular k, a garden path occurs with probability
bounded above by 2 -'~/c. Next we show that individual f-queries almost
never reveal more than a negligible amount of extra information about the
correct value of 6.

L e m m a 3 / f Pr[@r, R<k] = h < 1/2 for the k-response prefix R<_~,
(6, zr, k, R<_~) is not a c-garden path, and the (k + l) th query Qk+l is an f -
query, then if the response Rk+l to Q~+I is neither a 6-hit nor a ~r-hit (an
event which occurs with probability at least 1 - h - 2n), then Pr[6[r, R<_k + ~]
for the (k + 1)-response prefix R<k+a is at most h(1 + 2h/m), where
m = 2 -c'~.

P r o o f Assume that Qk+l is not a 6-hit or a 7r-hit; then

Pr[6lzr, R<k+l]
(Pr[Rk+116, r , R<k] "~

Pr[61r'R<k] \ ~ [- ~ - , R _ ~]]

Pr[6lTr, R<k] Pr[Rk+116, 7r, R<k]

~{8'} Pr[6'[zr, R<k] Pr[Rk+l [6', zr, R<k]

But Pr[Rk+ll6',zr, R<_k] = 0 when 6' = 6, and 1 otherwise (since,
given 7r, Rk+l is fixed for a particular Qk+l unless Rk+l is altered
by 6). Hence the above expression simplifies to Pr[61zr, R<~](1/(1 -
Pr[El~r, R<k])) < h(1/(1 - h/m) < h(1 + 2h/m).

For example, if h = Pr[@r, R<k] is 2 -dn (0 < d < 1), and Qk+l is an
f-query, then Qk+l is a hit with probability at most 2 -dn, and if it is
not a hit, then Pr[61zr ,R<_k+l] is at most 2-dn(1 q- 21+cn-dn). Clearly,
then, even after a polynomially large sequence of consecutive f-queries
Pr[61~r, R] remains exponentially small as long as d > c (except possibly in
the case of a hit or a garden path, both of which occur with exponentially
small probability).

Now consider the case where Qk+l is an A-query. The query circuit may
itself contain both A-queries and f-queries, whose results are hits with
probabilities that depend on previously gathered query results (that is, on
R<~) and on the uniformly distributed inputs to Qk+l and to the "higher
level" query circuits of which Qk+l is a part. The effect of the query's
result on Pr[61zr , R] depends in this case not only on whether the result
is a hit, but also on the probability that the particular collision (call it
(x,x ' , Qk+x(x))) would have been chosen given a different 6. Since x is
chosen uniformly over possible inputs, its probability of being chosen is
independent of 6. The probability that x' is chosen is simply the reciprocal
of the size of the set S=,~ of inputs that collide with x. But as long as x
does not result in a hit, IS=,~I correlates significantly with 6 only to the
extent that elements of S=,~, if chosen, would result in hits, since if y is in
S~,~ without resulting in a hit, then it would be out of the set only for at

342

most polynomially many possible 5 values (those that would change the
output of one of the polynomially many f-queries in the A-query with y
as input).

We thus define a set Sx for each x whose elements would be in 5'= for all
but polynomially many values of 5. We will show that except with expo-
nentially small probability (assuming exponentially small Pr[517r , R<k]),
IS,,~I does not vary much from IS~I as 5 varies, and hence little informa-
tion is gathered about 5, and Pr[517r , R<k+I] is thus increased by only an
exponentially small amount.

L e m m a 4 Let Pr[51r , R<k] ---- h < 1/2 for the k-response prefix R<_k, and
the (k + 1)th query Qk+l be an A-query whose result includes collision
(x, x ' , Qk+l(x)) . Let n ~ be an upper bound on the total size of the circuit
attempting to compute f - l (O ~) ; let r <_ 1/2. Then

1. the probability p that x or x ~ is a 5-hit or a re-hit is at most 2ne(h +
2 - ") ;

2. the p bability that IS , ,I > (1 + r)IS=l /or more than a fraction rl
of all values of 5 1 is at most ne2-"/r21;

3. the probability that ISx,~I < (1 - r2) lS~l zs at most p /r2 .

Moreover, i f none of the above events occur, then (except in the case of a
garden path),

Pr[@r, R<k+l] _<
h (l q - r l)

(1 - r2) (1 - rlh2 /m)"

P r o o f The probability of a hit follows from the fact that Pr[51~, R<k] only
increases as k increases; hence each f -query in the A-query results
in a hit with probability at most h (given either input x or x ~, since
both are uniformly distributed). Note that if neither x nor x ~ result
in hits, then both are in the set S=. Moreover, if x and x ~ are drawn
from a set of size t, then there are at most net additions to all the sets
Sx,~, (since each x value changes sets for at most n c different values of
5~). Hence for a collection of sets {S=,6, } to have their size increased
by a factor of (1 + r l) for a fraction rl of all 2 n 5 ~ values, the total
number of x values in the collection of sets must be at most net/r21 2",
meaning that the probability that x is in this collection is at most
nC2-'~/r21 . Also, for any particular S= and 5,]S=,~] < (1 - r2)[S=[
only if a fraction r2 of the elements of Sx are not in Sx,6-that is, if
they result in hits. Hence the probability that a fraction at least r2 of
elements of Sx are hits is at most p/r2 (otherwise a fraction greater
than p of all possible x values would be hits).

343

Now assume that none of the aforementioned events occur. Define 5'
as good if]S=,~,] _< (1 + rl)]S= I. Recall that

Pr[SIrt, R<k+l] = er[~ilr~, R<k] Pr[Rk+115, 7r, R<k]
- ~{~,} Pr[~'lrt, R<k] Pr[Rk+l]~', rt, R<k]

Y~.{~,} Pr[~']r, R<k]/]S=,~, t
h <

- (1 - r2) ~{8'} Pr[5']lr, R<_k]]S=]/IS=,~'l

< (1 + rl)h
- (1 - r2) ~ { , , good} Pri5'br, R<k]"

But since we are assuming that at most a fraction r l of 5' values are not
good, and each has probability at most him (assuming no garden path),
we have ~{a , ~ood} Pr[(5'[r, R_<k] ~> 1 - rh2n/m, as required.

Now, setting, say, r l = 2 - ' ' ~ and r2 = 2 - v n , and choosing moreover c to be
an arbitrarily small positive constant and u and v to be 1/2 - c , we observe that
d (from the example following lemma 3) begins at 1 and increases by o(1) over
polynomially many queries except with exponentially small probability. Hence
Pr[~']r~, R] never becomes significantly larger than 2 -'~, and the circuit therefore
has only an exponentially small chance of guessing ~ correctly.

4 The Oracle Separation and "Black Box" Con-
structions

The oracle A presented above can be used to show that no construction of a
collision-intractable hash function can exist which assumes only a generic one-
way permutation, treating it as a "black box" (i.e., an oracle) for the purposes
of the construction. Consider, for instance, an oracle F which, for a given size
input of which the first half of the input bits are ones, outputs the result of A on
the latter half of the input, and otherwise, computes the one-way permutat ion
f described above (which remains a one-way permutation even in the presence
of A). A simple permutation-preserving trick (mapping inputs of the form
(l l . . . lx , x, ..., x), for suitably many repetitious of x, to (11...lx, A(x)), and vice
versa, for every x) can be used to turn F into a permutation oracle H; H
preserves F ' s "one-wayness" (as long as most inputs still result in a simple
computation of f) as well as F ' s feature of offering callers complete access
to A (using polynomially larger-sized inputs). It follows that any proof of a
construction of a collision-intractable hash function from a one-way permutat ion
must implicitly assume that the permutation oracle is not YI (which can be used
to find collisions in any hash function). Hence the proof cannot apply to an
absolutely arbitrary one-way permutation.

344

Note that we are modeling the one-way permutation primitive here as a single
oracle answering arbitrary-length queries. It is common for "black box" con-
structions based on abstract primitives to represent the primitive as a family of
oracles with fixed input and output lengths, rather than as a single oracle; this is
normally reasonable because such constructions are typically relativizing, mean-
ing that the constructions are no less provable in the presence of longer-length
oracles in the same family. A black-box construction with a non-relativizing
proof that did not permit the presence of longer-length oracles could, in prin-
ciple, exist (although it is difficult even to imagine one); however, it would say
nothing of practical significance, since any feasible instantiation of the one-way
permutation would necessarily be implementable for any length which is poly-
nomial in the original one. Hence the conclusions drawn here based on the
model of the one-way permutation as a single oracle still apply to all practically
relevant constructions.

5 Conclusions and Open Problems

The result presented here suggests that it is unlikely that a convincing con-
struction of a collision-intractable hash function can be built on nothing more
than the assumption of a one-way permutation. One way to address this dif-
ficulty is to look for other primitives (such as the claw-free permutation pairs
of [Dam87], or one-way permutations with some extra property) from which
collision-intractable hash functions can be built, and find plausible assumptions
under which such primitives would exist. Another approach is to examine the
uses of collision-intractable hash functions, and find ways to use weaker prim-
itives to accomplish the task. It may even turn out, in the long run, that
collision-intractability is never in fact necessary.

6 Acknowledgements

Many thanks to Josh Benaloh, Wei Dai, Amit Khetan, Terence Spies, Ramarath-
nam Venkatesan, and the Eurocrypt '98 Program Committee for their helpful
comments and useful discussions.

References

[AHV98]

[AV96]

W. Aiello, S. Haber and R. Venkatesan, "New Constructions for Se-
cure Hash Fhnctions", Proc. Fifth Workshop on Fast Software En-
cryption (FSE5), 1998.

W. Aiello and R. Venkatesan, "Foiling Birthday Attacks in Length-
Doubling Transformations", Proc. EUROCRYPT '96, 1996.

345

[BR93]

[BR94]

[Dam87]

[DamS9]

[DP80]

[Mer89]

[NIST94]

[NY89]

[Riv92]

[Rom90]

[Rus92]

[Tsu92]

[ZMI90]

M. Bellare and P. Rogaway, "Random Oracles Are Practical: a Para-
digm for Designing Efficient Protocols", Proc. 1st Annual Conference
on Computer and Communications Security, 1993.

M. Bellare and P. Rogaway, "Optimal Asymmetric Encryption", Proc.
Eurocrypt '94, 1994.

I. Damghrd, "Collision-Free Hash Functions and Public-Key Signa-
ture Schemes", Proc. EUROCRYPT '87, 1987.

I. Damghrd, "A Design Principle for Hash Functions", Proc.
CRYPTO '89, 1989.

D. Davies and W. Price, "The Application of Digital Signatures Based
on Public-Key Cryptosystems", Proc. 5th International Computer
Communications Conference, 1980.

R. Merkle, "One Way Hash Functions and DES", Proc. CRYPTO
'89, 1989.

National Institute of Standards and Technology, NIST FIPS PUB
186, "Digital Signature Standard", U.S. Department of Commerce,
1994.

M. Naor and M. Yung, "Universal Hash Functions and their Crypto-
graphic Applications", Proc. 21st Annual Symposium on Theory of
Computing, 1989.

R. Rivest, "The MD5 Message Digest Algorithm", RFC 1321, 1992.

J. Rompel, "One-Way Functions Are Necessary and Sufficient for Dig-
ital Signatures", Proc. 22nd Annual Symposium on Theory of Com-
puting, 1990.

A. Russell, "Necessary and Sufficient Conditions for Collision-Free
Hashing", Proc. CRYPTO '92, 1992.

G. Tsudik, "Message Authentication with One-Way Hash Functions",
ACM Computer Communications Review v 22, no. 5, pp. 29-38, 1992.

Y. Zheng, T. Matsumoto and H. Imai, "Structural Properties of One-
Way Hash Fb_nctions", Proc. CRYPTO '90, 1990.

