
Parallel Computing 18 (1992) 807 810

North-Holland

PARCO 682

Short communication

807

Finding congruent regions in parallel *

Section 2, we discuss the notion of forward
algorithm in Section 3. A summary appears in

Laurence Boxer

Department of Computer and Information Sciences, Niagara Uniuersity, lW 14109, USA

Received 15 October 1990

Revised 18 September 1991, 11 lamary 1992

Abstract

Boxer, L., Finding congruent regions in parallel, Parallel Computing 18 (1992) 807-810.

Given a straight-line embedded plane graph G of rz edges and a polygon P of z edges, m < n, vte describe an

algorithm for finding all polygons in G that are congruent to P. Our algorithm requires @(nIog n) time for a

CREW PRAM with z processors. This improves upon the O(n2) time (with in processors) required by the

systolic array algorithm of [7]. We also show the problem is in NC by showing how to implement our algorithm

in @(log n) time using tnl? processors.

Keywords. Systolic array algorithm; finding congruent regions; CREW PRAM; timing analysis.

1. Introduction

In [7], a systolic array algorithm is described to solve the following problem: Given a

polygon P in the Euclidean plane and a straight-line embedded plane graph G, find all

subpolygons of G that are congruent to P. This is a problem that arises in pattern recognition

[4] and in computer vision [1]. The algorithm uses O(n2) time and O(ru) processors, where n

and m are the numbers of edges of G and P, respectively. In this paper, we modify the result

of [7] by solving the same problem on a CREW PRAM in @(n log n) time, using ru

processors. We also show the problem is in NC, i.e. can be solved in polylogarithmic time with
a polynomial number of processors, by showing our algorithm can be implemented on a

CREW PRAM of mn processors in @(log n) time. A preliminary version of this paper

appears in [2].

The format of the paper is as follows. In
connection as presented in [7]. We present our

Section 4.

* Research partially supported by a grant from the Niagara University Research Council.

Correspondence to. L. Boxer, Department of Computer and Information Sciences, Niagara University, NY 14109,

USA.

01.67-8191 /92/$05.00 O 1992 - Elsevier Science Publishers B.V. All rights reserved

L. Boxer

2. Forward connection

We use the terminology of [7]. Let -8, and .8, be directed line segments with a common

vertex u.Let A(Er, Er)be the unique angle formed by a counterclockwise sweep from ,Er to

Er.supposePisapolygonwhoseedgesare,incircularorder,cs, cy...,c--r.SupposeGis
a straight-line embedded plane graphwhose edges are €s1 €1;...,€n t. We say e,is connected

forwardty to e, withrespectto c. and ck+rmodm if andonly if le,l: lc* ,le;l: lck+r^od-1,
and A(e,, e,):A(cr, ck+r-od-).Acycle in G formed by the ordered set of edges {eiu,...,e,o}
is a polygon congruent to P if and only if p:m-L and there is a k such that for each

,t:0, 1,...)m-1, e, is connected forwardly lo ei1*t^na^ with respect to c**r-oo- and

ck+i+lmodm'

We will use the term processing element (pf') as a synon).rn for processor. We have the

following.

Lemma 2.ll1l. Let e, and e, be directed edges of G and let k be fLred. Then a single PE can

determine in @(l) time whether e, is connected forwardly to e, with respect to cr and ck+tmodm.

3. The algorithm

We assume input consists of the n edges {€s, €p...,€n ,} of the straight-line embedded

plane graph G and the rz edges {cs, cb...,c^-t} of the polygon P. Each edge is assumed to

be described by the coordinates of its endpoints. These edges are not assumed to be directed;

edge orientations will be introduced into the algorithm in order to be able to recognize

congruences regardless of whether a reflection of P is required to match equal angles for

forward connections (see Fig. /). The edges of P are assumed to be cyclically ordered. We

may assume without loss of generality Ihat m (zl, since there is no congruence to determine

ifm>n.
The O(n2) time required for the systolic array algorithm of [7] is dominated by steps in

which, in the worst case, every edge of G examines, serially, every other edge of G in a search

for forward connections. Our algorithm uses sorting to eliminate some comparisons, as well as

the CREW PRAM's greater flexibility for parallelism as compared with the systolic array, in

order to obtain faster running times. We describe the algorithm in the following steps:

Fig. 1. Reflected and non-reflected copies of P in G.

Finding congruent regions in parallel

t
*l a,. and b, be the endpoints of e,. Create two records
following components:
c Index, both with value i;

809

for each of edge e, with the

o Length, both with value equal to le, l.
e Endl, with value a, in.one of the rJcords and b, in the other;
o Slope, the slope of e, (* if e, is vertical).

r

This step can be accomplished'by m pEs in @(n/m) time, or by n pEs in @(1) time.2' Sort the 2n records created in the previous step with respect to the keys Length,
't-coordinate of End1, y-coordinate of End1, and Slope in decreasing order of importance.
This step can be accomplished in @(n log n) serial rime, or by n pn, i" Otf"ulii_" t:1.Let Edge[O:2n - 1] be the sorted list of records.

3. Inparallel, foreach r:0,. ..,ffi- 1, pE, conducts abinarysearchthroughthelist Edge todetermin.e first, and last,,tespectively the first and last indices 7 such that Edseljl.Length: length(c).If no such index 7 exists, let first,:0, last,: - 1. This step requires Oqog ru)time.

4. In parallel, each PE,, i:0,...,ffi - 1, determines counti:last,_Jirst,+ 1, which is fwicethe number of edges in G whose length equals that of c,. This'step requires @(1) time.5' compute M:mtn{cou.ntt, countr,...,rorrt^-1} and noi" ur, index rc iuch that
'cortltn:

M. rt M:0, halt, as there cannot be any congruences. Note we must have M <2n.This
step requires @(log m) time for ln pEs.

6. Let FC[0:2n - 1, 0: m - l] be an array defined by

(i if e, is connected forwardly to e,
FCli, kl:

\ with respect to c* and ck+r^od*,
t undefined orherwise

It follows from Lemma 2.1 that 2mn serial binary searches of the array Edge can
determine the entries of the array FC in @(n log n) time using m p*sor in @(log n) time
using lzn PEs.

7' In this step, we build descriptions of congruences. At the end of this step, we have a list
Cong of O(M) records with the following fields:
o A circularly ordered list of edges of G whose union is congruent to p;
o Min -Index, the unique minimal Index among the edges oflhe congruence;
o Adiacent indices, a sorted pair of indices of th" edles adjacent lo €Mi,' rnd", in the

congruence.

The members of Cong are constructed as folows. Each Ecrgefil, i:first*, first*_fr, " ',last*, can use the array FC to determine if eragepil.tna", is an edge of a subpolygon sof G such that s and p are congruenr, wirh ;":;'"i,1,,',;::'": corresponding to c". Using
standard pointer-doubling techniques, this rtep cun'6J'ii"". uv m pEs in o(M iog m):O(n log m) time and by Mm : O(mn) pEs in O0o e m) tjme.

8' If P has distinct edges of equal length, it is possibl"lhut n
"

have duplicate markings of the
same subpolygon of G. The final steps of the algorithm allow us to eliminate suchduplication' Sort the o(M) Cong records with respect to their Min _Index and
Adiacent

-indices fields in decreasing order of importance. This step can be performed inserial O(n log n) time or by M: O(n) pEs in O(iog M): O(log nj time [:].9' Use a prefi-r computation to determine which of the ordered Cong records has the sameMin -Index and Adiacent
-indices fields as one of its predecessors in the ordered list. Markthe corresponding congruences as duplicates. This step can be performed in serial o(n)time or by M: O(n) pEs in O(log n) time [6].

It follows that the worst-case running times are @(n log n) when m pEs are used, and
@(log n) time when mn pBs are used.

810 L. Boxer

Note that when n? PEs are used, the sort steps can be done faster [5] than the serial time

given above, as can the prefix step, but the running time would still be dominated by the

@(n log n) step in which the entries of FC are computed.

4. Summary

We have given an algorithm for finding all subpolygons of a straight-line embedded plane

graph G that are congruent to a given planar polygon P. The algorithm runs in @(n log n)

time on a CREW PRAM of m processors, which improves upon the running time of O(n2)

for the systolic array algorithm of [7]. The algorithm can also be implemented on a CREW

PRAM of mn processors in @(log n) time.

The more general problem of finding all subpolygons in G that are similar to P may be

solved by minor modification of the algorithm given above. Instead of requiring matched

edges to have equal length, we require that the analog of 'forward connection' require

matched pairs of edges to have lengths of equal proportions. Thus, the problem of finding all

subpolygons in G that are similar to P may be solved within the same resources as discussed

above. This observation is made in [7].

The optimality of the algorithm we have presented is an open question. The resource

bound for our algorithm is @(mn log n). On the other hand, it is possible that G consists of

@(n/m) components, each of which is congruent to P. In this case, any solution to our

problem would be required to produce a list of m ordered edges for each of the @(n/m)

components of G. Thus, any algorithm that solves our problem must have a worst-case

resource bound of Afu bg m).

Acknowledgement

Several suggestions from the anonymous referees were used to improve the presentation of

this paper.

References

tll D.H. Ballard and C.M. Brown, Computer Vision (Prenlice-Hall, Englewood Cliffs, NJ, 1982)'

[2] L. Boxer, An improved parallel algorithm for finding congruent polygons, Proc. 7th Israeli Conf. on Artificial

lnrelligence and Computer Zrsrbn (lqq0) 325-328.

[3] R. Cole, Parallel merge sort, SUM J. Comput. 17 (4) (1988) 7'10-785.

f4l H. Dirilten and T.G. Newman, Pattern matching under affine transformalion, IEEE Trans. Comput. 26 (3) (19'17)

314-3r'1.

[5] X. Guan and M.A. Langston, Time-space optimal parallel merging and sorting, IEEE Trans. Comput. 40 (1991)

596-602.

t6l C.P. Kruskal, L. Rudolf and M. Snir, The power of parallel prefu, Proc. 1985 InternaL Conf. on Parallel

Processing (1985) 180-185.

I7l Z.C. Shih, R.C.T. Lee and S.N. Yang, A parallel algorithm for finding congruent regions, Parallel Comput. 73

(1990) 135-142.

I

I

l

I

