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Abstract 

We prove the existence of an oracle relative to which there exist sev- 
eral well-known cryptographic primitives, including one-way permuta- 
tions, but excluding (for a suitably strong definition) collision-intractible 
hash functions. Thus any proof that such functions can be derived from 
these weaker primitives is necessarily non-relativizing; in particular, no 
provable construction of a collision-intractable hash function can exist 
based solely on a "black box" one-way permutation. This result can be 
viewed as a partial justification for the common practice of treating the 
collision-intractable hash function as a cryptographic primitive, rather 
than attempting to derive it from a weaker primitive (such as a one-way 
permutation). 
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1 I n t r o d u c t i o n  

Modern practical cryptography is built on a number of basic primitives, which 
include, in addition to asymmetric cryptosystems, both symmetric ciphers and 
cryptographic hash functions. The theory and practice of ciphers has been 
explored extensively; much experience has been accumulated regarding practical 
design principles for them, and the simple theoretical primitive of the one-way 
function has been shown to be a necessary and sufficient building block for 
constructing one. In contrast, cryptographic hash functions are relatively new 
and unexplored as both theoretical and practical objects. It is therefore natural 
to ask whether the body of knowledge available for the former can be applied 
to the latter. 

Cryptographic hash functions are actually used in a number of ways (so 
many, in fact, that they are often modeled as random oracles, as in [BR93]). 
Their most important attributed property, however (analogous to "security" for 
ciphers), is collision intractability, roughly defined as the intractability of finding 
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a pair of inputs that  produce the same output. Whether used in message au- 
thentication codes (MACs) ([Tsu92]), signature schemes ([De80]) or compound 
asymmetric primitives (IBR94]), collision intractability is the most important  
property which they are relied upon to provide. Collision intractability can be 
defined in a number of ways; functions exhibiting the weakest variant can be 
constructed easily from any one-way permutation ([NY89]), and somewhat less 
easily from any one-way function (see [Rom90]). However, the uses of collision- 
intractable hash functions generally require them to meet a stronger definition. 
Such strongly collision-intractable hash functions are only known to be prov- 
ably constructible from specific assumptions such as the hardness of particular 
number-theoretic problems, or from stronger general primitives such as claw-free 
permutat ion pairs ([DamS7], [Rus92]) or fixed functions whose behavior is indis- 
tinguishable from that  of random functions ([AV96], [AHV98]). The construc- 
tions in common use ([Riv92], [NIST94]) are typically obtained by applying the 
Merkle-Damg~rd iteration "meta-method" ([Mer89], [Dam89]) to fixed-length, 
heuristically designed "compression functions" whose collision-intractability is 
itself not inferrable from any weaker assumptions. 

In this paper, we offer an explanation for this state of affairs: we present 
an oracle relative to which there exists a one-way permutation, and hence (for 
instance) a universal one-way hash function (as defined in [NY89]), but relative 
to which there are no strongly collision-intractable hash functions (in the sense of 
[Dam87]). It  follows that  any provable construction of the latter from one of the 
former would necessarily not relativize. Moreover, as we will show, the existence 
of the oracle implies that  no provable construction of a collision-intractable hash 
function can exist based on a "black box" one-way permutation, i.e., a one-way 
permutat ion treated as an oracle, with no assumption made about it beyond 
its "one-wayness". (Constructions based on stronger assumptions about the 
permutation, such as certain algebraic or statistical properties, are not thus 
ruled out.) This result can therefore be viewed as a partial justification for 
the common practice of treating the collision-intractable hash function as a 
cryptographic primitive, rather than as a compound derived from a weaker 
primitive (such as the one-way permutation or any of its equivalents). 

2 D e f i n i t i o n s  

The weakest definition of collision intractability in common use is the one given 
for universal one-way hash function families in [NY89]: under this definition, 
no polynomial-time algorithm can find a collision with a random input, given 
a hash function selected randomly from a family. (In [NY89] it is shown that  
a family of hash functions consisting of a one-way permutat ion composed with 
a random 2-universal hash function meets this definition.) Alternatively, one 
could require the intractability of finding a collision with a random input given 
a fixed function, rather than one selected randomly from a family; we will call 
such a function a universal one-way hash function. A stronger definition appears 
in [Dam87] for collision-intractable hash function families: no polynomial-time 
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algorithm can find a pair of inputs which form a collision, given a hash function 
selected randomly from a family. Finally, the strongest definition is the asymp- 
totic version of the one assumed for real-world cryptographic hash functions: a 
single function for which it is intractable to find a single collision pair. We will 
call such a function a collision-intractable hash function. 

Def in i t ion  1 A hash function is a uniform family F = {Cn} of circuits of size 
polynomial in n, taking input of size n and producing output of size m < n. A 
hash function family is a hash function in which the input is divided into two 
pieces, x and k, such that n is polynomial in Ixl and m < Ixl. 

Def in i t ion  2 An n-specific collision for a hash function F and an n-bit input x 
(resp., for a hash function family F and an n-bit input (k, x))  is a value y such 
that C,~(x) = C~(y) (resp., a pair (k,y) such that C,~(k,x) = C~(k,y)).  An 
n-existential collision for a hash function F (resp., for a hash function family 
F and a partial input k) is a pair (x, y) such that Cn(x) = C,~(y) (resp., such 
that C~(k, x) = C~(k, y)). 

Def in i t ion  3 ([NY89]) A hash function (resp., hash function family) F is a 
universal one-way hash function (resp., universal one-way hash function family) 
if  every probabilistic polynomial-time algorithm finds an n-specific collision for 
F and an input x (resp., (k, x), for any x with k) chosen uniformly from {0, 1} n 
with probability n-~(1) (over the algorithm's probabilistic choices and the choice 
of input). 

Note that a universal one-way hash function family is itself automatically 
a universal one-way hash function. Also, a construction similar to the one in 
[NY89] can be used to construct the former from the latter. Hence, in the case 
of universal hash functions (as opposed to collision-intractable hash functions), 
the existence of a family and the existence of a single function are equivalent, in 
that  either can be constructed from the other. The same is not known to hold 
for collision-intractable hash functions and function families. 

Def in i t ion  4 ([Dam87]) A hash function (resp., hash function family) F is a 
collision-intractable hash function (resp., a collision-intractable hash function 
family) if every polynomial-time algorithm finds an n-existential collision for 
F (resp., for F and a partial input k chosen uniformly from (0, 1} Ikl) with 
probability n -w(1) (over the algorithm's probabilistic choices and the choice of 
k). 

3 T h e  M a i n  R e s u l t  

The intuition underlying the theorem and proof is quite simple: since our goal 
is to find an oracle relative to which no collision-intractable function exists, we 
define an oracle which, given any function description, returns a collision (two 
inputs with the same output).  And since we also wish to show that  one-way 
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permutations exist relative to this oracle, we also provide a random permutat ion 
oracle f .  It  remains only to show that  the collision-finding oracle does not help 
to invert f .  

It  turns out that  the wrong choice of collision-finding oracle actually makes 
f invertible. For example, an oracle which simply returns a random collision 
(i.e., a uniformly chosen entry in the list of colliding pairs) would allow f to be 
inverted. (The space of collisions can be manipulated by use of a cleverly chosen 
query circuit, so that  a constant fraction of all collisions involve an exponentially 
small fraction of the outputs.) On the other hand, if a collision is chosen by 
selecting a uniformly chosen input followed by a uniformly chosen collision with 
it (including perhaps itself), then the individual colliding inputs are themselves 
uniformly distributed. Receiving such a pair of uniformly (though not indepen- 
dently) distributed inputs gives essentially no information about the inverse x 
of any particular permutation output  y. 

In order to prove that  this information really is of negligible value, we must 
measure the information obtained from each such query about x in particular, as 
opposed to any other miscellaneous information we might obtain about f in the 
process. To do so, we imagine that  f has been composed with a transposition 
5 that  transposes y = f ( x )  with a randomly chosen image value. We are then 
given the resulting permutation 77 = f o 5, together with a sequence R of query 
results, and ask what distribution on such transpositions 5 can be inferred from 
77 and R. For example, if we know x exactly, then we know exactly which 5 was 
chosen to produce 77. Conversely, if we know nothing about x, then any 5 is 
as likely to be correct as any other. We will show that  even after polynomially 
many queries to the collision oracle, the inferred likelihood of the correct value 
of 5, given 7r and R, remains exponentially small except with exponentially 
small probability. Hence the probability that  x can be guessed correctly almost 
always remains negligible. 

T h e o r e m  1 There exists an oracle A relative to which there exist universal 
one-way hash functions and universal one-way hash ]unction families, but no 
collision-intractable hash functions or collision-intractable hash ]unction fami- 
lies. 

P r o o f  The oracle A will "contain" a permutation f ,  and accept queries which 
consist of a circuit description; the circuit may contain special "f-gates" 
which denote a request to the oracle ("f-query")  to compute f on the 
gate 's  input, as well as oracle gates ("A-gates") which denote submission 
of the gate 's input as a normal query of A ("A-query"). Given such a 
circuit description, the oracle first verifies that  the input length is greater 
than the output length. If so, it chooses a random input x to the circuit, 
selecting uniformly from the set of inputs of the correct length, and then 
selects a value x I chosen uniformly from the set of inputs (including x 
itself) for which the circuit produces the same output as x. The oracle 
returns the collision (x, x I, C(x) ), together with a query list consisting of 
the inputs and outputs of all f-queries made during the computation of the 
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circuit's outputs on inputs x and x I. Note that both x and x I are uniformly 
distributed over all possible inputs to C (although not independently). 

A-queries, rather than being unit-cost, cost a number of computation 
steps equal to the cost of computing the circuit's output and verifying 
the collision-that is, twice the size of the input circuit (f-gates being 
treated as unit-cost gates). This cost prevents the oracle from being used 
to speed up ordinary computations, rather than to find collisions. 

We will consider the permutation f ,  as well as the input values chosen 
by the oracle, to be chosen randomly. More precisely, we define for every 
n a family {A~} of oracles of this type "containing" a permutation f : 
{0, 1} ~ -~ {0, 1} n, with each using a table of the necessary length to 
determine its choices for every possible query circuit of size up to n w(1) , 
and prove that the theorem is true with probability 1 - n-"~(1)over the 
choices of A,~ taken uniformly from this family. 

We model polynomial-time algorithms relative to this oracle by uniform 
polynomial-size circuit families that may contain both f-gates and A 
-gates. It is clear that relative to this oracle, there are no collision- 
intractable hash functions or function families, since n-existential colli- 
sions can be found (with constant probability) for any such function or 
family by constructing the circuit for the function and using it as the input 
for an A-gate. (Since the function is length-decreasing, at least half of its 
inputs must collide with some other input, and the oracle's response to the 
query will therefore provide a collision with constant probability.) We will 
show, moreover, that the permutation f ,  which can easily be computed in 
polynomial time by a simple circuit that includes a single A-gate, is, for 
any polynomial-time algorithm, invertible only with negligible probabil- 
ity (over the choices of A). Thus (by a simple counting argument) there 
exists an A for which f is a one-way permutation (from which a univer- 
sal one-way hash function family can be constructed using the method of 
[NY89]). 

The outline of this proof is as follows: Consider a polynomial-size oracle- 
querying circuit family C; it inverts f if it successfully outputs the pre- 
image of, say, 0 n under f with significant probability (over choices of 
A; since we are considering f as a random permutation, the choice of 
image to invert is arbitrary). It may make f-queries and A-queries in any 
order, including A-queries that themselves contain A-query gates (up to 
logarithmically many recursions, given the defined cost of queries). At the 
end of its computation it outputs a guess for f- l(0 '~),  and succeeds if its 
guess is correct with probability at least n -c, for some constant c. 

Now, the only source of information available to the circuit about f - 1  (O n) 
comes from the results of A-queries. These results consist of collision/query 
list pairs. Both of these may give information about f that may be useful 
in guessing f - l (0n ) .  We measure the information obtained so far from 
these sources as follows: suppose that a permutation r is chosen by com- 
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posing f with a transposition ~ that transposes 0 '~ with an image chosen 
uniformly at random (including possibly itself). Then for a sequence R of 
query results, the value Pr[5[r, R] is a measure of the information about 
f - l ( 0 n )  obtained from R, given r (as distinct from all other information 
gleaned about f from R). In particular, an optimal circuit cannot guess 
f - l ( 0 n )  with probability greater than Pr[~[r, R] if R is the complete se- 
quence of query results it has obtained. Similarly, no individual f-query 
Q in the circuit can get a response of 0 '~ with probability greater than 
Pr[5[r, RQ], where RQ is the sequence of query results preceding Q in the 
computation of C, and hence available to C when determining its input 
to Q. 

Note that if some f-query in C has the input r- l(0 '~),  then ~ is obvious 
given ~r, and Pr[~l~r , R] = 1 if R contains such a query result. (We will 
call such an event a "r-hit".)  However, the probability that such a query 
is made at some point is always at most 2-~[CI, since R never reveals 
any information about r-l(0 n) (after all, for each f ,  r - l ( 0  ~) is equally 
likely to be any value). Hence the effect of this event on our probability 
calculations will be negligible. 

Similarly, if some f-query in C actually has the result 0 N, then b is again 
obvious given lr, and Pr[Sbr , R] -- 1 if R contains such a query result. 
(We will call such an event a "~-hit", or more succinctly, a "hit".) How- 
ever, the probability that this event occurs for a given f-query preceded 
by result sequence R is at most Pr[~[r, R]. We will show that for any C, 
Pr[~l~r, R] always remains exponentially small (except with exponentially 
small probability, over choices of A's query results table). In particular, 
we will show that for each query Q, if Pr[~br , RQ] is exponentially small, 
then (except with exponentially small probability) Pr[~lr, R~] is also ex- 
ponentially small, where R~ is RQ with the result of Q appended. This 
proof has two steps; first, we show that if for a given f-gate Q Pr[~[~, RQ] 
is exponentially small, then not only will Q be a ~-hit with only exponen- 
tially small probability, but as long as it is not a ~-hit, Pr[~[~r, R~] will also 
be exponentially small. Second, we use this fact to show that if a given 
A-query circuit Q (for which Pr[~[r, RQ] is exponentially small) produces 
a ~-hit with only exponentially small probability (over choices of its ran- 
domly, uniformly chosen input), then Pr[6[Tr, R~] will also be exponentially 
small. From these two facts it follows that every query gate will produce 
an exponentially small Pr[~[Tr, R~] from an exponentially small [517r, RQ]. 
Hence [517r, RQ], which begins at 2 -n  before any queries have been sub- 
mitted, will never become non-negligible, and the circuit will therefore 
be able to produce a correct guess for f- l (0 '~)  with only negligible (i.e., 
exponentially small) probability. 

An important fact we use is that the conditional probabilities on the pos- 
sible values of 5 are unlikely to be highly "misleading"; that is, Pr[flTr , R] 
is not likely to be too much less than Pr[~'[r, R] for some incorrect value 
of 6'. Pr[/~[r, R] therefore can serve as a (very) rough approximation of 
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the overall entropy of the conditional distribution on 5 given r and R. 

De f in i t i on  5 For oracle-querying uniform circuit family C = {Ca} rel- 
ative to an oracle A defined as above, with qn queries in Ca, a query 
ordering is a polynomial-time-computable mapping from pairs (n, i) to par- 
ticular f -  or A-queries Q~ in Ca, such that ira < b < qn, then (n, a) maps 
to a query Qa, which can be computed without first receiving the entire re- 
sponse to the image Qb of (n, b). For an oracle A and query ordering 12, 
a k-response prefix R<a is the sequence of A ' s  responses R1, ..., Rk to the 
k-query prefix Q = Q1,..., Q~. 

Note that  in recursive queries (say, an A-query whose circuit itself contains 
A-queries), one or the other of the inputs x and x ~ in a "higher-level" A- 
query may be required to compute the query contained within it (i.e., 
construct its query circuit); however, both x and x ~ need not be known. 
Moreover, the single inputs to the higher-level queries are nothing more 
than uniformly distributed variables. Hence we can consider the response 
to such an A-query as being distributed as if these higher-level query 
inputs were simply distributed uniformly. 

Def in i t i on  6 For oracle A, a k-event (5, 7r, k, R) consists of a choice of 
a random transposition 5 (one of whose transposed elements is 0 '~) that 
turns the permutation f contained in A into the permutation ~, and a 
k-response prefix R. 

Def in i t i on  7 For a circuit family C with query ordering ~,  a (5-)hit is 
an f -query  response whose value is 0 n, or an A-query response containing 
an f -query  input-output pair the output of which is 0 n. Within k-event 
(6, 7r, k, R), a 7r-hit is a query response that would have been a b-hit had 5 
been the identity transposition. 

First we prove that Pr[5'[w, R] for some incorrect 5 ~ is not likely to lead 
the querying circuit "down the garden path" by being too much larger 
than Pr[5[r, R] for the correct value of 5. 

L e m m a  2 For any fixed 6, lr and query prefix length k, let S be the set of 
all k-response prefixes R for which there exists a 5' such that Pr[5[r, R] < 
m Pr[5'[Ir, R]. Then Pr[R_<k e S[5, 7r] < m. 

P r o o f  If Pr[Sbr, R ] < m Pr[5'lTr, R], then Pr[5, Tr, R] < m Pr[5',~r,R]; 
hence Pr[R<k e S[5, zr] = ~-~Res Pr[R[5, r] = ~/~es Pr[5, 7r, R]/Pr[5, ~] < 
m ER sPr[5', ,RI/Pr[5, ] _< m (since Pr[5, ] = Pr[5' , . ]  for all 
6,5 ,~). 

Def in i t i on  8 The k-event (5, 7r, k, R) is a c-garden path i f  there exists a 
5' such that Pr[@r, R] < m Pr[5'lzr , R], where m = 2 -*'~ (0 < c < 1). 
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Note that for any particular k, a garden path occurs with probability 
bounded above by 2 -'~/c. Next we show that individual f-queries almost 
never reveal more than a negligible amount of extra information about the 
correct value of 6. 

L e m m a  3 / f  Pr[@r, R<k] = h < 1/2 for the k-response prefix R<_~, 
(6, zr, k, R<_~) is not a c-garden path, and the (k + l) th query Qk+l is an f -  
query, then if the response Rk+l to Q~+I is neither a 6-hit nor a ~r-hit (an 
event which occurs with probability at least 1 -  h -  2n ), then Pr[6[r, R<_k + ~ ] 
for the (k + 1)-response prefix R<k+a is at most h(1 + 2h/m),  where 
m = 2 -c'~. 

P r o o f  Assume that Qk+l is not a 6-hit or a 7r-hit; then 

Pr[6lzr, R<k+l] 
(Pr[Rk+116, r ,  R<k] "~ 

Pr[61r'R<k] \ ~ [ - ~ - , R _ ~ ]  ] 

Pr[6lTr, R<k] Pr[Rk+116, 7r, R<k] 

~{8'} Pr[6'[zr, R<k] Pr[Rk+l [6', zr, R<k] 

But Pr[Rk+ll6',zr, R<_k] = 0 when 6' = 6, and 1 otherwise (since, 
given 7r, Rk+l is fixed for a particular Qk+l unless Rk+l is altered 
by 6). Hence the above expression simplifies to Pr[61zr, R<~](1/(1 - 
Pr[El~r, R<k])) < h(1/(1 - h/m) < h(1 + 2h/m). 

For example, if h = Pr[@r, R<k] is 2 -dn (0 < d < 1), and Qk+l is an 
f-query, then Qk+l is a hit with probability at most 2 -dn, and if it is 
not a hit, then Pr[61zr ,R<_k+l] is at most 2-dn(1 q- 21+cn-dn). Clearly, 
then, even after a polynomially large sequence of consecutive f-queries 
Pr[61~r, R] remains exponentially small as long as d > c (except possibly in 
the case of a hit or a garden path, both of which occur with exponentially 
small probability). 

Now consider the case where Qk+l is an A-query. The query circuit may 
itself contain both A-queries and f-queries, whose results are hits with 
probabilities that depend on previously gathered query results (that is, on 
R<~) and on the uniformly distributed inputs to Qk+l and to the "higher 
level" query circuits of which Qk+l is a part. The effect of the query's 
result on Pr[61zr , R] depends in this case not only on whether the result 
is a hit, but also on the probability that the particular collision (call it 
(x,x ' ,  Qk+x(x))) would have been chosen given a different 6. Since x is 
chosen uniformly over possible inputs, its probability of being chosen is 
independent of 6. The probability that x' is chosen is simply the reciprocal 
of the size of the set S=,~ of inputs that collide with x. But as long as x 
does not result in a hit, IS=,~I correlates significantly with 6 only to the 
extent that elements of S=,~, if chosen, would result in hits, since if y is in 
S~,~ without resulting in a hit, then it would be out of the set only for at 
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most polynomially many possible 5 values (those that  would change the 
output of one of the polynomially many f-queries in the A-query with y 
as input). 

We thus define a set Sx for each x whose elements would be in 5'= for all 
but polynomially many values of 5. We will show that  except with expo- 
nentially small probability (assuming exponentially small Pr[517r , R<k]), 
IS,,~I does not vary much from IS~I as 5 varies, and hence little informa- 
tion is gathered about 5, and Pr[517r , R<k+I] is thus increased by only an 
exponentially small amount. 

L e m m a  4 Let Pr[51r , R<k] ---- h < 1/2 for  the k-response prefix R<_k, and 
the (k + 1)th query Qk+l be an A-query  whose result includes collision 
(x, x ' ,  Qk+l(x)) .  Let n ~ be an upper bound on the total size of the circuit 
attempting to compute f - l ( O ~ ) ;  let r <_ 1/2. Then 

1. the probability p that x or x ~ is a 5-hit or a re-hit is at most  2ne(h + 
2 - " ) ;  

2. the p bability that IS , ,I > (1 + r )IS=l /or  more than a fraction rl 
of all values of  5 1 is at most  ne2-"/r21; 

3. the probability that ISx,~I < (1 - r2 ) lS~l  zs at most  p /r2 .  

Moreover, i f  none of  the above events occur, then (except in the case of a 
garden path), 

Pr[@r, R<k+l] _< 
h ( l q - r l )  

(1 - r2) (1  - rlh2 /m)" 

P r o o f  The probability of a hit follows from the fact that  Pr[51~, R<k] only 
increases as k increases; hence each f -query  in the A-query results 
in a hit with probability at  most h (given either input x or x ~, since 
both are uniformly distributed). Note that  if neither x nor x ~ result 
in hits, then both are in the set S=. Moreover, if x and x ~ are drawn 
from a set of size t, then there are at most net additions to all the sets 
Sx,~, (since each x value changes sets for at most n c different values of 
5~). Hence for a collection of sets {S=,6, } to have their size increased 
by a factor of (1 + r l )  for a fraction rl  of all 2 n 5 ~ values, the total 
number of x values in the collection of sets must be at most net/r21 2", 
meaning that  the probability that  x is in this collection is at most 
nC2-'~/r21 . Also, for any particular S= and 5, ]S=,~] < (1 - r2)[S=[ 
only if a fraction r2 of the elements of Sx are not in Sx,6-that is, if 
they result in hits. Hence the probability that  a fraction at least r2 of 
elements of Sx are hits is at most p/r2 (otherwise a fraction greater 
than p of all possible x values would be hits). 
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Now assume that  none of the aforementioned events occur. Define 5' 
as good if ]S=,~,] _< (1 + rl)]S= I. Recall that 

Pr[SIrt, R<k+l] = er[~ilr~, R<k] Pr[Rk+115, 7r, R<k] 
- ~{~,} Pr[~'lrt, R<k] Pr[Rk+l]~', rt, R<k] 

Y~.{~,} Pr[~']r, R<k]/]S=,~, t 
h < 

- (1 - r2) ~{8'}  Pr[5']lr, R<_k]]S=]/IS=,~'l 

< (1 + rl)h 
- (1 - r2) ~ { , ,  good} Pri5'br, R<k]" 

But since we are assuming that  at most a fraction r l  of 5' values are not 
good, and each has probability at most him (assuming no garden path), 
we have ~{a ,  ~ood} Pr[(5'[r, R_<k] ~> 1 - rh2n/m, as required. 

Now, setting, say, r l  = 2 - ' ' ~  and r2 = 2 - v n ,  and choosing moreover c to be 
an arbitrarily small positive constant and u and v to be 1/2 - c ,  we observe that  
d (from the example following lemma 3) begins at 1 and increases by o(1) over 
polynomially many queries except with exponentially small probability. Hence 
Pr[~']r~, R] never becomes significantly larger than 2 -'~, and the circuit therefore 
has only an exponentially small chance of guessing ~ correctly. 

4 The Oracle Separation and "Black Box" Con- 
structions 

The oracle A presented above can be used to show that no construction of a 
collision-intractable hash function can exist which assumes only a generic one- 
way permutation, treating it as a "black box" (i.e., an oracle) for the purposes 
of the construction. Consider, for instance, an oracle F which, for a given size 
input of which the first half of the input bits are ones, outputs the result of A on 
the latter half of the input, and otherwise, computes the one-way permutat ion 
f described above (which remains a one-way permutation even in the presence 
of A). A simple permutation-preserving trick (mapping inputs of the form 
( l l . . . lx ,  x, ..., x), for suitably many repetitious of x, to (11...lx, A(x)), and vice 
versa, for every x) can be used to turn F into a permutation oracle H; H 
preserves F ' s  "one-wayness" (as long as most inputs still result in a simple 
computation of f )  as well as F ' s  feature of offering callers complete access 
to A (using polynomially larger-sized inputs). It  follows that  any proof of a 
construction of a collision-intractable hash function from a one-way permutat ion 
must implicitly assume that the permutation oracle is not YI (which can be used 
to find collisions in any hash function). Hence the proof cannot apply to an 
absolutely arbitrary one-way permutation. 
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Note that we are modeling the one-way permutation primitive here as a single 
oracle answering arbitrary-length queries. It is common for "black box" con- 
structions based on abstract primitives to represent the primitive as a family of 
oracles with fixed input and output lengths, rather than as a single oracle; this is 
normally reasonable because such constructions are typically relativizing, mean- 
ing that the constructions are no less provable in the presence of longer-length 
oracles in the same family. A black-box construction with a non-relativizing 
proof that did not permit the presence of longer-length oracles could, in prin- 
ciple, exist (although it is difficult even to imagine one); however, it would say 
nothing of practical significance, since any feasible instantiation of the one-way 
permutation would necessarily be implementable for any length which is poly- 
nomial in the original one. Hence the conclusions drawn here based on the 
model of the one-way permutation as a single oracle still apply to all practically 
relevant constructions. 

5 Conclusions and Open Problems 

The result presented here suggests that it is unlikely that a convincing con- 
struction of a collision-intractable hash function can be built on nothing more 
than the assumption of a one-way permutation. One way to address this dif- 
ficulty is to look for other primitives (such as the claw-free permutation pairs 
of [Dam87], or one-way permutations with some extra property) from which 
collision-intractable hash functions can be built, and find plausible assumptions 
under which such primitives would exist. Another approach is to examine the 
uses of collision-intractable hash functions, and find ways to use weaker prim- 
itives to accomplish the task. It may even turn out, in the long run, that 
collision-intractability is never in fact necessary. 
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