
UC Irvine
ICS Technical Reports

Title
Finding common ancestors and disjoint paths in DAGs

Permalink
https://escholarship.org/uc/item/3pn0t0dj

Author
Eppstein, David

Publication Date
1995-12-15
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3pn0t0dj
https://escholarship.org
http://www.cdlib.org/


Notice: This Material
may be protected
by Copyright Law.
(Title 17 U.S.C.)

Finding Common Ancestors

and Disjoint Paths in DAGs

David Eppstein*

Department of Information and Computer Science
University of California, Irvine, CA 92717

http: //www.ics.uci.edu/ ~eppstein/

Tech. Report 95-52

December 15, 1995

Abstract

We consider the problem of finding pairs of vertex-disjoint paths
in a DAG, either connecting two given nodes to a common ancestor,
or connecting two given pairs of terminals. It was known how to find
a single pair of paths, for either type of input, in polynomial time.
We show how to find the k pairs with shortest combined length, in
time 0{mn -|- k). We also show how to count all such pairs of paths
in 0(mn) arithmetic operations. These results can be extended to
finding or counting tuples of d disjoint paths, in time 0(mn'̂ ~^ + k)
or 0{mn''~^). We give further results on finding the subset of the
DAG involved in pairs of disjoint paths, and on finding disjoint paths
in linear space.

*Work supported in part by NSF grant CCR-9258355 and by matching funds from
Xerox Corp.



1 Introduction

We are interested in two problems in directed acyclic graphs (DAGs), both
involving pairs of vertex-disjoint paths. In the first problem, we are given two

nodes in the DAG, and we wish to find pairs of paths connecting those nodes
to common ancestors. In the second, we are given two pairs of terminals
(si,ti) and (52)^2)5 S'lid the task is to connect each pair with a path.

The first problem, finding common ancestors, arises in genealogy: if one
has a database of family relations, one may often wish to determine how

some two individuals in the database are related to each other. FormaUzing

this, one may draw a DAG in which nodes represent people, and an arc

connects a parent to each of his or her children. Then each different type

of relationship (such as that of being a half-brother, great-aunt, or third
cousin twice removed) can be represented as a pair of paths from a common
ancestor (or couple forming a pair of common ancestors) to the two related
individuals, with the specific type of relationship being a function of the

numbers of edges in each path, and of whether the paths begin at a couple
or at a single common ancestor. In most families, the DAG one forms in this

way has a tree-Uke structure, and relationships are easy to find. However

in more comphcated famiUes with large amounts of intermarriage, one can

be quickly overwhelmed with many different relationships. For instance, in

the British royal family. Queen EUzabeth and her husband Prince Philip are

related in many ways, the closest few being second cousins once removed

(through King Christian IX of Denmark and his wife Louise), third cousins
(through Queen Victoria of England and her husband Albert), and fourth
cousins (through Duke Ludwig Friedrich Alexander of Wiirttemberg and
his wife Henriette). A program I and my wife Diana wrote, Gene [3], is
capable of finding these relationships quickly using a backtracking search

with heuristic pruning, but Gene starts bogging down when asked to produce

larger numbers of relationships in the same database, hence my interest in

worst-case bounds for the problem.

The problem of finding pairs of disjoint paths between specified pairs of

terminals has been much more well studied. For the DAG version considered

here, the main result is due to Perl and Shiloach [7], who show how to
find such a pair of paths, if one exists, in time 0{rnn). Their method is
easily generalized to finding a shortest pair of paths (measured by total path
length), or to finding tuples of d disjoint paths between distinct specified
terminals; in the latter case the running time would become 0{mn^~^). If
d is not a constant, the problem of finding multiple disjoint paths becomes



NP-complete [8]. (Actually this paper considers edge-disjoint paths but the
edge-disjoint and vertex-disjoint problems are easily transformed into one

another.) Li et al [6] give a pseudo-polynomial algorithm for an optimization
version of the two-path problem in which the length of the longer path must
be minimized.

1.1 New Results

We show the following results, all of which assume a directed acyclic graph
with n vertices and m arcs, with real-valued arc lengths.

• In 0{mn) time we can construct a data structure such that, given any
two nodes u and v in the DAG, we can list (an implicit representation
of) the k shortest pairs of vertex-disjoint paths from a common ances
tor to u and v, in time 0{k). The same bound holds for listing all pairs
with length less than a given bound (where k is the number of such
paths). Alternately, the pairs of paths can be output in order by total
length, in time O(logz) to list the fth pair. We can find each pair of
paths explicitly from its implicit representation in time proportional

to the number of edges in the pair. Our representation also allows

computation of some simple functions (such cis the length or number
of edges of each path in the pair) in constant time.

• In 0{mn) arithmetic operations we can count, for each two nodes
in the graph, the number of pairs of disjoint paths from a common

ancestor to those two nodes. Each operation combines numbers of

(pairs of) paths, and hence involves arithmetic on numbers of 0(n)
bits. (It is easily shown that any DAG has at most 2" paths.)

• Given any d pairs (si,L) and (s2)^2) of terminals, we can find in time
-|- k) an implicit representation of the k shortest d-tuples of

vertex-disjoint paths connecting those terminals. As above, the tu
ples can be output in order in time O(logf) for the fth path, we can
compute explicit representations in linear time, and we can compute
simple functions on the paths in constant time. In 0{mn^~^) arith
metic operations on 0{dn) bit numbers we can compute the number
of tuples of vertex-disjoint paths from s,- to t,-.

As in the algorithm of Perl and Shiloach for finding a single pair of dis
joint paths between specified terminals [7], our method involves construct
ing a DAG D' with O(n^) or 0{n^) nodes and 0{mn) or 0{mn'̂ ~^) arcs, in



which each tuple of paths in the original DAG D is represented by a single

path between a certain pair of nodes in D'. However the method in that
paper allows a tuple of paths in D to be represented by more than one path

in D'] we modify the construction so that the representation is unique. We
then apply dynamic programming to count paths in D', or use our previous
algorithm [2] to find the k shortest paths.

The time bound of our algorithm is quite reasonable, but its quadratic
space requirement makes it unsuitable for practical implementation. To ease

this problem, we provide the following further results:

• Given any two nodes u and u in a DAG, we can in linear time find the

subset of the DAG consisting of only those nodes and arcs involved in

some pair of disjoint paths from a common ancestor to u and v.

• Given any two nodes u and u in a DAG with nonnegative edge lengths,
we can find the set of pairs of disjoint paths from a common ancestor to

u and V, having length less than some given bound, in time 0{kmn)
and space 0{m + n), where k represents the number of path pairs
satisfying the length bound. If we desire the k shortest pairs without
a length bound, we can solve the problem again in linear space, with

time either 0{k^mn) or 0{kmn\ogx) where in the second bound the
edge lengths are assumed to be integers, and x denotes the length of

the longest pair of paths found.

2 Representing Path Pairs by Paths

We first consider the version of the problem in which we wish to find common

ancestors of a pair {u,v) of nodes. Given a DAG D, we construct a larger
DAG Di as foUows. We first find some topological ordering of D, and let

f{x) represent the position of vertex x in this ordering.
We then construct one vertex of Di for each ordered pair of vertices

{x,y) (not necessarily distinct) in D. We also add one additional vertex
s in Di- We connect {x,y) to (x,z) in Di if {y,z) is an arc of D and
f{z) > max{f{x),f{y)). Symmetrically, we connect (x,y) to {z,y) if {x,z)
is an arc of D and f{z) > max(/(x),/(y)). We connect s to aU vertices in
D\ of the form (v,v).

Lemma 1. Let vertices u and v be given. Then the pairs of disjoint paths
in D from a common ancestor a ton and v are in one-for-one correspondence

with the paths in Vi from s through {a, a) to (u,v).



Proof: If we have such a path in D\ we can find two paths from a to u

and Vsimply by choosing the left and right sides respectively of each ordered

pair in the path. These two paths must be vertex disjoint, since after the

first time some vertex x appears on one or the other side of an ordered pair,

every succeeding vertex y has f{y) > f{x).
Conversely, suppose we have a pair of disjoint paths from a to u and v.

We form a sequence of ordered pairs, starting from (a, a), by sorting the ver
tices of both paths according to their topological ordering and successively

replacing one or the other side of each ordered pair by the next vertex in

that order. This produces a path in D\ according to the lemma.

We thus have two maps, one from paths in Di to pairs of paths in D,

and one in the other direction. To show that these objects are in one-to-one

correspondence, it suffices to show that composing these two maps in either
order gives the identity mapping.

Starting from a path in , each arc replaces one vertex of each ordered

pair; the replaced vertices must be already in sorted order according to
the topological ordering, and the two maps preserve the information about

which vertex goes on which side of each ordered pair, so sorting the vertices

and placing them back into ordered pairs recovers the original path.

Starting from a pair of paths, each individual path must again be sorted

according to the topological ordering, so sorting the vertices to make a single
path in simply corresponds to shuffling the two original paths. The map

from a path in Di back to two paths in D simply undoes that shuffling, so
again the composition is the identity. •

Thus we can represent paths from a common ancestor in D by single
paths in Di. We now describe a similar construction for the problem of

finding a collection of disjoint paths between terminals (si,ti). We assume
for simplicity that all terminals are distinct; our construction is easily mod
ified to handle non-distinct terminals as we describe later.

Given a collection of d tuples in D, augment D by adding two
vertices s and t, and arcs (s, s,) and {U, t) for each terminal t. Form a graph
D2 as foUows. Form a topological ordering of D, and let f{v) represent
the position of v in this ordering. Let the vertices of D2 consist of ordered

d-tuples of vertices of D.

Connect a tuple v = {vi,V2,.. .Vd) with another tuple w = (wi,W2,.. .Wd)
exactly when the following conditions hold: (1) some arc connects some pair

(2) if Vi = s then Wi = Si and if tn,- = t then Vi = ti, (3) for each
j 7^ i, Vj = Wj, and (4) either Wi = t or f{wi) > max f{vj). If terminals are



non-distinct, the construction must be modified by weakening condition (4)
to allow f{wi) = f{vj) when i > j and Wi and vj are terminals of paths i
and j.

Lemma 2. Given D and the construction above produces a DAG

D2 such that d-tuples of disjoint paths connecting the terminals in D cor
respond one-for-one with paths from (s, s,.. .s) to {t,t,.. .t) in D2.

The proof is essentially the same as that for Lemma 1: we map paths

in D2 to sets of paths in D by keeping only one position in each d-tuple in

-D2; we map sets of paths in D to paths in D2 by sorting the vertices and
using the sorted order to change d-tuples of vertices in D2 one position at a
time; the composition of these maps in either order is the identity mapping
for the same reasons as before.

Note that the additional vertices s and t by which we augmented D are
necessary, as there does not always exist a path in £>2 from (si, 52,.. .5,) to
{ti,t2,.. .ti). For instance, if /(£•) < f{sj) for some i and j, such a path
can never exist because we would be unable to change the ith position of
the tuple to tj without violating the condition that f{wi) > f(vj).

3 Comparison with Perl and Shiloach

The constructions of the previous section are similar in some respects to
that appearing in a paper by Perl and Shiloach [7], which uses similar ideas
to solve in 0{mn) time the problem of finding a single pair of vertex disjoint
paths connecting a specified pair of terminals. However there are some
important differences which we now discuss.

The construction of Perl and Shiloach again forms tuples of vertices from

D, connected by arcs corresponding to changing a single vertex in a tuple.
Instead of a topological ordering, Perl and Shiloach use level numbers

measuring the length of the longest path from each vertex. (Note that
the ordering of these is opposite that of our topological ordering positions.)
Instead of introducing extra vertices s and t, Perl and Shiloach remove edges
out of each terminal ti, so that the level numbers of the ti are all zero and

the situation discussed earlier for which we added s and t does not arise.

And instead of our ordering condition that /(tUj) > max(f{vj)), Perl and
Shiloach use the condition that £(vi) > max(£(wj)).

The first change, of using level numbers, causes Perl and Shiloach to use
a > test in the ordering condition, where we use a > test. The fact that



our test reverses the roles of v and w is insignificant (equivalently one could
reverse the edges in the input DAG), but the change from strict inequality to
possible equality means that their construction forms a one-to-many rather

than one-to-one representation of the tuples of disjoint paths. Thus it is

unsatisfactory for counting or listing more than one path. The remaining
change, of removing edges rather than our solution of adding extra vertices

s and t, makes it difficult for Perl and Shiloach's algorithm to be generalized
to allow non-distinct terminals. In particular, it cannot allow some s,- = tj,
and it cannot allow the situation which arises in our genealogical application,

in which in one relation one person is an ancestor of another, but in which

the two people have a third common ancestor in other relations.

4 Finding and Counting Disjoint Paths

We use the following, which is a specialization to DAGs of the main result

of our previous paper [2], and is proved in that paper.

Lemma 3. Let D be a DAG with a specified vertex s. Then in time

0(m -|- n) we can construct a data structure from D, such that an implicit
representation of the k shortest paths from s to any vertex t can be found

in time 0(k). From this implicit representation we can construct each path
in time proportional to its number of edges. We can compute along with
each implicitly represented path, in constant time per path, the value of any

function represented by a monoid combining values at the edges of D (for
example the length, number of edges, or heaviest edge in a path). We can
list all paths with length less than a given bound in the same time bound

above, and we can list the paths in order taking time O(logi) to list the ith

path.

By applying this to the graphs Di and D2 constructed earlier, we get
the following results.

Theorem 1. Given a DAG D, in,0{mn) time we can construct a data
structure such that, for any two nodes u and v in D, we can list an implicit

representation of the k shortest pairs of vertex-disjoint paths from a common

ancestor to u and v, in time 0{k). The same bound holds for listing all pairs
with length less than a given bound (where k is the number of such paths).
Alternately, the pairs of paths can be output in order by total length, in

time O(logi) to list the ith pair. We can find each pair of paths explicitly



from its implicit representation in time proportional to the number of edges

in the pair. Our representation also allows computation of some simple

functions (such as the length or number of edges of each path in the pair)
in in constant time per pair of paths.

Theorem 2. Given any d pairs {si,ti) and (s2)^2) of terminals in a DAG,
we can find in time +k) an implicit representation of the k shortest
d-tuples of vertex-disjoint paths connecting those terminals. As above, the
tuples can be output in order in time O(logi) for the ith path, we can
compute explicit representations in linear time, and we can compute simple

functions on the paths in constant time.

For our other results on these problems, we count paths using a standard

dynamic programming technique in acyclic graphs.

Lemma 4. Let D be a DAG with a specified vertex s. Then in 0(m + n)
arithmetic operations we can count all paths from s to each other vertex in

D. Each operation involves integers with at most logj x bits, where x is the
maximum number of paths from s to any other vertex.

Proof: We process the vertices in order by a topological numbering. For
each vertex the number of paths from s is simply the sum of the correspond

ing numbers for its immediate predecessors. •

Again, we apply this lemma to the DAGs Di and D2 constructed earlier.

Note that (assuming D has no multiple edges or self-loops) the number of
paths in our original DAG D is at most 2", since any path can be represented
uniquely by a subsequence of some fixed topological ordering of D. Hence
the number of paths in D\ or D2 is at most 2^"' or 2'̂ " respectively.

Theorem 3. Given a DAG, in 0{mn) arithmetic operations we can count,
for each two nodes in the graph, the number of pairs of disjoint paths from
a common ancestor to those two nodes. Each operation involves arithmetic

on numbers of 0(n) bits.

Theorem 4, Given any d pairs (s,-, ti) and {s2, ^2) of terminals in a DAG D,
In arithmetic operations on 0(dn) bit numbers we can compute
the number of tuples of vertex-disjoint paths from Si to ti.



5 Alternate Methods

As discussed in the introduction, in practice the search for disjoint path

pairs may be limited more by memory availability than time. The algo

rithms described earlier use quadratic space, which even after the pruning
described in the previous section may be too much. We describe here meth

ods requiring only linear space. However, to achieve this we must spend

more computation time.

Lemma 5. Given a DAG D with nonnegative edge lengths and a pair u,

Vof nodes, we can in time 0(m + n) find the shortest pair of vertex-disjoint
paths from a common ancestor to u and v.

Proof: Construct a DAG D' consisting of a copy of D itself, a second

copy of D with all arcs reversed, and an arc from each node in the second

copy to the corresponding node in tjie first copy. Then pairs of paths from

an ancestor to two nodes u and u in D correspond one-for-one with paths
from the second copy of u to the first copy of v in D'. This method does not

constrain paths to be vertex-disjoint, but it is easily seen that the shortest

pair of paths in D (corresponding to a shortest path in D') must be disjoint,
since if any pair of paths share a vertex one can find a shorter pair starting

from that shared vertex. •

One possible practical heuristic derived from this idea would be simply

to search for short paths in this graph D', and filter out the ones corre
sponding to non-disjoint path pairs in D. In fact, if the method used to find

short paths in D' is that of Byers and Waterman [1], this would resemble a
more sophisticated version of the backtracking search already implemented

in Gene. However the worst case time of such a heuristic would stiU be ex

ponential; we are interested here in algorithms with polynomial worst case

behavior and linear space.

We quickly describe such an algorithm, based on Lawler's [5] method
of partitioning a solution space. First suppose that we know a bound I on

the length of the path pairs we wish to find, and simply intend to return

aU pairs shorter than I. If we are given a bound k on the number of paths

to find, the actual value of £ can be found by binary search, multiplying

the time by a factor of 0{log£), or by increasing £ at each step to the next
larger value found in the previous search, instead multiplying the time by

0{k). (The second approach is essentially the same as the standard method
of depth first iterative deepening search [4].)



, ^ IpW.? I--rrj-1,1 J

We then use the lemma above to find the best pair in D. If this is already

worse than £, we are done. And if u = u, there can only be the trivial pair
of paths (no others are disjoint). Otherwise, we let {u,w) be the first edge
in one of the paths, and caU the algorithm recursively twice: once to find
aU path pairs connecting w and v within distance at most £ —d{u,w), in
graph D —u, and secondly to find all path pairs connecting u and v within
distance £ in graph D —{u,w).

Theorem 5. The method above generates all disjoint pairs of paths to u
and V, of length at most £, in time O(mnk) and space 0(m + n).

Proof; The space bound is clear. The time bound follows since each

output path pair causes 0(n) recursive calls, each taking linear time. •

6 Pruning the Input

As one further step towards practicality, we show how to determine those
vertices that are actually part of some pair of disjoint paths. The remaining
vertices can then be removed from the graph, speeding up the construction
of the k shortest disjoint path pairs in practice if not necessarily in theory.

Given a DAG D with nonnegative edge lengths and a pair u, v of terminal
nodes, we first determine for each other vertex w which of the two terminals

can be reached by paths from w. Obviously, we can eliminate aU vertices

not able to reach one or the other terminal. From now on we assume that

aU nodes can reach at least one terminal.

Next, we construct a bottom-up topological numbering N{w) of the ver
tices of D, so that the children of any node have smaller numbers than the

node itself. By abuse of notation we identify N{w) with w itself. Define
another number R{w) recursively as follows. First, if w can only reach u,
let R{w) = u, or if w can only reach v, let R(w) = v. Second, if aU children
of w have the same value of R, let R{w) be that same value. Finally, if the
children of w have more than one value of i?, but w itself can reach both u

and V, let R{w) = w.

Lemma 6. R{w) is the topological number of the lowest node through
which all paths from w to u and v go.

Proof: First, suppose there are two such nodes. Then there is a path
between them (any path from u; to u or u) so the lowest of the two is weU



defined. If w can only reach one terminal, say u, R{w) = u and the result

is clear. If all children of w have the same value of R, the result clearly
follows by induction: aU paths from u; to a terminal must go through a

child, and hence through R] but for any node lower than R we can get from

w to a child of w and from there to a terminal by a path avoiding that

node. Finally, suppose two children x and y have R{x) ^ R{y)- Then we
wish to show that for any node z ^ there is a path from m to a terminal
avoiding z. Suppose not; then all paths from both x and y go through z.

But then aU such paths would also go through R(z), and there would be
paths from x and y through z and R(z) but avoiding any lower node, so
R(x) —R(y) = R{z) contradicting the assumption that R{x) ^ R{y)- •

Lemma 7. There is a pair of disjoint paths from w to u and v if and only

if R(w) = w and w can reach both terminals.

Proof: Any pair of paths to both terminals must both contain R(w), so
if R(w) ^ w the paths could not be disjoint. In the other direction, choose
some pair of paths pi and p2 from w that coincide for some number k of

edges, and are disjoint below that point, with k chosen as smaU as possible.

(Certainly some such pair exists, since from any pair of paths from w to

each terminal we can simply choose the lowest point in common, and use a

common path above that point.) If A: > 0, let x be the point where pi and

P2 diverge. Then by the previous lemma, there is a path ps from w to some
terminal (say u) that avoids x. Since it avoids x, it must have a minimal
subpath connecting some vertex on the common portion of pi and p2 to

another vertex on one of the two paths below x (say on pi). By replacing a
portion of p\ with this subpath, we find a pair of paths with a smaUer value

of k] but k was chosen as smaU as possible, therefore k = 0. •

Lemma 8. A node w is part of some pair of disjoint paths to u and v if

and only if it can reach u or v and some ancestor w' of w has R(-w') —w'.

Proof: These conditions are clearly necessary. The proof of the other

direction is similar to the previous lemma. Suppose R{w) ^ w (else the
previous lemma applies) and choose some pair of paths pi and p2 from
some ancestor w' with R{w') = w' that pass through w, coincide for some
number k of edges, and are disjoint below that point, with k chosen as

smaU as possible. If w is on the disjoint portion of the paths, we are done.

Otherwise, let x be the point where pi and p2 diverge; there is a path pa



from w' to some terminal that avoids x. By splicing a minimal subpath of
P3 into one path we get a pair of paths with a smaller value of fc; but the

other path is unchanged and still contains w. Thus again we can always
reduce k, proving that it must be zero. •

Theorem 6. Jn 0(m + n) time we can find the set of nodes in D that are
part of some pair of disjoint paths to u and v.

Proof: The topological sorting of D and the computation of Ji can clearly
be done in linear time, as can the determination of the set of descendants

of nodes with R(w) = w. The desired set of nodes can then be identified
according to the lemmas above. •

References

1] T. H. Byers and M. S. Waterman. Determining aU optimal and near-
optimal solutions when solving shortest path problems by dynamic pro
gramming. Oper. Res. 32, 1984, pp. 1381-1384.

2] D. Eppstein. Finding the k shortest paths. 35th IEEE Symp. Founda
tions of Computer Science, 1994, pp. 154-165.

3] D. Eppstein. Gene 4.1 User Guide. HTML document, 1995, available
online at http://www.ics.uci.edu/~eppstein/gene/UserGuide.html.

4] R. E. Korf. Depth-first iterative-deepening: an optimal admissible tree
search. Artificial Intelligence 27, 1985, pp. 97-109.

5] E. L. Lawler. A procedure for computing the K best solutions to discrete
optimization problems and its application to the shortest path problem.

Management Science 18, 1972, pp. 401-405.

6] C.-L. Li, S. T. McCormick, and D. Simchi-Levi. The complexity of
finding two disjoint paths with min-max objective function. Discrete
Applied Math. 26, 1990, pp. 105-115.

7] Y. Perl and Y. Shiloach. Finding two disjoint paths between two pairs
of vertices in a graph. J. ACM 25, 1978, pp. 1-9.

8] J. Vygen. NF-completeness of some edge-disjoint paths problems. Dis
crete Applied Math. 61, 1995, pp. 83-90.


