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Abstract

We discuss the identification of features that are associated with an outcome in RNA-Sequencing 

(RNA-Seq) and other sequencing-based comparative genomic experiments. RNA-Seq data takes 

the form of counts, so models based on the normal distribution are generally unsuitable. The 

problem is especially challenging because different sequencing experiments may generate quite 

different total numbers of reads, or ‘sequencing depths’. Existing methods for this problem are 

based on Poisson or negative binomial models: they are useful but can be heavily influenced by 

‘outliers’ in the data. We introduce a simple, nonparametric method with resampling to account 

for the different sequencing depths. The new method is more robust than parametric methods. It 

can be applied to data with quantitative, survival, two-class or multiple-class outcomes. We 

compare our proposed method to Poisson and negative binomial-based methods in simulated and 

real data sets, and find that our method discovers more consistent patterns than competing 

methods.
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1 Introduction

Biological conditions and disease statuses are known to be largely characterized by 

differences in gene expression levels (see for instance, Refs1–4). In the past decade, 

microarrays have been the primary choice for genome-wide gene expression analysis. Each 

array measures the expression levels of all genes from one sample, and using multiple 

arrays, expression levels in different samples are captured. Genes that are differentially 

expressed among samples can then be identified by statistical algorithms (see for example, 

Refs5–8).
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In the recent years, RNA-Sequencing (RNA-Seq) has become a very competitive alternative 

to the microarrays (see for instance, Refs9–13). Figure 1 illustrates the process of using 

RNA-Seq for comparative experiments. In each experiment, mitochondrial ribonucleic acids 

(mRNAs) are shattered and reverse transcribed into complementary deoxyribonucleic acid 

(cDNA). These short pieces of cDNA are amplified by polymerase chain reaction and 

sequenced by a sequencing machine, giving a list of short sequences called reads. These 

reads are then mapped to the reference genome using an appropriate algorithm, telling us 

which region each read comes from. Finally, for a set of regions of interest on the genome, 

such as genes, exons or junctions, we count the number of reads mapped unambiguously to 

each of them, and use this count as a measure of expression of the region. This measure is a 

non-negative integer, in contrast to the continuous value obtained from a microarray. In 

comparative experiments, RNA-Seq measurements are done for multiple samples. While the 

expressions of each sample are summarized by a vector of counts, the expressions of all 

experiments are finally put together and form a matrix, as shown in Figure 1.

Suppose that we have data from n RNA-Seq experiments, and each of them produces counts 

for p regions of interest. Statistically, we treat each experiment as a ‘sample’, and each 

region of interest as a ‘feature’. The data we have are an n × p matrix N, whose element Nij 

is the number of reads mapped to Feature j in Experiment i, 1 ≤ i ≤ n, 1 ≤ j ≤ p. It is 

important to note that the expectation of Nij depends not only on the expression of Feature j, 

but also on the length of the read list (that is, the total number of reads) generated by 

Experiment i (Figure 1). For example, if Experiments 1 and 2 use the identical biological 

sample (so, every feature is equally expressed in the two experiments), but Experiment 1 has 

one million reads in total and Experiment 2 has two million reads in total, then it is likely 

that N2j≃2N1j, for any j. Thus, counts from different experiments are not directly 

comparable before being ‘scaled’ or ‘normalized’ properly. As a (relative) measure of the 

length of the list of reads, sequencing depth is introduced. Suppose Feature j is non-

differentially expressed in Experiment 1, …, n. Using Experiment 1 as the base level whose 

sequencing depth is set to 1, the sequencing depth of Experiment i is the ratio of expected 

values E(Nij)/E(N1j), 1 ≤ i ≤ n.

In comparative experiments, the goal is to correlate gene expression with an ‘outcome’ for 

that sample. This outcome can be (1) two-class, such as diseased versus healthy; (2) 

multiple-class, like subtype A versus subtype B versus subtype C of a disease; (3) 

quantitative, like a continuous value measuring the virus concentration in a patient’s blood; 

or (4) survival, like the survival time of a patient. The task of comparative experiments is to 

identify features that are overexpressed/underexpressed in samples in one/several classes, 

samples with larger quantitative outcomes, or samples that survive longer. If such 

overexpression or underexpression is found in a feature, we say this feature is differentially 

expressed.

Many methods have been developed to identify differentially expressed features from RNA-

Seq data. These methods are parametric: they assume that (maybe after some simple 

transformation) each Nij is drawn from a particular distribution, such as Gaussian,14,15 

Poisson,16–20 negative binomial,19,21–24 etc.25,26 It is reported that data from technical 

replicates can often be well characterized by Poisson distribution,16 while data from 
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biological replicates have much larger variance and negative binomial models seem to be 

more appropriate.27 More precisely, in each class, Nij ~ Poisson(di · νj) in technical 

replicates, where di denotes the sequencing depth of Experiment i, and νj denotes the 

expression of Feature j. In biological replicates, as samples in the same class may still have 

different expressions, it is better to assume Nij ~ Poisson(di · νij). However, this model 

contains too many parameters, so people use Nij ~ negative binomial(di · νj) instead. Most 

parametric methods20,23,24 estimate the sequencing depth di first, and then include it as a 

known term in their model. Then, parametric test statistics are employed to test differential 

expression. As many of these methods utilize the most powerful test statistic, they are very 

efficient when the distributional assumption holds, even when the sample size is small. 

However, there is no guarantee that the real data can be well characterized by the assumed 

distribution. If this distribution is a poor approximation, the results from the parametric 

method will not be reliable.

Here, we examine the sequencing data from Ref.,28 which we denote as the ‘Witten data’. 

This data set contains 58 samples, evenly assigned to two classes, and 714 features 

(microRNAs, miRNAs). One hundred and eighty-six of the features are discarded from the 

analysis as they have no more than 0.5 reads averaged across samples. We apply the popular 

program edgeR,27 which assumes negative binomial distribution, to these data. When we 

plot the counts of the 20 most significant features reported by edgeR, we see that many of 

them are unlikely to follow a negative binomial distributions: one count dominates the class 

declared as overexpressed (we call it leading class), while all the other counts are very small 

or even zero. Figure 2 shows three of these genes. They are the 7th, 10th and 11th most 

significant features detected by edgeR, and the largest count contains 99%, 88% and 84% of 

all reads in the leading class. Here, and in all similar plots in this article, counts from 

different experiments are scaled by the sequencing depths. Among the 528 features, 192 of 

them have more than 50% of reads concentrated on only one count. Provided each class 

contains 29 samples, 50% is exceedingly large. It is well known that the negative binomial 

distribution often has its largest mass not far from the mean, so, it is very unlikely that the 

counts follow a negative binomial distribution. If we still treat the distribution of counts as 

negative binomial, these large counts should be ‘outliers’. There are possible reasons for 

outliers. A gene may be very highly expressed in one individual but not others. In this case, 

this high expression is a characteristic of this individual, and not related to the outcome. 

Mapping errors may also produce outliers. In Section 3, we will use simulation to show that 

parametric methods are very sensitive to the presence of outliers, where they generally fail 

to give a reasonable estimate of the false discovery rate (FDR).

Nonparametric methods are a way to finesse the difficulty of modelling counts. Without 

relying on underlying distributional assumption, they can give reliable results on a vast 

variety of data sets. In this article, we describe a simple nonparametric method to measure 

the significance of features from RNA-Seq data. We also implement the usual permutation 

plug-in method to estimate the FDR. Under various simulation schemes, we show that this 

statistic is competitive with the best parametric-based statistic under moderate sample size 

when the assumed parametric model holds. When the assumed model does not hold, our 

statistic is able to select significant features much more efficiently than parametric methods. 
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Also, in contrast to parametric methods, our method gives a reliable estimate of the FDR. 

On several real data sets, our method is able to find features that are expressed consistently 

higher in one class, and these are more likely to be biologically meaningful.

Moreover, the use of current parametric methods is limited in the outcome types that they 

can handle. Except for PoissonSeq,20 to our knowledge, existing methods can only be used 

for data with two-class outcomes. PoissonSeq can also be used for data with quantitative 

outcomes and multiple-class outcomes, but not survival outcomes. Because of the 

complexity of parametric methods, it is often difficult to extend them to other types of 

outcomes. In contrast, our nonparametric method can be used for all the types of outcomes 

mentioned above. Further, the resampling strategy that we developed (Section 2.2) 

eliminates the difference between sequencing depths of experiments, making it easy to 

generalize our method to other possible types of outcomes.

The rest of this article is organized as follows. In Section 2, we propose a nonparametric 

statistic for data with a two-class outcome and the associated resampling strategy, as well as 

a permutation plug-in method to estimate the false discovery rate FDR. In Section 3, we 

study the performance of our nonparametric method on simulated data sets, and compare it 

with three available methods, edgeR, PoissonSeq and DESeq. In Section 4, we apply our 

method as well as edgeR, PoissonSeq and DESeq on three real RNA-Seq data sets, and 

compare the list of features that are called as differentially expressed by different methods. 

In Section 5, we extend our nonparametric statistic to other types of outcomes, and show 

their performance on simulated data sets. Section 6 contains the discussion.

2 A nonparametric method for two-class data

2.1 Wilcoxon statistic

For Feature j, suppose that we have counts N1j, …, Nnj from either Class 1 or Class 2. 

Suppose Class k contains nk samples, k = 1, 2 and n1 + n2 = n. Let Ck = {i : Sample i is from 

Class k}, k = 1, 2. If the sequencing depths of all n experiments are the same, then Ni1j > Ni2j 

indicates that the expression of Feature j is higher in Experiment i1 than i2. Let Rij(N) be the 

rank of Nij in N1j, …, Nnj. Then, the two-sample Wilcoxon statistic (also called the “Mann–

Whitney statistic”) is

(2.1)

Here, we assume that there are no ties between N1j, …, Nnj. The constant term is set as 

−n1(n + 1)/2 instead of −n1(n1 + 1)/2 (the usual definition) to make ETj = 0 when Feature j 

is not differentially expressed. A larger absolute value of Tj is a stronger evidence of 

differential expression of Feature j, and positive/negative Tj indicates that Feature j is 

overexpressed/underexpressed in Class 1. The Wilcoxon statistic (2.1) only depends on the 

ranks, and it is nonparametric.
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2.2 Resampling strategy

Statistic (2.1) makes sense only if the sequencing depths of samples are the same. 

Otherwise, N1j, …, Nnj are not comparable. Unfortunately, the sequencing depths of 

different samples are often very different in real data sets.

One idea to solve this problem might be to simply scale each count Nij by the sequencing 

depth for Sample i. However, we have found that this works poorly, as it does not produce 

counts with the appropriate amount of variation. So, we use a resampling strategy instead.

Suppose the sequencing depths of the experiments are d1, …, dn. Here, we assume they are 

known. Denote dmin = mini = 1,…,n di and imin = arg mini = 1,…,n di. That is, the imin th 

experiment has the smallest sequencing depth dmin. Recall that Nij is the number of reads 

mapped to Feature j in Experiment i (Figure 1). We keep the whole list of reads generated 

by Experiment imin unchanged, and shorten the lists generated by other experiments, so that 

they also have sequencing depth dmin. To do this, we randomly select each read with 

probability dmin/di, and discard it with probability 1−dmin/di. After selection, the number of 

reads mapped to Feature j in Experiment i is

(2.2)

We call this sampling method ‘down sampling’.

It can be viewed in another way. If Nij ~ Poisson(di · νij), where νij is the expression of 

Feature j in Experiment i, and we generate  by (2.2), then 

exactly. In this case, Experiment i after down sampling has the expected sequencing depth 

dmin.

The Wilcoxon statistic for the down sampled data can be defined accordingly as

(2.3)

where Rij(N′) is the rank of  in .

In our experience, this down sampling method works well, but can be inefficient when dmin 

is small, as too many reads are discarded. In this case, we instead resample each experiment 

to a sequencing depth, that is the geometric mean of the sequencing depths for all 

experiments. More specifically, we let , and resample using

(2.4)

We call this sampling method ‘Poisson sampling’. It is worth noting that even if Nij follows 

a Poisson distribution,  does not. It has the expected value d̄ · νij, but the variance is 

inflated by a factor of d̄=di + 1. However, it turns out that this inflation does not 
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significantly harm the performance of the method (Section 3). Generally, it is impossible to 

generate Poisson(d ̄ · νij) from Poisson(di · νij) for any unknown νij if d ̄ > di. (Proof given by 

Persi Diaconis, not shown; personal communication.) Comparing down sampling and 

Poisson sampling on simulation data under various schemes (results not shown), we find 

they give very similar results when dmax/dmin < 10, and Poisson sampling is significantly 

better than down sampling otherwise. Hence, we use Poisson sampling hereafter. In 

Appendix, we give a simple theoretical analysis for the two methods, based on Pitman 

efficiency.

In Equation (2.3), we assumed no ties between . However, since they are all 

integers, ties may occur. To break ties, we add a small random number to each count, i.e. 

, where εij ~ i.i.d. Uniform(0, 0.1), 1 ≤ i ≤ n, 1 ≤ j ≤ p.

In the above, we assume that the sequencing depths d1, …, dn are known. In practice, they 

can be accurately estimated by several methods such as TMM,23 DESeq,24 quantile 

normalization,17 and the one proposed in Ref.20 The last one is used in our article: it is a 

simple estimate, based on the mean read count over those features that seem to be null in the 

data set.

2.3 Multiple resampling

The above resampling strategy makes the Wilcoxon statistic applicable, but it has two 

drawbacks. First, only parts of the data are used: many reads are discarded during the 

resampling procedure. Second, resampling, as well as adding small numbers for breaking the 

ties, brings randomness to the results, which might be substantial for features with small 

counts. These two drawbacks may finally lower the power of our nonparametric method. To 

minimize these limitations, we repeat the resampling S times (S > 1) and take the average. 

That is, if the rank of  in  in Resampling s is Rtj(N′s), we use the statistic

(2.5)

This multiple resampling strategy actually increases the power of Wilcoxon statistic defined 

by (2.3) by reducing its variance. In simulation data, we find that S = 20 is large enough to 

give a stable value of  and gain sufficient power.

2.4 Estimating the FDR

Given , we often set a cutoff, say C, and call features with  as significant. 

It is important to know the accuracy of our findings. When p is large, the preferred measure 

of accuracy is the FDR,29 the expected proportion of false positives in the set of features 

called significant. Several ways have been proposed to estimate FDR. When p-values can be 

easily calculated by the (exact or asymptotic) distribution of the statistic, one can use 

methods by Benjamini and Hochberg.29 When the distribution of the statistic is unknown, a 

popular choice is the permutation plug-in estimate,8,30–33 which uses permutations to 

generate the null distribution of the statistic.
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In our cases, the distribution of Wilcoxon statistics defined by Equation (2.3) is known, but 

 defined by (2.5) are using the average of S Wilcoxon statistics, and its distribution is no 

longer known. Hence, we use the permutation plug-in method to estimate the FDR in the 

following steps (See Ref.31 for a detailed description).

1. Compute  based on the data.

2. Permute the n outcome values B times. In the bth permutation, compute statistics 

 based on the permuted data.

3.
For a range of values of the cutpoint C, compute , and 

.

4. Estimate the FDR at the cutpoint C by FD ̂RC = π̂
0 V̂/R̂.

In Step 4 above, π̂
0 is an estimate of π0, the true proportion of null features in the 

population. The estimation is typically made by comparing the numbers of observed and 

permutation statistics that fall in the non-significant range of values. We use the usual 

estimate , where q is the median of all permuted values  j=1,…, p, 

b=1,… B.

In this article, we call our nonparametric method SAMseq.

3 A simulation study

Methods based on the Poisson distribution assume that

(3.1)

and

(3.2)

Here, di is the sequencing depth of Experiment i, νj captures the expression level of Feature j 

in the first class, and γj is the differential expression. Current negative binomial distribution-

based methods assume

(3.3)

with μij also specified by Equation 3.2.

Li et al.20 proposed a way to simulate di, νj and γj in Model (3.2) to mimic real data, and we 

employ it here. Briefly it is as follows: (1) di are simulated so that the total number of reads 

are similar to real RNA-Seq experiments and the maximum sequencing depth is about seven 

times of the minimum, (2) νj are simulated so that the profile of gene expression levels is 

similar to a real RNA-Seq data set,16 (3) γj are simulated so that the average fold change for 

the significant features is about 2.7. p = 20 000 features are simulated, which is roughly the 
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number of genes in the human genome. For the negative binomial distributed data, a 

constant dispersion parameter 0.25 is used. Different from Li et al.,20 30% instead of 10% of 

the features are set to be differentially expressed, so that the differences between different 

methods are more clearly shown. We simulate 12 samples in each of the two classes.

We next compare the performance of our method with other methods. Li et al.20 did a 

detailed comparison of many methods on simulated data sets, including (1) their own 

method, PoissonSeq, (2) SAM (Significance Analysis of Microarrays,8) applied to the square 

root of normalized data, (3) The Poisson distribution based method proposed by Marioni et 

al.16 which is implemented in an R package DEGSeq,18 and (4) edgeR,27 a negative 

binomial-based method with sequencing depths estimated by TMM.23 Of all these methods, 

only edgeR and PoissonSeq can give reasonable estimates of FDRs in both Poisson and 

negative binomial cases. So, here, we focus our comparison on these two methods, as well 

as a newly developed one called DESeq.24

Here, we give a brief introduction to edgeR, DESeq and PoissonSeq. Both edgeR and DESeq 

assume a negative binomial distribution for the data. They estimate the dispersion parameter 

first and calculate the values of an (approximately) exact statistic, which are then converted 

to p-values by their known distribution. Finally, FDRs are estimated by Benjamini and 

Hochberg.29 The main difference between edgeR and DESeq is their different models for the 

dispersion parameter. (See Refs.27 and24 for details.) On the other hand, PoissonSeq always 

assumes Poisson distribution for the data; overdispersed data are transformed to Poisson 

using a simple order transformation. Score statistics are calculated, and the FDRs are 

obtained by a modified version of the permutation plugin method.

3.1 Data without outliers

We first simulate Poisson and negative binomial data with no outliers. Figure 3(a) and (b) 

gives the plots of the true (solid lines) and estimated (broken lines) FDRs of the four 

methods. All FDR curves are the mean of 20 simulations. In the case of Poisson data (Figure 

3(a)), our method and PoissonSeq give significantly lower true FDRs than edgeR and 

DESeq. While edgeR and DESeq greatly under estimate FDRs, both our method and 

PoissonSeq slightly over estimate FDRs. In the case of negative binomial data (Figure 3(b)), 

PoissonSeq gives slightly smaller true FDRs, and DESeq gives slightly higher true FDRs. 

While DESeq under estimates FDRs a bit, the other three methods give accurate estimates of 

FDRs.

These simulations show that with moderate sample size, our non-parametric method gives 

competitive results to popular parametric methods, when the latter’s distributional 

assumption holds.

3.2 Data with outliers

Parametric methods can work well when their assumption holds. However, real data sets 

often deviate from their assumed model. In particular, real data sets often contain outliers, as 

we have shown in Section 1. Here, we simulate data with such outliers. We still generate μij 
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according to (3.2), but then, we let μij ← 10μij with probability 0.01. That is, 1% of the 

counts are outliers.

Results are shown in Figure 3(c) and (d). In both the Poisson and negative binomial cases, 

the true FDRs of SAMseq are only slightly higher than those in Figure 3(a) and (b), where no 

outliers present in the data. Also, the estimates of FDRs are still very accurate. So, certain 

amount of outliers barely hurt the performance of our nonparametric method. However, the 

performance of the three parametric methods is a different story. Their true FDRs become 

unacceptably high, and further, they greatly underestimate the FDRs. Underestimating FDRs 

in real applications is often very dangerous. We see that parametric methods can completely 

fail when the underlying distribution does not hold strictly.

3.3 Data with small sample size

As mentioned above, we simulated data sets with a moderate sample size (12 samples in 

each class). For even smaller data sets, we may worry about the performance of our 

nonparametric method, since in that case, (1) nonparametric methods are often inefficient 

compared to parametric methods when the distributional assumption holds, and (2) the 

number of possible permutations is too small to generate an accurate null distribution. Here, 

we simulate data with only five samples in each class, either Poisson-distributed with 

outliers or negative binomial-distributed with outliers. Except for the sample size, the other 

parameters are simulated by the same way as in Section 3.2.

The plots of true and estimated FDRs are shown in Figure 3(e) and (f). We find that the true 

FDRs of SAMseq are still much smaller than those of edgeR PoissonSeq and DESeq, 

although it is unable to differentiate among the most significant features (top ~2000 in 

Figure 3(e), and top ~600 in Figure 3(f)), as there are too few possible values of the 

Wilcoxon statistic. SAMseq overestimates the FDRs in both panels, mainly because of the 

overestimation of π0. Fortunately, this overestimation should still be acceptable. The three 

parametric methods again fail to give reasonable estimates of FDRs.

4 Performance on real data sets

4.1 Description of the data sets

We compare PoissonSeq, edgeR, DESeq and SAMseq on three real sequencing data sets: an 

RNA-Seq data set from Ref.,16 a Tag-Seq data set from Ref.,15 and an miRNA-Seq data set 

from Ref.28 For short, we call them Marioni data, ’t Hoen data and Witten data, according to 

the names of the first author. These three data sets use similar next-generation sequencing 

techniques to generate reads, although reads are mapped to different regions: genes (RNAs), 

tags and miRNAs, respectively.

Marioni data contains five technical replicates in each class. The original file contains 32 

000 genes, but many of them have no more than five reads totally. These genes are removed, 

leaving 18 228 for analysis. The counts in this data set are considered to be Poisson 

distributed with few outliers.16
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’t Hoen data contains four biological replicates in each class. This data set is significantly 

overdispersed with outliers. The original file contains 844 316 tags (features). Filtering 

features with no more than five reads totally, 111 809 features are left for analysis.

As we introduced in Section 1, Witten data contain 29 biological replicates in each class, 

and 528 features after filtering those with too small counts. This data set is also largely 

overdispersed with outliers.

4.2 Estimated FDRs

We apply PoissonSeq, edgeR, DESeq and SAMseq on the three data sets, and Figure 4 shows 

the plots of the estimated FDR curves. On Marioni data, the four curves have very similar 

shape, though edgeR and DESeq are unable to estimate the proportion of null genes and their 

largest FDRs are always 1. Also, we list the 10 000 most significant genes by each method, 

and count how many genes also appear in the list by other methods. We find that the overlap 

is ~90% of each pair. These observations agree with the conclusion by Ref.16 that this data 

set contains little noise, and also show that our non-parametric method performs 

competitively with parametric methods on Poisson distributed data with few outliers.

On the other hand, the four methods perform quite differently on ’t Hoen data and Witten 

data, both of which are heavily overdispersed and with outliers. Note that this tells us 

nothing about the true FDR curves, as the estimates might be quite far from the true values 

(Figure 3). We also calculate the percentage of common genes in the top calls (top 2000 

on ’t Hoen data and top 150 on Witten data) by different methods. The numbers are quite 

low, especially between nonparametric and parametric methods (~25% on ’t Hoen data and 

~53% on Witten data).

4.3 Different features detected by different methods

To figure out why nonparametric and parametric methods give such different results, we 

take a closer look at the most significant features found by them. We have checked the 

Witten data in Section 1, and now we consider ’t Hoen data. We find that the top features 

detected by the parametric methods (edgeR, PoissonSeq and DESeq) and SAMseq show 

quite different patterns. Features found by parametric methods tend to have one or two 

extremely large values in one class, which might be ‘outliers’. If we delete them, the feature 

can become insignificant. In contrast, top features found by SAMseq often have similar 

counts in each class, and counts in one class are consistently larger than the other class – for 

this data set, this means that all four counts in one class are larger than any count in the other 

class.

Many features are detected only by SAMseq or only by parametric methods. In Figure 5, we 

show several such examples. The top left panel shows a feature from ’t Hoen data detected 

only by SAMseq. Class 2 has consistently larger counts but the difference is not large 

enough to be detected by parametric methods. The bottom left panel shows a feature from 

Witten data detected only by SAMseq. Most values in Class 2 are lower than in Class 1, so 

SAMseq deems this feature as differentially expressed, but there are three large values in 

Class 2, making the mean values of the two classes almost the same, and parametric 
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methods report that this feature is not differentially expressed. The top right panel shows a 

feature from ’t Hoen data detected only by parametric methods. Only one sample has a non-

zero count. The bottom right panel shows a feature from Witten data detected only by 

parametric methods. The second class have a very large count, making its mean much larger 

than that of the first class. However, if we delete this large count, the mean of the second 

class will conversely be smaller than the first class.

It seems that parametric methods, especially edgeR and DESeq, favour features with 

outliers. We divide features into groups according to the proportion of reads concentrating 

on the largest count in the leading class, and count the proportion of features that are called 

significant in each group. We plot their relation in Figure 6. It is clear that when the 

proportion is very high, edgeR and DESeq are more likely to select it as significant. On the 

contrary, SAMseq tends to detect features that have consistent expression in the leading 

class. For example, on Witten data, 80% of features whose proportion of reads in the largest 

count is larger than 80% are detected as very significant by edgeR, 73% are detected by 

DESeq and 47% are detected by PoissonSeq; these three are much higher than their own 

average. On the contrary, only 13% of such features are detected to be differentially 

expressed by SAMseq.

5 Application to other types of outcomes

As mentioned above, we discussed a nonparametric method for data with a two-class 

outcome. The extension to other types of outcomes is straightforward, and we give details 

next.

5.1 Multiple-class

Suppose there are K classes, and Class k contains nk samples, k = 1, …, K and . 

Let Ck = {i : Sample i is from Class k}. We use the Kruskal–Wallis statistic (the Wilcoxon 

statistic for multiple classes), and the multiple resampling version is

(5.1)

This statistic is unsigned.

5.2 Quantitative

Here, each outcome yi is a real number, i = 1, …, n. The statistic we use is Spearman’s rank 

correlation coefficient, which is the (Pearson’s) correlation between R1j(N′), …, Rnj(N′) and 

R1(y), …, Rn(y), the ranks of y1, …, yn. Using the rank of yi, we only assume a monotone 

relation between the mean of the count and the outcome, rather than a linear relation. 

Accordingly, the multiple sampling version is defined as

(5.2)
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5.3 Survival

Here, each outcome is a pair (ti, δi), where ti is the survival time (may have ties), and δi is an 

indicator of whether the failure is observed (δi = 1) or censored (δi = 0), i = 1, …, n. For 

Feature j, we use R1j(N′), …, Rnj(N′) as the single predictor in a Cox proportional hazards 

model. Possible ties in the survival times are handled by Breslow’s method.34 Cox model 

uses the partial likelihood, which involves only the ranks of the survival times, making the 

model semiparametric. We use its score statistic, and the multiple resampling version is

(5.3)

where , and .

5.4 A simulation study

As mentioned in Section 3.2, we simulate data following a Poisson distribution with outliers 

and a negative binomial distribution with outliers. In all the cases mentioned below, we 

simulate 20 000 features and 24 samples.

The simulation of data with four-class outcomes and quantitative outcomes are the same as 

that obtained by Li et al.20. In the four-class case, we simulate the mean according to 

, where the distributions of di and νj are the same as 

the two-class case, and γj2, γj3, γj4 ~ i.i.d. N(0, 1). We simulate six samples in each class.

In the quantitative case, we simulate the mean as log μij = log di + log νj + γjyi. The 

distributions of di and νj are the same as the two-class case, yi ~ Uniform(−1, 1), and γj ~ 

N(0, 1).

For the survival data, to simulate correlated survival time and counts, we assume that there 

are latent variables y1, …, yn, and simulate di, νj, yi and μij the same as mentioned above. 

Then, we let the true survival time , the censoring time 

 and so . To get some ties, we 

finally let ti ←⌊20ti⌋, where ⌊⌋ means the integer part.

Among the four methods, only SAMseq and PoissonSeq can be used on data with multiple-

class outcomes and quantitative outcomes. We find that the results (not shown) are quite like 

the case of two-class outcomes (Figure 3): when no outliers are present, both methods 

estimate FDRs accurately, but when there are outliers, only SAMseq gives accurate 

estimates.

SAMseq is the only method that is applicable to data with survival outcomes. The FDR 

curves are shown in Figure 7. We find that SAMseq gives accurate estimates of FDRs.
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6 Discussion

In this article, we developed a nonparametric method that can be used on data with two-

class, multiple-class, quantitative and survival outcomes. The major strength of our method 

is its robustness. According to our simulation studies, the presence of outliers does not 

significantly hurt its performance. It overestimates the FDR in some cases, but not very 

much. What is important, it never seems to significantly underestimate the FDR in our 

different simulation settings. In contrast, although parametric methods sometimes show 

better true FDRs, their estimates of FDRs can be far too low if the distributional assumption 

does not hold.

We argue that accurately estimating FDRs can be as important as, if not more important 

than, having a low actual FDR. For real data sets, the true FDRs are unknown and 

computational methods can only give estimated FDRs. For example, if on a data set, method 

1 gives a list of 100 significant genes, and correctly estimates the FDR to be 10%. Method 2 

gives a list of 200 significant genes, but underestimates the FDR from 10% to 1%. In this 

case, although Method 2 is more powerful in detecting significant genes, using the whole list 

of 200 significant genes and believing that there are only about two false positives could be 

dangerous.

Another important advantage of our nonparametric method is its simplicity. Previous 

methods often consider both the experimental effect (that is, different sequencing depths for 

the samples) and the feature effect (that is, whether different values of outcomes influence 

the feature expression, which is the effect we want to test) at the same time. These two 

effects are confounded, making the statistical model and test statistic relatively complicated. 

Our resampling strategy removes the experimental effects first, which simplifies the 

problem and makes all our test statistics one-dimensional.

The simplicity of our method makes it easy to adapt to different settings. The field of 

significance testing for one-dimensional problems is well developed and hence it is usually 

easy to find an appropriate test for a given setting. We have applied our method to data with 

two-class, multiple-class, quantitative and survival outcomes. We believe that it will be easy 

to extend it to other types of outcomes and other experimental designs.

The most significant features that we find have different ‘patterns’ from those found by 

parametric methods. In the real data set we analysed, we find that edgeR, PoissonSeq and 

DESeq favour features with outliers, since one outlier is sufficient to make the mean of one 

class much larger than the other class and completely change the value of the parametric 

statistic. On the other hand, one outlier changes only a little of our nonparametric statistic. 

The most significant features detected by our method are those whose counts are 

consistently higher in one class. Based on our discussions with biologists, features with 

consistent patterns are often more valuable and trustworthy.

As with other nonparametric methods, the main limitation of our method is its relatively low 

power for data with small sample size. In Section 3.3, we show the results for data with five 

samples in each class. When the sample size is even smaller and the underlying distribution 

is Poisson or negative binomial with no outliers, the true FDR of our method will be much 
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higher than parametric methods such as PoissonSeq, edgeR and DESeq, although the 

estimated FDRs are still accurate, no matter whether outliers present. In this case, parametric 

methods should be preferred if the possible outliers can be carefully handled.

Our nonparametric method is computationally fast. On a Windows 7 laptop with a 2.40-GHz 

processor and 2GB memory, estimating the FDR curve for 20 000 features and 12 samples 

on the basis of 100 permutations takes ~23 s for two-class data, ~42 s for four-class data, 

~15 s for quantitative data and ~70 s for survival data. PoissonSeq takes ~15 s for two-class, 

multiple-class and quantitative outcomes. DESeq takes 10–80 s for two-class data. EdgeR 

takes ~3 min for two-class data. All our functions are written in R and they will be made 

freely available as an extension package for the R statistical environment.35

In this article, we have discussed the identification of differentially expressed genes in 

RNA-Seq data. In the recent years, DNA-Seq, ChIP-Seq, 3SEQ and other approaches 

related to RNA-Seq have risen in popularity. Our proposed methods should be applicable to 

data generated by these related technologies.
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Appendix

Pitman efficiency is a measure for how well a test statistic performs on data. We calculate 

the PE for Wilcoxon statistic on resampled data (Equation (2.3)). The following situation is 

considered. (We will show later that our resampled data can be approximated by this 

situation.)

(6.1)

where b, c1, c2>0 are known constants and μ and δ unknown, i, j = 1, …, m. We want to test 

H0 : δ = 0 v.s. H1 : δ ≠ 0 by Wicoxon statistic , where Ri is the 

rank of Xi among all X’s and Y’s. The Pitman efficiency is defined as 

. It is not hard to show that

(6.2)

where , with U, V, W ~ i.i.d. N(0, 1). When x > 0, 

, and when x = 1, f(x) = 0, but there is no closed form generally, we 

estimate it by simulation.

Now, we show that under a much simplified scheme and using Gaussian approximation, our 

resampled data can be expressed as (6.1). Suppose each class contains the same number of 

samples, m = n/2. Let every sample in each class has the same sequencing depth. Suppose 

Nij ~ Poisson(dmax · νj) if i ∈ C1, and Nij ~ Poisson(dmin · νj) if i ∈ C2. Here, νj is the 

expression of Feature j (assuming to be the same in all samples), dmax and dmin are the 

sequencing depths, with dmax ≥ dmin. To study which resampling method is preferred for 

different values of dmax/dmin, we reparametrize using  and D = 

dmax/dmin, then the Poisson means of the two classes are D1/2μj and D−1/2 μj.

If down sampling is applied, , i = 1, …, n. So,  in either class has 

mean D−1/2μj and variance D−1/2μj. If Poisson sampling is applied, then for i ∈ C1, 

, and 

 

. Similarly, we get that for i ∈ C2,  and 

.
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Thus, if we approximate  by a Gaussian distribution with mean  and variance 

, then (1)  generated by down sampling can be written in the form of (6.1) with b = 

c1 = c2 = D−1/2 and μ = μj, (2)  generated by Poisson sampling can be written in the form 

of (6.1) with b = 1, c1 = 1 + D−1/2, c2 = 1 + D1/2 and μ = μj. Plugging them into (6.2), we get 

the relative efficiency of Poisson sampling to down sampling

By simulation, we find that f(D−1/4) + f(D1/4)) ∈ (−0.01, 0.07) for any D > 1. So, the second 

term is roughly 1 for any value of D and sample size m. The relative efficiency is monotone 

increasing as D increases, and crosses 1 when D≃6. This indicates that under this simplified 

situation, Poisson sampling is less efficient than down sampling when D < 6, and more 

efficient for larger values of D.

The above analysis of Pitman efficiency is only on a simplified case. It is not clear to what 

extent these results will hold on real data, given that Gaussian distribution can be a poor 

approximation for count data, and each experiment has a different sequencing depth on real 

data. It is also not clear to what extent the results will hold for Wilcoxon statistic under 

multiple resampling (Equation (2.5)).
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Figure 1. 
Using RNA-Seq technique for comparative experiments. The sequencing machine generates 

a list of reads from each sample. Each read in the list is mapped (matched) to a region (here 

we use a gene) on the genome. Then, we sum up the number of reads mapped to each gene, 

giving a count as a measure of its expression. Each RNA-Seq experiment results in a vector 

of counts, with length p equal to the number of genes. Combining the results from n 

experiments, the final data can be summarized as an n × p matrix.
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Figure 2. 
Counts from some miRNAs found to be very significant by edgeR do not seem to follow 

negative binomial distributions. Each panel shows the counts from one miRNA in the 

Witten data.28 These miRNAs are the 7th, 10th and 11th most significant features detected 

by edgeR. The heights of vertical bars show the scaled counts from the samples. The first 29 

bars, coloured red, are samples from the one class, and the other 29 bars, coloured blue, are 

from the other. The black broken line is also drawn to separate the two classes. In each 

panel, we see that one count has much larger values than all the other counts.
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Figure 3. 
FDR curves for simulated data. (a) Poisson distributed data, 12 samples in each class; (b) 

negative binomial distributed data, 12 samples in each class; (c) Poission distributed data 

with outliers, 12 samples in each class; (d) negative binomial distributed data with outliers, 

12 samples in each class; (e) Poission distributed data with outliers, 5 samples in each class; 

(f) negative binomial distributed data with outliers, 5 samples in each class. The solid curves 

show the true FDRs; the broken curves are the estimates. These are results (averaged over 

20 simulations) on the same simulation data sets using different methods: PoissonSeq, 

edgeR, DESeq and SAMseq. Some black lines do not go through origin point since a 

proportion of the most significant features have the same value of the statistic (2.5) and need 

to be called at the same time. The average standard errors of the estimates are shown as 

vertical bars on the bottom right.
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Figure 4. 
Estimated FDR curves for three real data sets: Marioni data, ’t Hoen data and Witten data 

(from left to right). In real data sets, the true FDR curves are unknown and so we cannot tell 

which method is performing better.
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Figure 5. 
Examples for features deemed to be differentially expressed only by SAMseq on ’t Hoen 

data (top left) and Witten data (bottom left), or only by parametric methods (PoissonSeq, 

edgeR and DESeq) on ’t Hoen data (up right) and Witten data (bottom right). The title of 

each subfigure shows the ranks of significance by different methods, like the first one is the 

20th most significant feature by SAMseq, 47018th by DESeq, 62 356th by edgeR and 48 

686th by PoissonSeq. In each panel, bars with different colours are samples from different 
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classes. The black broken line is used to separate two classes. The length of each bar is the 

scaled count of a sample.
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Figure 6. 
Relations between proportions of reads in the largest count and proportions of significant 

features in two real data sets: ’t Hoen data (left panel) and Witten data (right panel). Features 

are divided into groups according to what proportion of reads concentrate on the largest 

count of that class. A proportion near 1 means one count is much larger than all other 

counts, that is, it has an outlier. We then count in each group what proportion of features are 

among the list of most significant features (top 10 000 for ’t Hoen data and top 150 for 

Witten data). We see that features with outliers are more easily been called significant by 

parametric methods, especially edgeR and DESeq, while our nonparametric method favours 

features with similar counts in different samples.
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Figure 7. 
FDR curves for simulated data with survival outcomes (averaged over 20 simulations). The 

left panel is Poisson distributed data with outliers, and the right panel is negative binomial 

distributed data with outliers. The solid curves show the true FDRs; the broken curves are 

the estimates. The average standard errors of the estimates are shown as vertical bars on the 

bottom right.
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