

First Workshop on

Analyses of Software Product Lines
Limerick, Ireland 2008

Finding Contradictions in Feature Models

Adithya Hemakumar
Dept. Electrical and Computer Engineering

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

hemakuma@ece.utexas.edu

Abstract

A feature model defines each product in a product-line by a

unique combination of features. Feature compatibilities are

expressed as constraints in feature models and may be con-

tradictory. We suggest a run-time approach to expose con-

tradictions in feature models when they are uncovered.

However, the emphasis of this paper is to explore the possi-

bility of finding contradictions statically using model check-

ing and an incremental consistency algorithm.

1. Introduction

A feature model is a common way to express the products of
a software product line (SPL). A feature is an increment in
product development, and no two products in an SPL have
the same combination of features. A feature model can be
formally defined as a context free grammar (CFG) with con-
straints; the tokens of the grammar are primitive features and
the constraints eliminate nonsensical combinations of fea-
tures that the grammar would otherwise admit [4][5][16].

A feature model can be mapped to a propositional formula,
where each feature is equated with a distinct boolean vari-
able and the formula encodes the constraints of feature com-
patibility [5][3][6][21][30]. A variable has the value true if
its corresponding feature is present in a product; it is false
otherwise. A truth assignment to the variables that satisfies
the formula defines a product in the feature model’s SPL,
and each product has a unique truth assignment.

Behind every feature model lurks the possibility of contra-
dictions. Consider the following elementary feature model M
whose CFG is:

M : [A] [B] C D;

All products of M have features C and D, and optionally fea-
tures A and B. Suppose the following (obviously nonsensical)
feature compatibility constraints are added to M:

A implies B;
B implies not A; (1)

Observe that a contradiction arises if feature A is selected: B
is selected by enforcing the first constraint, and then A is

deselected by the second. Selecting A implies its deselection
is clearly both an error and contradiction in the model. Such
contradictions reveal dead features — features that are
present in no product [5][6]. For example, A is present in no
product of M. Benavides et al. presented an analysis for find-
ing unconditionally dead features in feature models [6], i.e.,
features that are dead without preconditions. In this paper,
we show that contradictions can arise in more general ways:
dead features can arise conditionally. Consider model G:

G : [A] [B] [C] D ;

All products of G have feature D, and optionally features A, B,
C. The feature compatibility constraints for G are:

(C and A) implies B;
B implies not A; (2)

Note that model G is a generalization of M because all prod-
ucts of M are products of G. Further, A is not a dead feature in
G: there is a product of G with feature A (namely product AD).
However, if feature C is selected, then model G simplifies to
model M. The contradiction is exposed in G when features C
and then A are selected in this order. Stated differently, fea-
ture A is dead whenever feature C is selected. No analysis that
we are aware (including [6]) uncovers the conditions under
which A is dead or when model G is contradictory.

Like any specification, designers need to be alerted to such
errors, and feature models are no exceptions. Constraints like
(1) are clearly wrong, but when extra conditions are added
(as in (2)) they become next to impossible to spot manually.

Finding contradictions (i.e., conditions under which features
are dead) in a feature model is a challenging problem. In this
paper, we suggest a solution to expose contradictions at run-
time by noting when different constraint propagation algo-
rithms have different outputs. Our emphasis is to explore the
difficulty of finding contradictions statically using model
checking and an incremental consistency algorithm.

2. A Run-Time Solution and Perspective

Our work is at the confluence of a number of different
research threads in SPLs. Binary Decision Diagrams

(BDDs) are a common way to represent propositional formu-

las in product specification tools [3][30]. Among the analy-
ses that can be performed by BDDs is constraint
propagation. Given a set of features that must be in a target
product, analyses can infer the selection and deselection of
other features (obeying the compatibility constraints in a
feature model). For example, a BDD can infer that no prod-
uct in M of the Introduction uses feature A. A GUI front-end
uses this information to preclude users from selecting A,
thereby avoiding the contradiction of specifying a product
in M with A. (In the AI configuration community [1][2][10],
this property is called backtrack-free — a configurator
should not allow a user to select a feature that leads to
invalid configurations [27][28][30]). It is well-known that
the BDD inferencing of constraints is complete — all possi-
ble inferences are made.

An alternative to BDDs is the Boolean Constraint Propaga-

tion (BCP) algorithm [4]. BCP is a classical AI algorithm
used in logic truth maintenance systems and works by itera-
tively applying rules (constraints) to infer the truth values
of variables [11]. Unlike BDDs, BCP is incomplete. That is,
BCP cannot infer all facts. In the case of model M, the fol-
lowing can happen: the GUI front-end allows users to select
feature A (because BCP was unable to infer that A cannot be
present in a product of M) and when A is chosen, constraint
propagation reveals the contradiction in M.

From a product-specification-tool perspective, BDDs are
preferred over BCP as they preclude users from specifying
a set of features that will lead to a contradiction. But this

does not eliminate the error in model M. Using BDDs, users
or designers will discover that they can never select feature
A and this is a tip-off to an error. In contrast, BCP makes the
error of M visible: it explicitly reports that M is contradictory
by showing two different inference chains that lead to
opposite conclusions. But this requires users to select a spe-

cific sequence of features to expose the error.

Feature incompatibility is expressed by unsatisfiability —
two features A and B are incompatible w.r.t. predicate
P(A,B) if P(true,true)=false. That is, P(true,true)
=false means features A and B cannot both be present in the
same product. Modelling errors — where two different
inference chains lead to contradictory results — are also

expressed by unsatisfiability: there is one inference chain
where P(true,true)=false and of course there is another
chain where P(true,true)=true. Feature modelling tools
that use BDDs to propagate constraints do not distinguish
feature incompatibilities from contradiction errors; tools
based on BCP do. Thus, BCP algorithms can be used to
identify contradiction errors in models.

The above suggests a simple, solution for finding contradic-
tions in feature models: Product configuration tools should

use BDDs to side-step contradictions. But they should also
use BCP algorithms to also propagate constraints. Under
normal circumstances, BDDs and BCP will produce identi-
cal outputs when propagating constraints. However, when
BDDs assign values to variables that BCP does not, a con-
tradiction has been exposed. Such findings can be quietly
reported by the tool to model designers for subsequent
examination and model repairs.

Ideally, however, we want to discover contradictions not at
run-time (when users are selecting features to define prod-
ucts), but through static analysis. In the following sections,
we explore several approaches, using model checking and
an incremental consistency algorithm, that exposes contra-
dictions statically. We begin by reviewing the details of fea-
ture models and the BCP algorithm.

3. Feature Models and the BCP Algorithm

A feature diagram

is a common way to
depict a feature
model [9][16][17].
It is an and-or tree,
where children of a
node can be
optional or manda-
tory. Terminals are
primitive features
and non-terminals
are compound fea-
tures. Constraints
on selecting a par-
ticular number of
children (choose exactly one child or choose one or more)
and cross-tree constraints (predicates that relate features of
different subtrees) can be declared. Figure 1a shows a fea-
ture diagram of model M from Section 1. using common
notations that are defined in [9]. Cross-tree constraints are
not depicted.

As mentioned in Section 1., another representation of a fea-
ture diagram is a CFG with cross-tree constraints. Figure 1b
shows this representation for model M. Simple rules trans-
late a CFG into a propositional formula, and the cross-tree
constraints are conjoined onto this formula (Figure 1c) [4].
The resulting formula can then be translated into conjunc-

tive normal form (CNF) for subsequent analysis.

The BCP algorithm is simple [11]. A CNF clause is unit

open if all but one of its terms (i.e., a variable or its nega-
tion) is false. The BCP algorithm uses unit open clauses to
infer the value of an unassigned term. For example, if x and
y are true in the unit open clause (¬x∨¬y∨z) then the BCP
algorithm concludes z must be true. When a variable is

// grammar

M : [A] [B] C D ;
// cross-tree constraints

A ⇒ B;
B ⇒ ¬A;

A ⇒ M ∧ B ⇒ M ∧
(C ∧ D)⇔ M ∧

A ⇒ B ∧ B ⇒ ¬A

(b)

(c)

(a) M

A

Figure 1 Feature Diagrams

B C D

assigned a value, every CNF clause of a feature model’s
formula is examined and each unit open clause is pushed on
a stack.

The BCP algorithm is a loop: the stack is popped, the
popped clause is checked if it remains unit open, and if so a
variable assignment is inferred (triggering more clauses to
be pushed onto the stack). The BCP loop terminates when
the stack is empty. By remembering the sequence of infer-
ences that are made, explanations of variable assignments
can be presented to users in the form of a proof [16].

From a tool perspective, a product of a product-line is
declaratively specified by selecting its features one feature
at a time. After each feature selection, BCP is invoked to
propagate constraints. It is during constraint propagation
that model contradictions are discovered.

A CNF clause is violated when all of its terms are false.
When BCP encounters a violated clause, a model contradic-
tion is announced. The incompleteness of the BCP algo-
rithm is evident from its description: using model M of
Figure 1, only when feature A is selected will the contradic-
tion of M reveal itself.

The general problem of finding model contradictions is to
find a sequence of k feature selections (where n is the total
number of features and 0<k≤n) that reveal two inference
chains that reach opposing conclusions. A feature model is
contradiction free if there are no contradictions for all k,
0<k≤n. In the following sections, we examine two algo-
rithms to find contradiction errors statically.

• Spin: Contradictions can be found by model checking.
The goal is to prove that error states that correspond to
contradictions cannot be reached for a given feature
model. Spin is a model checker that interprets a
Promela program. The system (BCP + feature model)
is represented by a Promela program and Spin per-
forms an exhaustive search on its state space.

• Incremental Consistency: A contradiction is a result
of constraint propagation of the kth feature selection
given a sequence of k-1 previous selections. By induc-
tion, we incrementally prove via enumeration that a
model is consistent for increasing values of k, for
0<k≤n.

4. Spin (Simple Promela INtrepreter)

Specifying a product using a feature modelling tool alter-
nates between two phases: the user selection of a feature
and the propagation of constraints. This process can be
visualized as a state machine, where each phase repeats
over time (Figure 2).

Each state of a state machine represents a unique value
assignment to the set of variables (features) of the given
feature model. In BCP, variables can assume one of three
values — unknown, true, or false. All features (with the
exception of the root of the grammar) start with unknown as
their initial value (the root is assigned true). Upon each
feature selection, the system propagates constraints to
select and deselect other features obeying the constraints of
the feature model. When no further inferences can be made,
the cycle repeats by selecting the next feature.

Special states, called error states, arise during constraint
propagation when a CNF formula is violated (thus implying
a model contradiction). A model checker is a general-pur-
pose tool for traversing a state machine to determine if par-
ticular states (or conditions on states) are reachable.
Finding a sequence of user feature selections that results in
a contradiction can be formulated as a reachability problem.

We used Spin for our work [25][14]. Promela is a modelling
language for concurrent processes. It was designed for veri-
fication and its programs can be directly model checked by
Spin. The variables and constraints of the specified feature
model are represented as propositional formulas. A
Promela-translator converts these formulas into a Promela
program. User selections are modelled as an exhaustive
sequential selection of user-visible features.

Spin provides three ways to flag errors: we used assertions
to define error states [25]. Spin’s verification procedure is
based on a depth-first search of the state space. It offers two
modes of operation:

• Exhaustive search: The entire state space is
examined. This is the default mode of operation.

• Bitstate hashing: For large problem sizes, an
exhaustive depth-first graph traversal method is not
possible due to the bound placed by the size of the
memory. In such cases, a high-coverage
approximation of the exhaustive runs can be
performed with the available memory using bitstate
hashing [15]. This technique strikes a compromise
between the number of states explored and the
amount of the memory used. If the problem size is
more than the size of available memory, Spin
covers only a fraction of the state space.

select
feature propagate

error
state

select
feature propagate

error
state

Figure 2 State Machine of Feature Selection
and Constraint Propagation

Figure 3 shows a Promela file that implements the BCP
algorithm for the propositional constraints of model M in
Section 1.. One of three values — T (true), F (false), U
(unknown) — is assigned to each selectable variable/feature.
Each assignment to the set of variables defines a unique
state of the machine. The initial assignment of values is
indicated by (*) in Figure 3, where features A and B are
assigned the value U.

When BCP infers the value of a feature, a state transition
occurs. Transitions are represented by if statements in
Promela. The two if statements following the propagate:
label are the BCP actions for inferring features for two CNF
clauses, which correspond to the two constraints of M: A⇒B

and B⇒¬A. Each CNF clause has two terms. If one is F and
the other is U, the value of the other feature is inferred. Only
after all constraints have been propagated, is another fea-
ture selected. Note: after each if statement is an assertion,
which if violated, indicates a model contradiction error.

The if statement following the “Select Feature Phase”
comment selects a previously unselected feature (i.e.,
whose value is U). If there are no U-valued features, all fea-
tures/variables have been assigned T or F values, the search
backtracks. Only when the entire search space (i.e., all pos-
sible sequences of feature selections) has been examined
does the search terminate.

We built a tool that translates a feature model (CNF gram-
mar + constraints) into a Promela program. The program is

then compiled; its execution explores the state machine of
the feature model. We used a number of different feature
models, which we ourselves previously wrote in building
SPLs for different domains, or that others had written using
our tools. We deliberately introduced contradictions in
some models to test our tools. These models are summa-
rized in Figure 4. Model complexity is indicated by the
number of features and CNF clauses.

Figure 5 shows the execution time for exhaustive search
and bitstate hashing (and its coverage factor) of Spin for
these models. We ran all of our experiments (in this section
and the next) on an Intel Pentium IV processor with a 1GB
RAM. For small models (models having less than 10 fea-
tures) Spin completes the check within seconds. For larger
models, system memory is exhausted quickly. “∞” indicates
models for which Spin never terminated. Bitstate hashing
helps restrict memory consumption but the search is not
exhaustive. As bitstate hashing does not cover the entire
state space, error states might not be found.

The models that we were able to analyze completely with
Spin either had no inconsistencies, or caught the errors
which we deliberately injected. (From our prior experience
in building models, we knew that some of our models had
inconsistencies, but those errors had been found and cor-
rected prior to this research. However, we did not know if
our models were contradiction free).

Our experience with Spin was mixed. While it was success-
ful, it was clear that we had to reduce the size of the state
space, as Spin could not provide us with certifications that
all of our models were contradiction free. We also realized
that in a sequence of k+1 feature selections, the order in
which the first k features are selected does not matter. That

mtype = {T, F, U};

init {
mtype A=U, B=U; (*)

do: // loop till you finish selecting all features

/********** Propagate Phase **********/
propagate:
if // Promela code for constraint A ⇒ B
 ::(A == U && B == F) -> A = F; goto propagate;
 ::(B == U && A == T) -> B = T; goto propagate;
 ::else -> skip;
fi;
assert(!(A == T && B == F)); //error state
if // Promela code for constraint B ⇒ ¬A
 ::(B == U && A == T) -> B = F; goto propagate;
 ::(A == U && B == T) -> A = F; goto propagate;
 ::else -> skip;
fi;
assert(!(B == T && A == T)); //error state
/********** Select Feature Phase **********/
if
 ::A==U -> A = T; printf("choose feature A\n");
 ::B==U -> B = T; printf("choose feature B\n");
 ::else -> break;
fi;

od;
}

Figure 3 Portion of a Promela File for Model M Figure 4 Different Feature Models Used In Our Experiments

Model Name # of
Features

of CNF
Clauses

Brief Description of
the Model’s SPL

BerkeleyDB 55 185 BerkeleyDB [18]

Folutest 13 66 a notepad application

Freeman 3 17 a scalar vector
graphics application

GG4-model 15 140 an elaborated graph
product line

GPL 17 188 graph product line
[20]

Notepad 20 155 a notepad application

SVGMap 19 52 a SVG map application

TightVNC 21 83 desktop sharing
application

Violet 64 341 image processing
application

apl 12 47 error-injected model

long 12 17 error-injected model

is, the value assignments to the feature/variables after the
first k features are selected (and constraints propagated) are
invariant to the order in which these features are chosen
[12]. This observation allowed us to reduce the size of the
state-space for n features from O(n!) to O(n2n-1). Further,
we discovered that encoding this state-space reduction tech-
nique into Promela programs was problematic: the pro-
grams became complicated, and ultimately did not reduce
the likelihood of exhausting memory. It seemed easier for
us to write our own tool (avoiding Spin altogether) to verify
that models are contradiction free by retracing previous
computations, to substantially reduce the memory require-
ments for model verification. This lead us to our second
solution.

5. Incremental Consistency Algorithm

A feature model is k-contradiction free if every selection of
k features does not expose a contradiction. A model of n

features is contradiction free if it is k-contradiction free for
all k where 0<k≤n. (Note that “unconditionally” dead fea-
tures are exposed when k=1 [6]).

Suppose a sequence of features has been selected (and their
consequences are propagated to the selection or deselection
of other features). Figure 6 lists the lookAhead algorithm
which determines if the selection of the next feature (for all
such features) exposes a contradiction; it returns true if
there is no contradiction, false otherwise. BCP denotes the
boolean constraint propagation algorithm, which returns
true if no contradiction was encountered in propagating
constraints, false otherwise.

Let V denote the set of all features. A model is k-contradic-
tion free if lookAhead() returns true for all subsets S⊆V,
where |S|=k-1. That is, each subset S contains precisely k-

1 features that were selected. We generate sequences of
length k-1, where each sequence corresponds to precisely
one set of size k-1, and we guarantee that no two sequences
of have the same feature membership. The challenge in
enumerating sequences is to account for constraint propaga-
tion. For example, consider k=2. We do not consider the
sequence (A,B) if selecting feature A automatically selects
(via constraint propagation) B. The sequences we generate
must be sequences that users of a feature-selection tool
could produce. Figure 7 (on next page) sketches the algo-
rithm we used to prove a model is k-contradiction free; it
generates all sequences of length k-1 observing the above
constraint.

Model Name Exhaustive
(secs)

Bitstate
Hashing
(secs)

BitState
Hashing

Coverage (%)

BerkeleyDB ∞ 106.4 14

Folutest 3.5 3.3 100

Freeman 1.2 1.3 100

GG4-model 8.6 6.7 100

GPL ∞ 22.8 85

Notepad ∞ 67.3 21

SVGMapApp ∞ 52.1 24

TightVNC ∞ 95.7 14

Violet ∞ 102.4 19

apl 4.8 1.7 100

long 1.6 1.6 100

Figure 5 Execution Time of Spin for
Different Feature Models

// let V be the set of variables (features) along with
// their current truth assignment (T,F,U).
// lookAhead returns true if the selection of the next
// feature does not expose a contradiction

boolean lookAhead() {
Vreset = V; // checkpoint (save)

// existing truth assignments
foreach var in V {

if (var==U) { // if var (feature) not selected
var=T; // select it
if (not BCP()) // propagate constraints

return false;// contradiction was found
V = Vreset; // rollback (restore) assignments

}
}
return true; // no contradiction found

}

Figure 6 LookAhead Algorithm

// returns true if a feature model is k-contradict-free

boolean contradictionFree(int k) {
return contradictionFree(k,0);

}
// The index of a variable in V is its rank. Ranks are
// used to compute sequences of k features, where a
// sequence is generated only once. contradictionFree(k,r)
// returns true if all possible selections of k features
// (whose rank is <=r) does not expose a contradiction

boolean contradictionFree(int k, int r) {
if (k==1) // we selected a set of features

return lookAhead(); // lookahead for a contradiction
else {

// let g be the # of unselected variables
// in V with rank>r
if (g<k)

return true; // no way to select k features when
// there are only g features remaining

 // otherwise select another feature
Vreset = V; // checkpoint/save state
foreach var in V {

if (var==U and rank(var)>r) {
// if feature is not yet selected and
// its rank is past r, select it
var=T;
if (not BCP())

return false;
// no contraditions yet. select another feature

if (not contradictionFree(k-1,rank(var)))
return false;

V=Vreset; // rollback/restore state
}

}
}

}

Figure 7 Contradiction Free Algorithm

Our incremental consistency algorithm (ICA) verifies that a
model is contradiction free if it is k-contradiction free for all
k where 0<k≤n (Figure 8). Note: when k=1, ICA exposes

unconditionally dead features. When k>1, ICA exposes

conditionally dead features. To express the “coverage” of a
search space, we print the value of each k for which k-con-
tradiction freedom has been proven. When k=n, where n is
the number of user selectable features, the model has been
proven to be contradiction free.

An important optimization of our algorithms is saving and
restoring the values of variables (i.e., saving and restoring
the variable array V in the lookAhead and the contradic-
tionFree algorithms). Instead of creating a stack where we
pushed and popped the state of V, we simply remembered
the set of variables that changed since the last “save state”
or checkpoint. Generally few variables (features) change
values upon selecting a feature and propagating its conse-
quences. Undoing (restoring to a checkpoint) is fast.

Another observation is that we mistakenly thought the BCP
algorithm consumed little CPU. Originally we implemented
our algorithms without checkpoints. When we computed a
sequence of features, we reset the V array to its initial state
and recomputed the state of V by selecting each feature in
order and propagating constraints.

The above two optimizations had a significant effect on the
performance of ICA. Figure 9 shows the execution times of
ICA for both the optimized and the unoptimized versions,
along with the exhaustive Spin numbers. In almost all test
cases, the unoptimized ICA generally executes noticably
faster than Spin, and provides answers to conflict freedom
in many cases where Spin failed to produce an answer. The
optimizations that we described above (listed in the ICA
Optimized column) provide the same solutions as the unop-
timized ICA with an order of magnitude or more increase in
speed. However, even with ICA optimizations, we were not
able to determine whether two models (BerkeleyDB and
Violet) were free of contradictions.

Figure 10 shows how far our optimized ICA algorithm was
able to prove contradiction freedom. The BerkeleyDB

model has 55 selectable features; in one hour of computa-
tion, we were able to prove that it was 5-conflict free. The
Violet model has 64 selectable features, and in one hour we
were able to prove it was 3-conflict free. In short, we hardly
covered any of the state space of these models. We believe
the ICA algorithms can prove conflict freedom in models
that have about 20 (or fewer) features; ICA seems ineffec-
tive in models with substantially larger number of features.

6. Perspective and Related Work

We realized that the difficulty of statically finding contra-
dictions in feature models can be explained from the fol-
lowing perspective. A standard analysis of feature models
ensures that they are satisfiable or non-void — that the rep-
resented product line has at least one product [6]. (Stated
differently, the propositional formula that encodes the fea-
ture model is satisfiable). Testing satisfiability is NP-com-
plete. For a feature model to be contradiction free requires a
much stronger property than satisfiability: each time a fea-
ture is selected and its consequences are propagated, the
resulting predicate represents a simplified feature model,
here called a submodel. (From the Introduction, model M is
a submodel of G when C is selected). Contradiction freedom
means that every possible submodel of a feature model is
satisfiable or non-void (i.e., every submodel has at least one

// let V be the set of all user-selectable
// variables/features and V.sizeof = n, the number of
// all user-selectable features. ICA returns true if
// the feature model is contradiction free

boolean ICA() {
for k = 1 to V.sizeof {

if (not contradictionFree(k))
return false;

print("Coverage up to "+k);
}
return true;

}

Figure 8 Incremental Consistency Algorithm

Model Name

Spin
Exhaustive

(secs)

ICA
Unoptimized

(secs)

ICA
Optimized
(secs)

BerkeleyDB ∞ ∞ ∞

Folutest 3.5 7.7 0.6

Freeman 1.2 0.01 0.01

GG4-model 8.6 13.6 1.8

GPL ∞ 80 10.3

Notepad ∞ 1916.5 118.5

SVGMapApp ∞ 532.8 10.8

TightVNC ∞ 2135.5 28.9

Violet ∞ ∞ ∞

apl 4.8 0.05 0.02

long 1.6 0.02 0.02

Figure 9 Execution Time of ICA for Different Models

k-contradic-
tion free

BerkeleyDB
(in hours)

Violet
(in hours)

1 0.00 0.00

2 0.01 0.01

3 0.04 0.20

4 0.20 1.80

5 0.86 11.16

6 3.22 —

7 11.52 —

Figure 10 Coverage of ICA

product). Conversely, if a submodel is unsatisfiable (i.e., it
has no products), then the original feature model has a con-
tradiction (equivalently, a conditionally dead feature). For
example, if a user is allowed to select feature A in model M,
the resulting submodel is unsatisfiable. It is not clear if an
efficient algorithm can be developed to statically identify
model contradictions, due to the exponential number of
submodels of a given feature model. In the interim, the
engineering solution suggested in Section 2. can be used.

6.1. Related Work

Trinidad et. al [29] provide a framework for automating the
error treatment of feature models, where feature models are
expressed in terms of CSP (as opposed to propositional for-
mulas as we have done). They focus on three types of
errors. (1) A dead feature is a non-selectable feature, a fea-
ture that not appear in any product. (2) A child feature
which is non-mandatory, is a full-mandatory feature if it is
always chosen whenever its parent is chosen. And (3) a fea-
ture model is said to be void (which we called unsatisfiable
earlier) if no product can be defined. The goal of [29] is to
detect the above three errors and provide explanations for
the relationships that caused these errors. Prior to our work,
the relationship of dead features with void models (that is, a
dead feature leads to a void submodel) was not previously
known. Our work generalizes and unifies dead feature and
void analyses to consider conditional errors.

[27][28][30] use BDDs to represent configuration models,
generalizations of feature models that permit non-boolean
attributes. The requirement that configuration tools be
backtrack free (i.e., prevent users from uncovering model
contradictions) is discussed in the context of using BDDs as
a general engine for displaying user options at a particular
state in a design, propagating constraints, and explaining
inferences. We are unaware of work in the configuration
modeling community that seeks analyses to find model con-
tradictions [1][2][10].

Our notion of k-contradiction free was inspired by, but not
identical to, the notion of k-consistency used by Kumar [19]
and Freuder [13] for solving constraint satisfaction prob-

lems (CSP). A model is k-strong consistent if, given a con-
sistent sequence of k-1 variables, any kth variable that is
chosen from the set of unassigned variables has a value that
satisfies all the constraints. While their goal is to find an
overall consistent solution for a CSP, our goal is to find a
particular sequence of user-selections that lead to a contra-
diction.

Marinov et.al [22], define boolean constraint propagation
networks as an inference engine for implementing knowl-
edge-based systems. They define inconsistencies in a model
as a permanent conflicts between two chains of proposi-

tions (propagations) that always imply opposite values at a
node (or a feature). They also stated that such problems
should be detected at compile time, but no algorithms for
doing so were presented.

Dynamic constraint satisfaction problems (DCSP) extends
CSP to include evolving constraints because of assignments
of values to variables. Soininen et. al [24] express configu-
ration problems as DCSPs and also show that they are NP-
complete. Verfaillie et. al [31] use dynamic backtracking to
detect inconsistencies in DCSPs and also provide explana-
tions in terms of the constraints that lead the system to an
inconsistent state.

7. Conclusions

A feature model defines each product of a product line by a
unique combination of features. A contradiction in a feature
model is an error in a product line’s specification. Finding
such errors is important, both to model designers (as they
have specified nonsensical constraints) and customers of
the product line. We suggested a dynamic solution to find
contradictions, where errors can be detected during usage
and silently reported to model designers. However, the
focus of this paper was to investigate whether model con-
tradictions could be efficiently found by static analysis. We
found that model checking could be used, but is so slow
that only the simplest feature models could be verified. We
then developed an Incremental Consistency Algorithm

(ICA), which incrementally verified increasingly stronger
properties of contradiction freedom. Although our ICA was
at least an order of magnitude faster than model checking,
and that it verified contradiction freedom in more models, it
too had practical limits. We believe that ICA can verify
contradiction freedom of models with about 20 or fewer
selectable features. In short, our experimental results sug-
gest that a static analysis to find contradictions in feature
models with large number of features may be very difficult.

Product lines are increasing common in software develop-
ment. In the automotive industry, it is not uncommon for
models to have hundreds, if not thousands of features [5].
Moreover, future feature models will not be limited to
selecting (or even deselecting) individual features, but also
supplying numerical constraints (e.g. performance bounds,
cost bounds) on feature selections [5][6]. As feature models
become more complex, the ability to guarantee that they are
absent of certain kinds of errors becomes even more impor-
tant. Finding contradictions in feature models is an interest-
ing, practical, and basic problem. The contribution of our
paper is a step toward more effective tools for feature
model verification.

Acknowledgments. I gratefully acknowledge insightful
conversations with D. Batory, D. Benavides, S. Krishna-
murthi, and K. Fisler. I also thank the referees for their
helpful comments. This work was supported by NSF’s Sci-
ence of Design Projects #CCF-0438786 and #CCF-
0724979.

8. References

[1] AAAI Workshop on Configuration, 2003. www2.il-

og.com/ijcai-03/

[2] AAAI Workshop on Configuration, 2007.
www.cs.ucc.ie/~osullb/aaai-config-ws-2007.

[3] M. Antkiewicz and K. Czarnecki, “FeaturePlugIn: Feature
Modeling Plug-In for Eclipse”, OOPSLA’04 Eclipse Tech-

nology eXchange (ETX) Workshop, 2004.
[4] D. Batory. “Feature Models, Grammars, and Propositional

Formulas”, SPLC 2005.
[5] D. Batory, D. Benavides, and A. Ruiz-Cortes. “Automated

Analyses of Feature Models: Challenges Ahead”, CACM,
Special Issue on Software Product Lines, December 2006.

[6] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. “Automated
Reasoning on Feature Models”, Conference on Advanced

Information Systems Engineering (CAISE), 2005.
[7] D. Beuche, “Composition and Construction of Embedded

Software Families”, Ph.D. thesis, Otto-von-Guericke-Uni-
versitaet, Magdeburg, Germany, 2003.

[8] Big Lever, GEARS tool, http://www.biglever.com/
[9] K. Czarnecki and U. Eisenecker. Generative Programming

Methods, Tools, and Applications. Addison-Wesley, Bos-
ton, MA, 2000.

[10] ECAI 2006 Workshop on Configuration, fmv.jku.at/
ecai-config-ws-2006/

[11] K.D. Forbus and J. de Kleer. Building Problem Solvers, MIT
Press 1993.

[12] K.D. Forbus. email correspondence, 2007.
[13] E. U. Freuder. “Synthesizing Constraint Expressions”.

CACM, Vol 31, Issue 11, 1978.
[14] G.J. Holzmann. “The Model Checker Spin”, IEEE TSE May

1997.
[15] G.J. Holzmann. “An Analysis of Bitstate Hashing”, Formal

Methods in System Design, Vol 13, 3, pp. 287-305, Kluwer,
November 1998

[16] M. de Jong and J. Visser. “Grammars as Feature Diagrams”,
2002.

[17] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study”. Technical Report, CMU/SEI-90TR-21, November
1990.

[18] C. Kaestner, S. Apel, D. Batory. “A Case Study Implement-
ing Features Using AspectJ”, SPLC 2007.

[19] V. Kumar. “Algorithms for Constraint Satisfaction Prob-
lems: A Survey”, AI Magazine, Vol 13, Issue 1, pp 32-44,
1992.

[20] R. E. Lopez-Herrejon and D. Batory. “A Standard Problem
for Evaluating Product-Line Methodologies”, GCSE/GPCE

2001.

[21] M. Mannion. “Using first-order logic for product line model
validation”. SPLC 2002.

[22] G. Marinov, V. Alexiev, Y. Djonev. “Boolean Constraint
Propagation Networks”, Aritificial Intelligence: Methodolo-

gy, Systems, and Applications (AIMSA’94), 1994.
[23] Pure-Systems. “Technical White Paper: Variant Manage-

ment with pure::variants”, www.pure-systems.com,
2003.

[24] T. Soininen, E. Gelle. “Dynamic Constraint Satisfaction in
Configuration”. In Configuration papers from the AAAI
workshop, pp. 95-100. AAAI Technical Report WS-99-05.

[25] www.spinroot.com

[26] D. Streitferdt, M. Riebisch, and I. Philippow. “Details of
Formalized Relations in Feature Models Using OCL”.
ECBS 2003, p. 297-304.

[27] S. Subbarayan, R. M. Jensen, T. Hadzic, H. R. Anderson, H.
Hulgaard, J. Mffiler. “Comparing Two Implementations of
Complete and Backtrack-Free Interactive Configurator”,
Workshop on CSP Techniques with Immediate Application,

International Conference on Principles and Practice of

Constraint Programming. (2004) 97-111.

[28] S. Subbarayan. “Integrating CSP Decomposition Tech-
niques and BDDs for Compiling Configuration Problems”,
Conference on Integration of AI and OR Techniques in Con-

straint Programming for Combinatorial Optimization Prob-

lems, 2005.
[29] P. Trinidad, D. Benavides, A. Duran, A. Ruiz-Cortes, and

M. Toro. “Automated Error Analysis for the Agilization of
Feature Modelling”, Journal of Systems and Software (in
press).

[30] E. R. van der Meer, H. R. Andersen. “BDD-based Recursive
and Conditional Modular Interactive Product Configura-
tion”. Workshop on CSP Techniques with Immediate Appli-

cation, CP04, International Conference on Principles and

Practice of Constraint Programming, 2004.
[31] G. Verfaillie, T. Schiex. “Dynamic Backtracking for Dy-

namic Constraint Satisfaction Problems”, ECAI’94 Work-

shop on Constraint Satisfaction Issues Raised by Practical

Applications, 1994.

Do SAT Solvers Make Good Configurators?

Mikoláš Janota

Lero, School of Computer Science and Informatics

University College Dublin

Belfield, Dublin 4, Ireland

mikolas.janota@ucd.ie

Abstract

A configuration process is about finding a configuration,

a setting, that satisfies requirements given by the user and

constraints imposed by the domain. Feature models are

used to record product domains and constraints imposed on

individual products. As such constraints are in practice of

complex nature, it is desirable to perform the configuration

interactively. This article shows how to utilize a SAT solver

in an interactive configuration process to provide support to

the user.

1. Introduction

Configurable complex systems have gained attention in

recent years in such domains as the automotive industry and

feature models are used to capture the intended product do-

main [8, 13].

Each feature corresponds to a distinctive aspect of a

product and a customer specifies his requirements by defin-

ing the desired features. Features that were not specified

by the customer, must be configured at the producer’s side.

When the number of features is large and dependencies be-

tween them are complex, this represents non-trivial tasks

for the humans involved.

This is a clear motivation for interactive support during

the configuration process — a tool provides hints or per-

forms decisions throughout the whole process, alleviating

the burden imposed on the human.

Other researchers targeted this problem before. Ba-

tory [1] uses the so-called logic truth maintenance system,

whose disadvantage is that the approach does not guarantee

backtrack-freeness — the user may hit a dead end during

the configuration process.

Other approaches [12] use Binary Decision Diagrams

(BDDs) [3] that guarantee backtrack-freeness but are

known to suffer from space explosion as they are explicit

representations of all possible configurations.

This article outlines a third path, building mainly on

Batory’s work, and that is it to apply a SAT solver, a

tool for deciding the satisfiability of Boolean formulas (see

e.g., [10, 6]).

The motivations to use a SAT solver is two-fold. Firstly,

nowadays SAT solvers are extremely efficient despite the

NP-completeness of the problem and still improving as il-

lustrated by the yearly SAT Competition1. Secondly, a SAT

solver is a step towards a more general constraint solver

with the support for other than merely Boolean domains.

To the knowledge of the author, guaranteeing backtrack-

freeness of and interactive configuration process by using a

SAT solver is novel.

2. Background

Feature models [8] play an important role in Software

Product Line Engineering [4]. In this article we are con-

cerned only with feature models as descriptions of the prod-

uct domain (also called problem space). In particular, we

only need to know the semantics of the model that we are

dealing with.

Various semantics of feature models exist, depending on

their expressiveness [11, 7]. As we will be dealing with

configuring a feature model, it is natural to use so-called

constraint satisfaction problem (CSP) as the structure cap-

turing the semantics; the following definition introduces the

concept.

Definition 2.1 A constraint satisfaction problem is a triple

〈X,D, C〉, where X ≡ x1, . . . , xn are variables, D ≡
D1, . . . , Dn are their respective domains and C ⊆ D1 ×
· · · ×Dn is a constraint.

A valuation is a function from variables to their domains,

a valuation is called partial iff not all variables from X are

assigned a value, it is called complete iff all variables from

X are assigned a value.

1http://www.satcompetition.org/

http://www.satcompetition.org/

A solution v to a constraint satisfaction problem is a

complete valuation such that 〈v(x1), . . . , v(xn)〉 ∈ C.

The following toy example illustrates how feature mod-

els map to CSP, for more details on this topic see for in-

stance the work of Benavides et al. [2].

Example 2.1 A software application is developed for two

markets: for Ireland and United States. The application

deals with measurements and hence supports inches and

centimeters. When released to the Irish market, centime-

ters must be used whereas inches must be used for United

States. The corresponding CSP has two variables Country

and Units whose domains are {IE ,USA} and {cm, in},
respectively. The constraint C comprises the following tu-

ples (pairs in this case).

{〈IE , cm〉 , 〈USA, in〉}

During the configuration process the user makes deci-

sions by assigning values to variables and his goal is to find

a solution to the given CSP.

In this article we will consider the scenario when a tool,

let us call it a configurator, reacts upon every user’s decision

and provides some form of feedback. More specifically, we

will be concerned with configurators that disable such val-

ues from variable domains whose selection would prevent

finding a solution to the CSP.

In our small example, when the user selects Ireland as

the desired country, the inches get disabled and centimeters

selected automatically as that is the only option left.

The configurator is called backtrack-free iff it enables

only the values for which there exists a solution, meaning

that the user will never reach a dead end forcing him to re-

tract some previous decisions. A configurator is called com-

plete iff it does not disable values for which there exists a

solution.

Formally, in each step of the configuration process, there

is a user selection su — a valuation on variables Xu ⊆ X .

The configurator is complete and backtrack-free iff for any

xi /∈ Xu, the configurator disables the value v from the

domain Di if and only if there is no solution to the CSP

such that it agrees with su on the variables Xu and assigns

v to xi.

2.1. Propositional World

A propositional constraint satisfaction problem is such

CSP where each of the variable domains is {TRUE, FALSE}.
This makes the job of the configurator somewhat simpler. If

the configurator infers that a solution exists for only one of

the two values, the variable must assume the second value

and the user will not be allowed to change it; we will say

that such variable is locked.

Note that if there is no solution for either of the two val-

ues for some variable, the given CSP does not have any so-

lution since all the variables must be assigned to by a solu-

tion.

Rather unsurprisingly, any propositional constraint sat-

isfaction problem 〈X,D,C〉 can be captured as a Boolean

formula on the variables from X such that the valuations

satisfying the formula correspond to the solutions of the

problem.

Example 2.2 Even though Example 2.1 is not given as

propositional, it can be easily modeled as such. The fol-

lowing formula illustrates the principle.

(IE ∨USA) ∧ (¬ IE ∨¬USA) ∧ IE ⇒ cm ∧
(in ∨ cm) ∧ (¬ in ∨¬ cm) ∧USA⇒ in

As we are interested in the existence of solutions, it

means that we are interested in satisfying a Boolean for-

mula. To this end we will utilize a SAT solver. A SAT

solver accepts as input a formula in so-called conjunctive

normal form (CNF). A formula is in CNF iff it is a con-

junct of disjunctions of variables or negated variables, e.g.,

(¬a ∨ b) ∧ (¬b ∨ c). Each of the conjuncts, e.g., ¬a ∨ b, is

called a clause and the disjuncts are called literals (a single

literal is also considered a clause). An important property

of CNF is that evaluates to TRUE. If such valuation does not

exist, hence the formula is unsatisfiable, it produces a proof

of the unsatisfiability.

3. A SAT solver in Configuration Process

Our goal here will be to device an algorithm TEST-VARS

that is called at the beginning of the configuration process

and then after each user’s decision.

We will approach the problem wielding the following ar-

mory. For any variable we can call the procedures LOCK

and UNLOCK to disable and enable, respectively, the user

to set the variable’s value. Further, SET(variable, value)

sets a value for a variable; RESET(variable) brings the vari-

able to an unassigned state.

The SAT solver is represented by the function SAT(ψ)
that returns either null iff ψ is unsatisfiable or it responds

with a set of literals (negated or unnegated variables) that

correspond to a satisfying valuation of ψ. For example, it

may respond {a,¬b} to the query a ∨ b.
The state of the configuration process and the constraint

is captured by the formula φ. So for instance, if the CSP

under concern is represented by the formula ψ and the user

sets the variable v1 to TRUE and the variable v2 to FALSE,

the formula φ will be equal to ψ ∧ v1 ∧ ¬v2.

Figure 1 presents the skeleton of the algorithm. For

each variable that has not been set by the user, it computes

whether there are satisfying valuations having the variable

TEST-VARS()

1 foreach x that was not assigned to by the user

2 do CanBeTrue ← TEST-SAT(φ, x)
3 CanBeFalse ← TEST-SAT(φ,¬x)
4 if ¬(CanBeTrue ∧ CanBeFalse)

then error “Unsatisfiable constraint!”

5 if ¬CanBeTrue then SET(x, FALSE)

6 if ¬CanBeFalse then SET(x, TRUE)

7 if CanBeTrue ∧ CanBeFalse
8 then RESET(x)

9 UNLOCK(x)

10 else LOCK(x)

Figure 1. Basic version

set to TRUE and FALSE, respectively. The four possible

combinations are investigated: If neither of them exists,

then φ itself is unsatisfiable (line 4). If exactly one exists,

then the variable is enforced to have the value for which

there is a satisfying valuation (lines 5, 6) and the variable is

locked (line 10). If both exist, the algorithm makes sure the

variable is in the default state, i.e., unassigned and unlocked

(lines 8, 9).

A straightforward implementation of TEST-SAT is sim-

ply to call the SAT solver on the conjunct of the given for-

mula and literal: φ∧ l. This yields an algorithm which calls

the solver twice on each variable, so it is warranted to in-

vestigate if that can be improved.

First let us look at the situation when the call to the SAT

solver returns a satisfying valuation for φ ∧ l. Consider a

variable xi which has been assigned the value TRUE by

that valuation. We can conclude that φ ∧ xi is satisfiable as

φ ∧ l ∧ xi is satisfiable. Therefore, there is no need to call

the solver on φ ∧ xi. If xi was assigned the value FALSE,

analogous reasoning is carried out.

Hence, the first improvement to the algorithm is to store

the values of which we already know that they appear in

satisfying valuations encountered so far.

Can, on the other hand, the negative response of the

solver be useful? Yes it can! Consider the situation when

the constraint contains the formula x1 ⇒ x2. If the solver

knows that x2 cannot be TRUE, it can quickly deduce that

x1 cannot be TRUE either2. This motivates the second im-

provement: storing the values that were disabled and conjo-

ing them to the overall formula in subsequent queries.

Figure 2 presents the procedure TEST-SAT. Literal l
in inserted into the set KnownValues if φ ∧ l if satis-

fiable. Analogously, literal l is added to the formula

2 The solver detects that from the clause ¬x1 ∨ x2 the literal ¬x1 must

be TRUE to satisfy the clause. This technique is known under the name

Unit Propagation and is an essential part of state-of-the-art solvers.

TEST-SAT(φ: Formula , l: Literal) : Boolean

if l ∈ KnownValues then return TRUE

if l ∈ DisabledValues then return FALSE

L← SAT(φ ∧ l ∧
∧

k∈DisabledValues
¬k)

if L 6= null

then KnownValues ← KnownValues ∪L
else DisabledValues ← DisabledValues ∪{l}

return L 6= null

Figure 2. Improved version of TEST-SAT

DisabledValues if φ ∧ l is unsatisfiable.

When and how do we initialize the two sets? The

safest (and coarsest) approach is to empty both sets when-

ever φ changes, i.e., at he beginning of each execution of

TEST-VARS. However, if we know that φ has been strength-

ened, which happens for instance when a user sets a value

of an unassigned variable, we can keep DisabledValues

and empty KnownValues . Analogously, if φ is weak-

ened, e.g., when a user’s decision is retracted, we can keep

KnownValues and empty DisabledValues . For further dis-

cussion on this topic see Section 6. To conclude, the follow-

ing two procedures show how TEST-VARS is invoked.

ASSERT-DECISION(l : Literal)

decisions ← decisions ∪{l}
φ←

∧
l∈decisions

l
KnownValues ← ∅
TEST-VARS()

RETRACT-DECISION(l : Literal)

decisions ← decisions r{l}
φ←

∧
l∈decisions

l
DisabledValues ← ∅
TEST-VARS()

3.1. Producing Explanations

For each locked variable a configurator should explain to

the user why it was locked. The explanation should contain

the user’s decisions that led to the lock, but even better, the

relevant parts of the constraint.

In our case, when the constraint is in CNF, obvious can-

didates for parts of the constraint are the individual clauses

(disjunctions of literals).

Recall that a value is locked if the solver returns unsatis-

fiability for the other value. For example, if a variable was

locked in the TRUE value, then it must have been shown

that there is no solution with the variable having the value

FALSE. The proof of this unsatisfiability is exactly the ex-

planation we are looking for.

Obtaining a proof from a SAT solver is rather straight-

forward, see for example [15]. The proof is a subset of the

input clauses whose conjunct is unsatisfiable.

However, a proof obtained from the solver might not be

minimal in the sense that removing certain clauses or user-

decisions will still yield an unsatisfiable formula. Naturally,

for the user-friendliness sake, it is desirable for the explana-

tion to be small.

To this end a fast technique with good results was pro-

posed by Zhang and Malik [14], which calls the solver again

on the proof that it has just produced. As the proof is an

unsatisfiable formula, the solver will find it unsatisfiable

and produce a new proof (possibly smaller than the orig-

inal one). This process is iterated until the proof remains

irreduced by the solver.

3.2 Example Execution

The following text illustrates the algorithm’s workings

on a constraint represented by the following formula, which

we will denote as ψ.

p⇒ (q ⇒ ¬r) ∧
p⇒ (¬q ∨ ¬r)

The procedure TEST-VARS begins by testing the variable p.

Since ψ ∧ p is satisfiable, the SAT solver finds a satisfying

valuation {p,¬q,¬r}, let’s say, whose literals are added to

KnownValues . Similarly, the query ψ∧¬p yields the liter-

als {¬p, q, r} which are also added to KnownValues .

Thanks to the luck we had in finding satisfying valua-

tions, the tests for the variables r and q do not need to use

the SAT solver as all four pertaining literals are already in

KnownValues .

Now the user selects the feature p (assigns TRUE to p).

Which yields a formula equivalent to the following one.

(q ⇒ ¬r) ∧
(¬q ∨ ¬r)

Both values are valid for the variable r under this constraint.

However, the SAT solver responds that q cannot be set to

TRUE and hence the algorithm locks it in the value FALSE.

Note that this is not detected if only unit propagation is per-

formed as in [1].

4. Implementation

The author implemented the presented ideas and the im-

plementation can be found our research group’s website 3.

3 http://kind.ucd.ie/products/opensource/Config/

releases/

Figure 3 offers a screenshot of the application. A sub-

tle difference from the presentation in Section 3. Due to

the check-box user interface, that the user can only select

features — set variables to TRUE— and deselect features

— set TRUE variables to unassigned. Consequently, user

decisions comprise merely non-negated literals.

Apart from automated selections and explanations, the

application detects which constraints still remain to be sat-

isfied. In the image we can see that the type of engine and

gearshift are yet to be specified. Another functionality is

the configuration completion, which fills in some values,

determined by the SAT solver, that satisfy the unsatisfied

constraints.

Figure 3. Configuration in action

The program is written entirely in Java and a SAT solver

was written as well. Even though a third-party SAT solver

could have been used, the author felt as he needs to write

one to better understand what he’s doing. Moreover, the

proof generation is harder to access in other solvers as they

need to account for enormous proofs and hence typically

record them on the disk.

Nevertheless, it wouldn’t be difficult to adapt an existing

SAT solver for the same purpose; MINISAT, for instance,

is well documented, open-source, and ranks well in compe-

titions [6].

4.1 Experimental Results

To test the feasibility of the approach, the author has ran

the prototype on an example feature model representing a

car with 10 different features published in [5]. The average

time of the algorithm TEST-VARS was 26ms and 41ms was

the worst time.

Further, pseudo-random CNF formula was generated

with 70 variables and 100 clauses where each clause has 3
literals. The average time was 107ms and the worst 290ms.

The tests were performed on a 1.67 Ghz PowerPC with

1 GB of RAM running Mac OS X.

As the SAT solver used is significantly slower than the

top ones, these initial results are promising.

http://kind.ucd.ie/products/opensource/Config/releases/
http://kind.ucd.ie/products/opensource/Config/releases/

5. Summary and Discussion

The article presents how to use a SAT solver to imple-

ment an interactive and backtrack-free tool support for con-

figuration process. Compared to using BDDs, this approach

is lazy, so to say. A BDD is a pre-compiled representation of

the configuration space and it is easy to find small Boolean

formulas that explode the BDD in size. On the other hand,

to heavily burden a modern SAT solver with a small formula

is quite difficult.

Hence, the author believes that the SAT solver approach

has a better chance of scaling.

A disadvantage of SAT solvers is that they require a spe-

cific input format — typically CNF. That can be overcome

by clausifying the input, which can be done in such way that

the output is linear w.r.t. input. However, such conversion

would complicate the explanation generation. For BDDs,

this is even worse as the formula’s structure is lost.

6. Future Work

Efficiency The algorithm presented in Section 3 is not ex-

changing information between different calls for different

user selections as much as it could have. It could be eas-

ily improved by looking at the proofs of locked variables.

As long as the user does not alter the decisions on which a

proof depends, the pertaining variable will remain locked.

Generalization It is not hard to see how the algorithm

TEST-VARS could be generalized for variables with other

than just two-valued domains. The algorithm would iterate

over each domain, testing each value and eventually analyz-

ing the cardinality of the reduced domain. It is clear, how-

ever, that for large domains this would be computationally

infeasible and hence a more sophisticated technique is re-

quired for such. Most likely, calls to the solver would query

for multiple values at a time.

7. Acknowledgments

This work is partially supported by Science Foundation

Ireland under grant no. 03/CE2/I303 1.

References

[1] D. Batory. Feature models, grammars, and propositional for-

mulas. In H. Obbink and K. Pohl, editors, SPLC ’05, LNCS.

Springer-Verlag, 2005.

[2] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Auto-

mated reasoning on feature models. In P. Oscar and J. a.

Falcão e Cunha, editors, Proceedings of 17th International

Conference on Advanced Information Systems Engineering

(CAiSE 05), volume 3520 of Lecture Notes in Computer Sci-

ence. Springer-Verlag, 2005.

[3] R. E. Bryant. Graph-based algorithms for Boolean func-

tion manipulation. IEEE Transactions on Computers, 35(8),

1986.

[4] P. Clements and L. Northrop. Software Product Lines: Prac-

tices and Patterns. Addison–Wesley Publishing Company,

2002.

[5] K. Czarnecki and A. Wasowski. Feature diagrams and log-

ics: There and back again. In Kellenberger [9].

[6] N. Eén and N. Sörensen. An extensible SAT-solver. In

Theory and Applications of Satisfiability Testing (SAT ’03).

Springer-Verlag, 2003. Available at http://www.een.

se/niklas.

[7] M. Janota and J. Kiniry. Reasoning about feature models in

higher-order logic. In Kellenberger [9].

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and

A. S. Peterson. Feature-oriented domain analysis (FODA),

feasibility study. Technical Report CMU/SEI-90-TR-021,

SEI, Carnegie Mellon University, Nov. 1990.

[9] P. Kellenberger, editor. Software Product Lines. IEEE Com-

puter Society, 2007.

[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and

S. Malik. CHAFF: Engineering an efficient SAT solver. In

39th Design Automation Conference (DAC ’01), 2001.

[11] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature di-

agrams: A survey and a formal semantics. In Proceeding of

14th IEEE International Requirements Engineering Confer-

ence (RE). IEEE Computer Society, 2006.

[12] S. Subbarayan. Integrating CSP decomposition techniques

and BDDs for compiling configuration problems. In Pro-

ceedings of the CP-AI-OR. Springer-Verlag, 2005.

[13] S. Thiel and A. Hein. Modeling and using product line vari-

ability in automotive systems. IEEE Software, 19(4):66–72,

2002.

[14] L. Zhang and S. Malik. Extracting small unsatisfiable cores

from unsatisfiable boolean formulas. In Proceedings of SAT,

2003.

[15] L. Zhang and S. Malik. Validating SAT solvers using an

independent resolution-based checker: practical implemen-

tations and other applications. In Design, Automation and

Test in Europe Conference and Exhibition (DATE), 2003.

http://www.een.se/niklas
http://www.een.se/niklas

On SAT Technologies for dependency management and beyond

Daniel Le Berre Anne Parrain∗

Université Lille-Nord de France, Artois, F-62307 Lens
CRIL, F-62307 Lens

CNRS UMR 8188, F-62307 Lens
{leberre,parrain}@cril.univ-artois.fr

Abstract

SAT solvers technology is now mature enough to be part

of the engineer toolbox side by side with Mixed Integer Pro-

gramming and Constraint Programming tools. As of June

2008, two great pieces of software are using SAT technol-

ogy to manage dependency like problems: the open source

Linux distribution OpenSuse 11.0, released on June 19,

2008, integrates a custom SAT solver in their dependency

manager Zypp. The new update manager of Eclipse 3.4,

called Equinox p2, also uses SAT technology to resolve de-

pendencies in their OSGi platform. The use of SAT tech-

nology in Software Product Lines has already been pointed

out by several authors. We believe that the current inter-

est for solving dependency management problems in SAT

technologies opens quite interesting challenges to the SAT

community. First, since those problems are met in software

with interactive use, SAT engines need to solve them within

seconds. Second, providing one solution is usually not suf-

ficient: finding the best solution is usually what users want.

Finally, fully supported open source or commercial SAT en-

gines are needed for a broader adoption in the software en-

gineering community.

1 Introduction

The success of SAT technology in Electronic Design
Automation (EDA), in particular in the area of Bounded
Model Checking [6] has pushed forward the development
of SAT solvers. They are now being used routinely as
lightweight constraint programming solvers. The perfor-
mance breakthrough due to the Chaff SAT solver[19], and
the design some years later of the minimalistic Minisat [13]
allowed the availability of numerous very efficient SAT en-
gines in various languages. One of the main advantage of

∗This work is supported in part by the European research project num-
ber 214898 Mancoosi (www.mancoosi.org).

SAT solvers against more traditional constraint program-
ming solvers is its simple unified input format (Dimacs
[15]) that allows SAT solvers to be used just as black boxes,
or as SAT components in a more software engineering vo-
cabulary.

If many users of SAT solvers are currently coming from
EDA, the use of SAT technology is currently growing in
software engineering. Recent works in software design
analysis clearly focus on efficient translation into SAT
[23] and take advantages of new features developed in
SAT solvers (e.g. Unsat cores [22]) to improve both user
experience and scalability. In Software Product Lines, SAT
solvers can be used to decide whether a product config-
uration is safe or not and how to implement the product
configuration [3, 21]. Related work includes the use of
CSP and BDD approaches to tackle the same problems
[4, 5]. The EDOS project [16, 11] found in SAT technology
a good mean to validate the package dependencies for
Linux distributions, i.e to answer the question:“Are all
the packages of that distribution installable?”. In the
same spirit, OPIUM [24] is a dependency manager for
the Linspire linux distribution based on pseudo boolean
solvers, one of the numerous extensions to SAT.

As a consequence of such research work on dependency
management, two great pieces of software are using SAT
technology to manage dependency like problems: the open
source Linux distribution OpenSuse 11.0 1, released on June
19, 2008, integrates a custom SAT solver in their depen-
dency manager ZYpp. The new update manager of Eclipse
3.4, called Equinox p2, also uses SAT technology to resolve
dependencies in its OSGi platform 2. Finally, another fa-
mous framework for Java users, Maven, decided recently3

to use SAT technologies to resolve their package dependen-
cies.

1http://en.opensuse.org/OpenSUSE_11.0
2http://wiki.eclipse.org/Equinox_P2_Resolution
3http://jira.codehaus.org/browse/MARTIFACT-20

2 Dependency decision problem

Dependencies between packages can be easily modeled
using propositional logic. For instance, package A depends
on package B and package C can be expressed by the
logical formula A → B ∧C which in turn can be expressed
by the two clauses A → B and A → C (or ¬A ∨ B

and ¬A ∨ C). If all the dependencies are requirements
of a conjunctive form, even if incompatibilities between
packages are expressed, the resulting SAT problem is made
of Horn clauses, i.e. clauses containing at most one positive
literal, thus is solvable in linear time [10].

The dependency problem becomes interesting when
a given feature can be provided by several artifacts: this
is the case for instance of several versions of the same
OSGi bundle4 in Eclipse. Sometimes, the same feature
is provided by different packages, depending on their
origin: to install latex in a linux distribution, one can
use for instance texlive-latex or tetex-latex. In that case,
we would express such dependency by something like
latex → texlive latex ∨ tetex latex which is no longer
a Horn clause. Thus the dependency problem becomes
NP-complete [8].

However, SAT solvers can nowadays solve some in-
stances of the SAT problem with as many as millions of
variables and clauses while they were still unable to solve
a custom crafted 117 variables only SAT instance during
the SAT 2007 Solver competition 5. So, while there is no
warranty that a SAT solver can solve efficiently SAT in-
stances resulting from the translation of a “real” problem
into SAT, it is often the case that such solvers perform well
on those instances. From our own experience, the depen-
dency decision problem can be easily solved using modern
SAT solvers.

3 From satisfaction to optimization

However, the dependency problem is often under-

constrained, which means that there is usually a lot of
possible solutions. And not all those solutions are usually
equally good. For Linux distributions for instance, one
could take into account the number of packages to install,
or their size, etc in order to propose an installation with
the minimum number of packages or an installation with
the smallest footprint on the hard drive. Those criteria can
be easily modeled in an optimization framework by an
objective function to minimize. Such objective function is
of the form

∑
n

i=1
aixi where ai is an integral coefficient

4OSGi is the component based model component chosen by Eclipse for
its plug-in architecture. See http://www.osgi.org/ for details.

5http://www.satcompetition.org/2007/

and xi is a propositional variable where true is denoted by
value 1 and false is denoted by value 0.

If one wants to minimize the number of installed pack-
ages, all ai will be 1 and all xi will correspond to the propo-
sitional variables encoding packages to install. If one wants
to minimize the size of the installed packages, then the ai

will encode the size of each packages in bytes for instance.

In the case of SPL, the objective function could encode
to install as many features as possible, to look for the
cheapest or the most expensive product, etc.

Adding such objective function to a set of clauses
creates an instance of the Binate Covering problem [9].
Such problem has already been studied in EDA for logic
synthesis (to minimize the number of components needed
to perform a given operation). From a complexity theory,
that problem is NP-hard, which means that is is at least as
hard as SAT.

The binate covering problem can be seen as a very
specific case of an Integer Linear Program in which case
efficient ILP frameworks exist (e.g. CPLEX). However, it
is currently not clear if ILP solvers are the right approach
to tackle those problems.

Indeed, ILP restricted to boolean variables has been also
a recent area of research in the SAT community, under the
generic name “Pseudo Boolean problems”, inherited from
the very first work on that subject [1, 2]. A competition
of Pseudo Boolean solvers has been organized to assess
the efficiency of existing solutions[18]. Among the cur-
rent best ones, one can note the pure SAT approach of
Minisat+[12], the hybrid approach Pueblo [20] (used in the
tool OPIUM) or the modern branch-and-bound Bsolo [17].
Those solvers have been compared to the Gnu Linear Pro-
gramming toolkit, and in many cases performed better. No
comparison with commercial ILP solvers has been done yet.

In Artificial Intelligence, the binate covering problem
is sometimes presented as a so called “Weighted partial
MAX-SAT problem”: the clauses of the original binate
covering problem are called hard clauses, i.e. they must be
satisfied. The objective function is encoded by weighted
unit clauses, whose weight is ai and whose literal is
¬xi. If the weight is the same for all the soft clauses, the
problem is called “partial MAXSAT”. Since 2006, there is
an annual competition of MAXSAT solvers. The interest
on MAXSAT solvers is currently growing so MAXSAT
solvers will be yet another way to tackle the binate covering
problem in the future.

SAT solvers are currently efficient enough to solve SAT

instances mapping real useful problems. Regarding solvers
for SAT extensions like Pseudo Boolean or MAXSAT,
the picture is less clear. Furthermore, we have seen that
the so-called binate covering problem can be solved in
many-ways: the best solution is yet to be determined.

The evaluation of the solvers is currently done on the
assumption that the solvers are used in batch mode, i.e.
that they can take several minutes, if not hours, to answer.
Indeed, it is often the case in the area of model checking
that the engineer writes its model during the day and let
the SAT solver to check it during the night. In the SAT
competition for instance, the timeout used in the industrial
category is set to 1200 seconds in the first stage, and
10000 seconds in the second stage. As a consequence, the
use of SAT solvers in interactive tools such as Eclipse or
Linux update managers, or a Feature Model Editor such
as FeatureIDE or FAMA requires specifically tailored
solvers (see e.g. custom SAT engines in EDOS (debian) or
OpenSuse.

Finally, the notion of quality of the solution is also a hot
topic in that case: it is unlikely that a solver can efficiently
solve all those NP-hard problems within a second, so non
optimal solutions need to be returned after that time. We
enter here in the area of anytime algorithms, for which local
search algorithms are usually pretty good [14].

4 When modeling matters

The expected results mentioned in the previous section
were simple, and global. However, in real applications,
the user preferences are usually manifold and expressed
in a local manner. Take for instance the case of the use
of SAT technology in Eclipse p2: one expected result of
the objective function is to make sure that most recent ver-
sions are installed preferably to older ones. If there is only
one package, this is not a problem. However, as soon as
there is more than one package, we enter the area of multi-
objective/criteria optimization.

Indeed, suppose that package A is available in three ver-
sions: A1, A2, A3. Suppose that package B is available in
two versions: B1, B2. Suppose that package X depends on
A and B. The best solution would be to pick the latest ver-
sions, B2 and A3. However, they are incompatible. Is it
better to take A2 and B2 or B1 and A3? There is maybe no
way to answer that question. In that case, an automated so-
lution to solve that dependency problem will answer one of
them, without any assumption that can be made on the so-
lution. If one can add a preference between A and B, then
we can discriminate between the two solutions and favor the
first solution for instance if B is more important than A or
the second one if A is more important than B.

Artificial Intelligence and Operational Research have so-
lutions to deal with such kind of problems. In the specific
case of Eclipse p2, the preferences on the different plugin
versions could be modeled for instance using the Qualita-
tive Choice Logic [7].

5 Research toys or real tools?

There are numerous SAT/Pseudo Boolean/MAXSAT
solvers out there, in various languages, with various fea-
tures. However, very few are really supported in the sense
that there is no clear way to get help, enter bug reports,
etc. And very few are really open source: many solvers
have a license restricting their use for research purpose
only. Most of them are not full featured in the sense
that if they all allow to solve the SAT decision problem,
very few support also proof logging, minimal unsat core,
model enumeration, model counting, optimization support,
support for multi-core processors, etc. In that sense, users
of SAT technology must first define all the features they
really need in order to choose the right solver (or the right
solvers, since it might be just impossible to find a solver
with all needed features). In that sense, SAT solvers are
still research toys.

On the other hand, various products (from both academia
and private companies) are now based on currently avail-
able SAT solvers. So the same solvers can be considered as
real tools too.

The main current issue is certainly the input format used
in the SAT community: the Dimacs format created for the
Second Dimacs Challenge[15]. It is a simple integer based
input format very convenient for SAT solver developers. It’s
simplicity is one key element of the incredible evolution of
SAT solvers: everybody can easily read or produce SAT
instances using that format, in any language. As a conse-
quence, SAT solvers became quickly “black-boxes” fed us-
ing Dimacs formatted SAT instances. It was thus easy to
compare the behavior of several solvers on the same bench-
marks, organize sat competitions, etc. However, it is not
a nice input format for people willing to try SAT technol-
ogy: one needs to design an abstraction layer between its
problem and the Dimacs format or the SAT solver first. The
audience of SAT technology growing, a more user friendly
input format is now necessary.

6 Conclusion

We have seen that SAT technology receives currently a
lot of attention in the software engineering community, es-
pecially in the area of dependency management, that is also

a concern inherent to Software Product lines. We have seen
that the basic decision problem related to dependency man-
agement is in practice easily solvable with current state-of-
the-art SAT solvers. However, dependency management
in real software is likely to be better modelled as an opti-
mization problem called binate covering problem for which
numerous solutions exist. We currently do not know the
best approach for solving binate covering instances encod-
ing the dependency problem. Another issue with depen-
dency management lies in the fact that the problem is likely
to be under-constrained, i.e. it is likely that the problem ad-
mit several equivalent solutions for the solver. As a con-
sequence, it will be very difficult to control the answers
provided by the solver, and to offer some warranties about
those solutions. It must be clear for users of such technol-
ogy that the most important part of the work is to properly
express their problem in terms of preferences among pos-
sible solutions, then to deduce from those preferences the
objective function of their binate covering problem. Finally,
the use of solvers in interactive tools is likely to change the
solvers landscape since most of them are currently designed
to be used in batch mode.

References

[1] P. Barth. Linear 0-1 inequalities and extended clauses.
Technical Report MPI-I-94-216, Max-Plank-Institut fr In-
formatik, Saarbrücken, Germany, 1994.

[2] P. Barth. A Davis-Putnam based enumeration algorithm
for linear pseudo-Boolean optimization. Technical Re-
port MPI–I–95–2–003, Max-Planck Institut fr Informatik,
Saarbrücken, 1995.

[3] D. S. Batory. Feature models, grammars, and propositional
formulas. In J. H. Obbink and K. Pohl, editors, SPLC, vol-
ume 3714 of Lecture Notes in Computer Science, pages 7–
20. Springer, 2005.

[4] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Corts. A
first step towards a framework for the automated analysis of
feature models. In Managing Variability for Software Prod-

uct Lines: Working With Variability Mechanisms, 2006.

[5] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Corts.
FAMA: Tooling a framework for the automated analysis of
feature models. In Proceeding of the First International

Workshop on Variability Modelling of Software-intensive

Systems (VAMOS), 2007.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
model checking without bdds. In R. Cleaveland, editor,
TACAS, volume 1579 of Lecture Notes in Computer Science,
pages 193–207. Springer, 1999.

[7] G. Brewka, S. Benferhat, and D. L. Berre. Qualitative choice
logic. Artif. Intell., 157(1-2):203–237, 2004.

[8] S. A. Cook. The complexity of theorem-proving procedures.
In STOC, pages 151–158. ACM, 1971.

[9] O. Coudert. On solving covering problems. In Design Au-

tomation Conference, pages 197–202, 1996.

[10] W. F. Dowling and J. H. Gallier. Linear-time algorithms for
testing the satisfiability of propositional horn formulae. J.

Log. Program., 1(3):267–284, 1984.
[11] The edos project. http://www.edos-project.org.
[12] N. Eén and N. Sörensson. Translating pseudo-boolean con-

straints into sat. Journal on Satisfiability, Boolean Modeling

and Computation (JSAT), 2:1–26, 2006.
[13] N. E. en and N. Sörensson. An extensible sat-solver. In

Proceedings of the Sixth International Conference on The-

ory and Applications of Satisfiability Testing, LNCS 2919,
pages 502–518, 2003.

[14] H. H. Hoos and T. Stützle. Stochastic Local Search: Foun-

dations & Applications. Elsevier / Morgan Kaufmann, 2004.
[15] D. Johnson and M. Trick, editors. Second DIMACS imple-

mentation challenge : cliques, coloring and satisfiability,
volume 26 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical So-
ciety, 1996.

[16] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Du-
rak, X. Leroy, and R. Treinen. Managing the complex-
ity of large free and open source package-based software
distributions. In Proceedings of the 21st IEEE/ACM In-

ternational Conference on Automated Software Engineering

(ASE06), pages 199–208, Tokyo, JAPAN, september 2006.
IEEE Computer Society Press.

[17] V. Manquinho and J. Marques-Silva. On using cutting planes
in pseudo-boolean optimization. Journal on Satisfiabil-

ity, Boolean Modeling and Computation (JSAT), 2:209–219,
2006. Research Note.

[18] V. Manquinho and O. Roussel. The first evaluation of
pseudo-boolean solvers (pb’05). Journal on Satisfiabil-

ity, Boolean Modeling and Computation (JSAT), 2:103–143,
2006.

[19] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an Efficient SAT Solver.
In Proceedings of the 38th Design Automation Conference

(DAC’01), pages 530–535, 2001.
[20] H. M. Sheini and K. A. Sakallah. Pueblo: A Hybrid Pseudo-

Boolean SAT Solver. Journal on Satisfiability, Boolean

Modeling and Computation (JSAT), 2:165–182, 2006.
[21] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe com-

position of product lines. In GPCE ’07: Proceedings of the

6th international conference on Generative programming

and component engineering, pages 95–104, New York, NY,
USA, 2007. ACM.

[22] E. Torlak, F. S.-H. Chang, and D. Jackson. Finding min-
imal unsatisfiable cores of declarative specifications. In
J. Cuéllar, T. S. E. Maibaum, and K. Sere, editors, FM, vol-
ume 5014 of Lecture Notes in Computer Science, pages 326–
341. Springer, 2008.

[23] E. Torlak and D. Jackson. Kodkod: A relational model
finder. In O. Grumberg and M. Huth, editors, TACAS, vol-
ume 4424 of Lecture Notes in Computer Science, pages 632–
647. Springer, 2007.

[24] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. Opium:
Optimal package install/uninstall manager. In ICSE, pages
178–188. IEEE Computer Society, 2007.

Automated Analysis of Feature Models using Atomic Sets ∗

Sergio Segura
Department of Computer Languages and Systems

University of Seville
Av Reina Mercedes S/N, 41012 Seville, Spain

sergiosegura AT us.es

Abstract

Scalability is recognized as a key challenge in the au-

tomated analysis of Feature Models (FMs). Current solu-

tions in this context mainly propose using different logic

paradigms as a way to improve the performance at the so-

lution level while the problem remains the same. Atomic

Sets (ASs) were proposed as a promising solution for the

simplification of FMs (i.e. reduction of the number of vari-

ables) in the context of automated analysis. However, years

after their introduction, the lack of specific algorithms and

performance results still hinder its integration into current

proposals and tools. In this paper, we set the basis for the

usage of ASs as a generic technique for the automated anal-

ysis of FMs. In particular, we first propose a specific algo-

rithm to construct the ASs of an FM. Then, we present a

performance test measuring the degree of improvement (in

time and memory) when implementing ASs into CSP, BDD

and SAT-based solutions.

1. Introduction

The automated analysis of FMs enables the extraction of
information from the models through the implementation
of a number of analysis operations. The problems of fea-
ture combinatorics related to these operations are accepted
to be NP-hard and can take a long time to solve [2]. Current
solutions in this context mainly focus on the usage of dif-
ferent logic paradigms and solvers as a way to improve the
performance at the solution level [2, 5, 6]. However, few
efforts have been made to study how improving the perfor-
mance through the treatment of FMs in the domain of the
problem.

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web-Factories
(TIN2006-00472) and the Andalusian Government project ISABEL (TIC-
2533)

In [10], Zhang et al. proposed a propositional logic-
based method for the verification of FMs at different bind-
ing times. In their work, the authors proposed the usage of
so-called atomic sets as a way to improve the efficiency of
the process at the problem level. An atomic set represents
a group of features (at least one) that can be treated as a
unit during the analysis of an FM. According to Zhang et

al. working with atomic sets instead of features may of-
ten reduce the size of the problem to solve improving effi-
ciency. However, even when atomic sets seems a promising
technique, the benefits of using it are still unknown by the
research community and the lack of specific algorithms and
empirical results difficults its integration into current pro-
posals.

In this paper, we set the basis for the usage of atomic sets
as a generic technique for the automated analysis of FMs.
To this aim, we report the lessons learned from integrating
atomic sets into our framework for the automated analysis
of FMs, FAMA1 [5, 9]. In particular, we first propose an
algorithm to construct the atomic sets of a given FM. Then,
we detail the results of a performance test measuring the
degree of improvement (in time and memory) when imple-
menting atomic sets into CSP, BDD and SAT-based solu-
tions integrated in FAMA.

The remainder of the paper is structured as follows: in
Section 2, the automated analysis of FMs and atomic sets
are introduced. Our algorithm for the computation of the
atomic set of an FM and the experimental results are pre-
sented in Section 3. Finally, we summary our conclusions
in Section 4.

2. Preliminaries

2.1. Automated Analysis of Feature Models

The analysis of an FM consists on the observation of
its properties. Typical operations of analysis allow finding

1http://www.isa.us.es/fama/

Figure 1. Atomic sets

out whether an FM is void (i.e. it represents no products),
whether it contains errors (e.g. feature that can not be part
of any products) or what is the number of product of the
software product line represented by the model.

In order to enable the automated analysis of FMs spe-
cific logic paradigms and solvers have been proposed. In
particular, the analysis is generally performed in two steps:
i) First, the model is translated into an specific logic repre-
sentation such as a Constraint Satisfaction Problem (CSP)
[3], a SATisfiability problem (SAT) [1] or a Binary Deci-
sion Diagram (BDD) [8], ii) Then, off-the-shelf solvers are
used to automatically perform a variety of operations on the
logic representation of the model.

The available empirical results [5, 6] and surveys [4] sug-
gests that there is neither an optimum logic paradigm nor
solver to perform all the operations identified on FMs. As a
result of this, current research efforts as the FAMA frame-
work integrate different paradigms and solver in order to
combine the best of all of them in terms of performance [7].

2.2. Atomic Sets

The usage of atomic sets for the automated analysis of
FMs was proposed by Zhang et al. back in 2004 [10].
An atomic set represent a group of features (at least one)
that can be treated as a unit during the analysis of an FM.
The intuitive idea of atomic sets is that mandatory features
and their parent features can be treated as a whole in cer-
tain analysis operation without altering the result. This is
because those features can never appear in a product sep-
arately. Figure 1 depicts an FM inspired by the mobile
phone industry. The areas delimited by dashed lines illus-
trate the atomic sets. As an example, feature ’USB’ can only
be part of a product if its parent feature, ’Connectivity’, is
also part of the product. Thus, both features can be treated

as a unit to perform some operation such as finding out if
the model is void (i.e. it represents at least one product)
or what is the number of product represented by the model.
The step to use atomic sets as the basic unit in the analysis
can be achieved by replacing each feature in the model by
the atomic set which contains it.

The benefit of using atomic sets lies in efficiency. Work-
ing with atomic sets instead of features may reduce the
number of variables to consider and consequently the size
of the problem to solve. As an example, in the FM of Figure
1 the number of variables after constructing atomic sets is
reduced from 20 (features) to 11 (atomic sets).

3. Our Contribution

3.1. Atomic Sets Computation

In this section, we present an algorithm for the construc-
tion of the atomic sets of a given FM. Figure 2 depicts the
pseudocode of the function implementing our algorithm.
The function receives an FM as input and returns a set of
atomic sets as output. Each atomic set is composed by a
name (e.g. ”AS-2”) and the collection of features in the
atomic set. The main part of the work is made by a recur-
sive procedure also presented as part of the figure. This pro-
cedure checks all the subfeatures of the feature received as
input. For each subfeature, if it is mandatory, it is added to
the current atomic set under construction. Otherwise, a new
atomic set including the subfeature is created and added to
the collection of atomic sets. After repeating this process
with all the features in the model, the set of atomic set is
returned.

1 function buildAS(FeatureModel fm)::Collection<AtomicSet>
2 Collection<AtomicSet> atomic sets = new Set<AtomicSet>();
3 Feature root = fm.getRoot();
4 AtomicSet as = new AtomicSet(”AS-0”);
5 as.addFeature(root);
6 atomic sets.add(as);
7 computeAS(atomic sets, root, as, 0);
8 return atomic sets;
9 endfunction

10 procedure computeAS(Collection<AtomicSet> atomic sets, Feature f , AtomicSet current set, int set)
11 foreach Feature g in f .getSubfeatures()
12 if (g.getRelationType() == Feature.MANDATORY)
13 current set.addFeature(g);
14 computeAS(atomic sets,g,current set, set);
15 else

16 String setname = ”AS-” + (set+1);
17 AtomicSet new as = new AtomicSet(setname);
18 new as.addFeature(g);
19 atomic sets.add(new as);
20 computeAS(atomic sets,g,new as,set+1);
21 endif

22 endforeach

23 endprocedure

Figure 2. Algorithm for the computation of atomic sets

3.2. Experimental Results

In order to measure the benefits of implementing atomic
sets we carried out a performance comparison using the
FAMA framework. In particular, we first generated a set of
random FMs with a different number of features and cross-
tree constraints. Then, we performed some operations us-
ing CSP, BDD and SAT-based solvers with and without the
usage of atomic sets. Next, we gave the details about the
experiment and the results.

3.2.1 The Experiments

For the experiments, we generated a number of random
FMs using FAMA. The algorithm for the automated gen-
eration of those models is presented in Appendix A as one
of the contributions of the paper. In particular, we used
four groups of 50 randomly generated FMs. Each group
included FMs with a number of features in a specific range
([50-100),[100-150),[150-200) and [200-300)) in order to
test the performance with different sizes of the problem.
Once all the FMs were generated, we proceeded with the
execution using the FAMA framework. For the execution,
we used three of the solvers integrated in FAMA: JaCoP2

(CSP), JavaBDD3 (BDD) and Sat4j4 (SAT). The set of ex-

2http://jacop.cs.lth.se/
3http://javabdd.sourceforge.net/
4http://www.sat4j.org/

N. of Features N. of instances CT constraints

[50-100) 50 [0%-25%]
[100-150) 50 [0%-25%]
[150-200) 50 [0%-25%]
[200-300] 50 [0%-25%]

Table 1. Experiments

periments was executed twice with each solver, with and
without the usage of atomic sets, in order to compare the im-
provement in the performance. Each FM was executed sev-
eral times increasing the number of cross–tree constraints
from 0 to 5, 10, 15, 20 and 25% of the number of the
features in the FM. Cross-tree constraints were added ran-
domly as well, but checking that the same feature can not
appear in more than one cross–tree constraint and that a fea-
ture can not have a cross–tree constraint with any of its an-
cestors. Once the results were obtained, we worked out av-
erages from the results in order to avoid as much exogenous
interferences as possible. Averages were obtained from all
the FMs in each range with the same percentage of cross–
tree constraints. Table 1 summarizes the characteristics of
the experiments.

For our experiments we performed two operations: i)
finding out if an FM is valid, that is, if it represents at last
one product and ii) finding out the total number of products
represented by a given FM. The first one is one of simplest

operation while the second is the hardest one in terms of
performance because it is necessary to work out the total
number of possible combinations. The data extracted from
the tests were:

• Average memory used by the logic representation of
the FM (measured in Kilobytes).

• Average execution time to find one product (measured
in milliseconds).

• Average execution time to obtain the number of prod-
ucts (measured in milliseconds).

• Time to compute the atomic sets (measured in millisec-
onds).

In order to evaluate the implementation, we measured
its performance and effectiveness. We implemented the so-
lution using Java 1.6.0 04. We ran our tests on a WIN-
DOWS VISTA BUSINESS EDITION machine equipped
with a 2.4Ghz Intel Core 2 microprocessor and 2048 MB
of RAM memory.

3.2.2 The Results

The experimental results revealed a noticeable improve-
ment in the performance of solvers when using atomic sets.
The first evidence was a reduction in the average memory
usage of 4% in JaCoP, 15% in Sat4j and 19% in JavaBDD.
The operation to find one product was performed on aver-
age between 10% (JaCoP and Sat4j) and 20% (JavaBDD)
faster using atomic sets. Similarly, the number of products
of the FMs was computed on average between 5% and 20%
faster using this technique.

The improvement in the performance was better observ-
able with large FMs. As an example, Figure 3 illustrates the
average memory and time used by JavaBDD in the range of
200-300 features. Improvements were especially consider-
able in the experiments with a higher number of cross-tree
constraints. In these cases, experiments using atomic sets
revealed an improvement of up to 25 seconds (28% of im-
provement) on average when finding the number of solu-
tions.

The benefits of using atomic sets were especially notice-
able when we studied the hardest cases in terms of perfor-
mance. An example of this situation is illustrated in Figure
4. This figure presents the time and memory consumed by
JavaBDD in the worst cases of the range of experiments be-
tween 200 and 300 features. In these cases, we found an
improvement of up to 119 MB (in a total of 476) in mem-
ory and 7 minutes (in a total of 27) in the time to find the
number of solutions.

Finally, we found that the time to compute the atomic
sets of FMs was insignificant (0-10 ms) in all the cases.

3.2.3 Discussion

The improvement in time when adopting atomic sets was
not easy to measure in part of the experiments. This was
because many of these were not complex enough and the
time to perform the operations was very low. This is the
reason because we provided range of improvements for the
time and we do not give accurate data.

The available empirical results shows that the memory
usage of BDD solvers can be huge [5]. In fact, it seems to
increases exponentially with the number of cross-tree con-
straints. In this context, our experimental results suggest
that atomic sets could be used as a suitable strategy to ease
the effects of this trend.

Our performance test showed that the usage of atomic-
set may provide a great improvement of the performance
specially when dealing with large FMs. However, we re-
mark that the cost of implementing atomic sets is practi-
cally insignificant and can bring very positive results even
in small specific cases (especially when these are hard to
compute).

Finally, we remark that in this paper we focus on the per-
formance provided by different solvers when implementing
atomic sets. For an empirical comparison of the perfor-
mance provided by the solvers presented in this paper we
refer the reader to [5].

4. Conclusions

In this paper, we set the basis for the usage of atomic sets
as a generic technique for the automated analysis of FMs.
In particular, we first presented an algorithm to construct
the atomic set of a given FMs. Then, we detailed the results
of a performance test measuring the degree of improvement
when using atomic sets with CSP, BDD, and SAT-based so-
lutions currently integrated in the FAMA framework.

The experimental results revealed that the improvement
when using atomic sets can be considerable in both, time
and memory. This improvement was especially important
in large FMs (in the order of hundreds of MB and minutes).
However, we remark that the payoff for implementing this
technique is insignificant and can bring noticeable results
even in small cases, especially if these are hard to compute.

As a result of our performance test, we conclude that the
techniques for the treatment of FMs at the problem level
could help to improve the efficiency notably. Additionally,
we consider that this kind of techniques could be applicable
to the analysis of other kind of variability models.

References

[1] D. Batory. Feature models, grammars, and proposi-
tional formulas. In Software Product Lines Confer-

(a) Average memory usage (b) Average time to find the number of products

Figure 3. Average time and memory usage of JavaBDD (range 200 -300 features)

(a) Memory usage (b) Time to find the number of products

Figure 4. Time and memory usage of JavaBDD in the worst cases (range 200-300 features)

ence, LNCS 3714, pages 7–20, 2005.

[2] D. Batory, D. Benavides, and A. Ruiz-Cortés. Auto-
mated analysis of feature models: Challenges ahead.
Communications of the ACM, December, 2006.

[3] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Auto-
mated reasoning on feature models. LNCS, Advanced

Information Systems Engineering: 17th International

Conference, CAiSE 2005, 3520:491–503, 2005.

[4] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Se-
gura. A survey on the automated analyses of feature
models. In Jornadas de Ingenierı́a del Software y

Bases de Datos (JISBD), 2006.

[5] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. A first step towards a framework for the auto-
mated analysis of feature models. In Managing Vari-

ability for Software Product Lines: Working With Vari-

ability Mechanisms, 2006.

[6] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. Using Java CSP solvers in the automated anal-
yses of feature models. LNCS, 4143:389–398, 2006.

[7] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. FAMA: Tooling a framework for the auto-
mated analysis of feature models. In Proceeding of

the First International Workshop on Variability Mod-

elling of Software-intensive Systems (VAMOS), pages
129–134, 2007.

[8] K. Czarnecki and P. Kim. Cardinality-based feature
modeling and constraints: A progress report. In Pro-

ceedings of the International Workshop on Software

Factories At OOPSLA 2005, 2005.

[9] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura,
and A. Jimenez. Fama framework. In Proceedings of

the 12th International Software Product Line Confer-

ence (Tool demonstration), 2008.

[10] W. Zhang, H. Zhao, and H. Mei. A propositional
logic-based method for verification of feature models.
In J. Davies, editor, ICFEM 2004, volume 3308, pages
115–130. Springer–Verlag, 2004.

A Random Feature Model Generation

The random generation of feature models is one of the
capabilities of the FAMA framework. Figure 5 depicts
the pseudocode of the algorithm used for the generation of
those models. In particular, the algorithm takes the follow-
ing parameters as inputs:

w : is the maximum number of child relationships of the
features in the model.

h : is the maximum height of the model. We consider
the height of a feature model as the maximum distance
between the root and any feature without considering
cross–tree constraints.

e : is the maximum number of elements in a set relation-
ship.

d : is the number of cross–tree constraints to be gener-
ated.

1 function GenerateFM(int w,h,e,d)::FeatureModel
2 FeatureModel fm = new FeatureModel();
3 Feature root = new Feature();
4 fm.setRoot(root);
5 fm.generateTree(w,h,e,root);
6 fm.generateCrossTreeConstraints(d);
7 return fm;
8 endfunction

9 procedure GenerateTree(int w,h,e, Feature parent)
10 if (h ≥ 1)
11 int nChildren = Random.getInt(w);
12 forach int i in {0..nChildren}
13 RelationType type = Random.getRelationType();
14 Feature child = new Feature();
15 switch(type)
16 case mandatory:
17 createMandatory(parent,child);
18 generateTree(w,h-1,e,child);
19 case optinal:
20 createOptional(parent,child);
21 generateTree(w,h-1,e,child);
22 case cardinality:
23 int card = Random.getInt();
24 createCardinality(parent,child,1,card);
25 generateTree(w,h-1,e,child);
26 case set:
27 int nChildrenSet = Random.getInt(e);
28 int setCard = Random.getInt(nChildrenSet);
29 FeatureGroup group = new FeatureGroup(nChildrenSet);
30 createSet(parent,group,1,setCard);
31 foreach Feature node in group

32 GenerateTree(w,h-1,e,node)
33 endforeach

34 endswitch

35 endforeach

36 endif

37 endprocedure

38 procedure generateCrossTreeConstraints(int d)
39 if (h ≥ 1)
40 int i = 0;
41 while (i < d)
42 Feature f = getFeatureRandomly();
43 Feature g = getFeatureRandomly();
44 if (valid(f ,g))
45 if (Random.getBool == true)
46 generateDepends(f ,g);
47 else

48 generateExcludes(f ,g);
49 endif

50 i++;
51 endif

52 endwhile

53 endif

54 endprocedure

Figure 5. Algorithm for the generation of random feature mod els

Filtered Cartesian Flattening: An Approximation Technique for

Optimally Selecting Features while Adhering to Resource

Constraints

J. White, B. Doughtery, and D. C. Schmidt

Vanderbilt University, EECS Department

Nashville, TN, USA

Email:{jules, doughtery, schmidt}@dre.vanderbilt.edu

July 25, 2008

Abstract

Software Product-lines (SPLs) use modular software
components that can be reconfigured into different
variants for different requirements sets. Feature mod-
eling is a common method for capturing the configu-
ration rules for an SPL architecture. A key challenge
for developers is determining how to optimally se-
lect a set of features while simultaneously honoring
resource constraints. For example, optimally select-
ing a set of features that fit the development bud-
get is an NP-hard problem. Although resource con-
sumption problems have been extensively studied in
the Artificial Intelligence and Distributed Comput-
ing communities, the algorithms that these commu-
nities have developed, such as Multiple-choice Knap-
sack Problems (MMKP) approximation algorithms,
have not been extensively applied to feature selec-
tion subject to resource constraints. The paper pro-
vides the following contributions to the study of au-
tomated feature selection for SPL variants: (1) we
present a polynomial time approximation technique
called Filtered Cartesian Flattening (FCF) for deriv-
ing approximately optimal solutions to feature selec-
tion problems with resource constraints by transform-
ing the problems into equivalent MMKP problems
and using MMKP approximation algorithms, (2) we
show that FCF can operate on large feature models

that would not be possible with existing algorithmic
approaches, and (3) we present empirical results from
initial experiments performed using FCF. Our results
show that FCF is 93%+ optimal on feature models
with 5,000 features.

1 Introduction

Software Product-Lines (SPLs) [5] define reusable
software architectures where applications are assem-
bled from modular components. Each time a new
version of an SPL application (called a variant) is
created, the rules governing the composition of the
SPLs modular components must be strictly adhered
to. Feature Modeling [7] is a common modeling tech-
nique used to capture an SPL’s configuration rules.

A feature model is a tree-like structure where each
node in the tree represents a variation or increment
in application functionality. Parent-child relation-
ships in the tree indicate the refinement of application
functionality. For example, in a feature model for an
Magnetic Resonance Imaging system a parent feature
would be Magnet Strength and the children would be
1.5 Tesla Magnet or 3 Tesla Magnet.

Each SPL variant is described as a selection or
list of features that are present in the variant. The
construction of a variant is bounded by adding con-
straints on how features are selected. If a feature is

selected, the feature’s parent must also be selected.
Moreover, features can be required, optional, or in-
volved in XOR/Cardinality relationships with other
features to model a wide range of configuration rules.

A key challenge when selecting features for an SPL
variant is determining how to select an optimal set
of features while simultaneously adhering to one or
more resource constraints. For example, in a med-
ical imaging system, if each hardware feature has a
cost and value associated with it, selecting a set of
features that maximizes the resulting variant’s value
but also fits within a customer’s procurement bud-
get is hard. Proofs that this problem is an NP-hard
problem can be built by showing that any instance of
the NP-complete Multi-dimensional Multiple-choice
Knapsack Problem [1] (MMKP) can be reduced to a
feature selection problem with resource constraints,
as described in Section 3.1.

Existing techniques for deriving solutions to fea-
ture selection problems [4, 8, 3, 13] have utilized exact
methods, such as integer programming [12] or SAT
solvers [9]. Although these approaches provide guar-
anteed optimal answers they have exponential algo-
rithmic complexity. As a result, these algorithms do
not scale well to large feature selection problems with
resource constraints.

Resource constraints have been extensively stud-
ied by Artificial Intelligence and Distributed Com-
puting researchers. Although good approximation al-
gorithms have been developed for problems involving
resource constraints [1], these algorithms have so far
not been applied to feature modeling. A key obsta-
cle to applying existing MMKP algorithms to feature
selection subject to resource constraints is that the
hierarchical structure of a feature model does not fit
into the MMKP problem paradigm.

To address the lack of approximation algorithms
for selecting featues subject to resource constri-
ants, we have created a polynomial-time approxima-
tion technique, called Filtered Cartesian Flattening
(FCF), for selecting approximately optimal feature
sets while adhering to multi-dimensional resource
constraints. This paper provides several contribu-
tions to the automated construction of SPL vari-
ants. First, we present the polynomial time FCF
technique for selecting approximately optimal fea-

ture sets while respecting resource constraints. We
then show how FCF can be combined with different
MMKP approximation algorithms to provide differ-
ent levels of optimality and time complexity. Finally,
we present initial empirical data showing that FCF
provides roughly 93%+ optimality on feature models
with 5,000 features.

The remainder of this paper is organized as fol-
lows: Section 2 describes the challenge of optimally
selecting a set of features subject to a set of re-
source constraints; Section 3 presents our FCF ap-
proximation technique for selecting nearly-optimal
feature sets subject to resource constraints; Section 4
presents empirical results showing that our algorithm
averages 93%+ optimality on feature models of 5,000
features; Section 5 compares our work to related re-
search; and Section 6 presents concluding remarks
and lessons learned.

2 Challenge: Optimally Select-

ing Features Subject to Re-

source Constraints

A common goal in selecting features is to maximize
the perceived value or quality of the variant pro-
duced. In the context of medical imaging systems,
for instance, a key goal is to maximize the accuracy
of the images produced. The problem is that there
are usually additional constraints on the feature se-
lection that are not captured in the feature model
and that make the optimization process hard.

For example, features often have costs associated
with them, such as the cost of different strength mag-
nets for a Magnetic Resonance Imaging (MRI) ma-
chine. A producer of an MRI machine cannot force
its customers to buy an MRI variant that exceeds
the customer’s budget. When a customer requests
an MRI machine, therefore, the producer must select
a set of features for which the sum is less than the
customer’s budget, which also maximizes the accu-
racy of the machine.

We call this problem optimal feature selection
subject to resource constraints. As shown in Sec-
tion 3.1, any instance of the NP-complete problem

(the MMKP problem) can be reduced to an instance
of this problem. Optimal feature selection subject to
resource constraints is thus NP-hard.

Large-scale industrial feature models, such as those
for the automation software in continuous casting
steel plants, can contain on the order of 30,000 fea-
tures [11]. Existing techniques [4, 8, 3, 13] that use
exact but exponential algorithms do not scale well
to these large problem sizes. Other existing approx-
imation algorithms, such as those for MMKP prob-
lems cannot be directly applied to optimal feature
selection subject to resource constraints. Since exact
algorithms do not scale well for these problems and
existing approximation algorithms cannot be applied,
it is hard to automate feature models for large-scale
applications.

3 Filtered Cartesian Flattening

This section presents the Filtered Cartesian Flatten-
ing (FCF) approximation technique for optimal fea-
ture selection subject to resource constraints. FCF
transforms an optimal feature selection problem with
resource constraints into an equivalent MMKP prob-
lem and then solves it using an MMKP approxima-
tion algorithm.

3.1 MMKP Problems

A W:21, H:1 B W:17, H:6 C W:23, H:10

Set 1

D W:24, H:3 E W:29, H:1 F W:2, H:1

Set 2

MMKP Solution

Figure 1: A Feature Model of an MMKP Problem
Instance

A Knapsack problem [6] is an NP-complete prob-
lem where there is a knapsack of fixed size and the
goal is to place as many items as possible from a set
into the knapsack. An MMKP problem is a varia-
tion on the Knapsack problem where the items are
divided into X disjoint sets and at most one item
from each set may be placed in the knapsack. Val-
ues are typically assigned to each item and the goal

is to maximize the value of the items placed in the
knapsack.

MMKP problems can be reduced to optimal fea-
ture selection problems with resource constraints.
First, a single root feature denoting the solution is
created. Next, for each set, a required child feature
representing the set is added to the feature model as a
child of the root. For each set, the corresponding fea-
ture in the feature model is populated with a child
XOR group1 containing the items in the set. The
available resources for the feature selection problem
are defined as the size of the knapsack. The resources
consumed by each feature are assigned to the length,
width, and height of the original MMKP item. An ex-
ample feature model of an MMKP problem is shown
in Figure 1.

1 Tesla 1.5 Tesla 3 Tesla

Magnet

Alg. 1 Alg. 2

Alg. 3a Alg. 3b Alg. 3c

Alg. 3

Alg.

MRI

Figure 2: An Example MRI Feature Model

FCF works by performing the reverse process–
transforming feature selection problems with resource
constraints into MMKP problems. The steps in the
FCF technique are designed to flatten the hierar-
chically structured feature model into a number of
independent MMKP sets to form an MMKP prob-
lem. Figure 2 shows an example feature model of an
MRI machine and Figure 3 illustrates the equivalent
MMKP problem. Each item in these sets represents
a potential valid partial feature selection from the
feature model. There are an exponential number of
potential feature selections and thus some of the po-
tential configurations must be filtered out to limit the
time complexity of the technique. FCF performs this
filtering in the third step of the algorithm, described
in Section 3.4.

Since each MMKP set that is produced by FCF

1An XOR group is a set of features of which exactly one of

the features may be selected at a time.

MMKP Set 1:

<MRI, Magnet, 1 Tesla>,

<MRI, Magnet, 1.5 Tesla>,

<MRI, Magnet, 3 Tesla>

MMKP Set 2:

<Alg., Alg 1>,

<Alg., Alg 2>,

<Alg., Alg 3, Alg. 3a>,

<Alg., Alg 3, Alg. 3b>,

<Alg., Alg 3, Alg. 3c>

Note:

(items/feature selections denoted with ’< >’)

Figure 3: MMKP Sets for MRI Feature Model

contains items representing valid partial feature selec-
tions, the technique must ensure that choosing items
from any of the X MMKP sets produces a feature
selection that is both valid and complete. The FCF
algorithm accomplishes this task in its first step (see
Section 3.2) by creating one MMKP set for the sub-
tree of features directly required by the root feature.
The remaining MMKP sets are produced from the
subtrees of features that are connected to the root
through an optional feature. The technique does
not currently support cross-tree constraints, although
this is part of our future research.

3.2 Step 1: Cutting the Feature

Model Graph

The first step in FCF is to subdivide the feature
model into a number of independent subtrees. The
goal is to choose the subtrees so that the selection of
features in one subtree does not affect the selection of
features in other subtrees. One MMKP set will later
be produced for each subtree.

We define features that are optional or involved
in an XOR group or a cardinality group as choice
points. A cardinality group is a group of features
that when selected must adhere to a cardinality ex-
pression (e.g., select 2 . . . 3 of the features X, Y, and
Z). An XOR group is a special case of a cardinality

group where exactly one feature from the group must
be selected (e.g., it has cardinality 1 . . . 1). Starting
from the root, a depth-first search is performed to
find each optional feature with no ancestors that are
choice points. At each optional feature with no choice
point ancestors, a cut is performed to produce a new
independent subtree, as shown in Figure 4.

Figure 4: Cutting to Create Independent subtrees

3.3 Step 2: Converting All Feature

Constraints to XOR Groups

Each MMKP set forms an XOR group of elements.
Since MMKP does not support any other relation-
ship operators, such as cardinality, nor does it sup-
port hierarchy, we must flatten each of the subtrees
and convert all of their relationship types into XOR.
This conversion allows the conversion of the feature
model’s independent subtrees into a series of MMKP
sets.

Cardinality groups are converted to XOR groups
by replacing the cardinality group with an XOR
group containing all possible combinations of the car-
dinality group’s elements that satisfy the cardinality
expression. Each new item produced from the Carte-
sian product has the combined resource consumption
and value of its constituent features. Since this con-
version could create an exponential number of ele-
ments, we bound the maximum number of elements
that are generated to a constant number K. Rather
than requiring exponential time, therefore, the con-
version can be performed in constant time.

The conversion of cardinality groups is one of the
first steps where approximation occurs. We define
a filtering operation that chooses which K elements
from the possible combinations of the cardinality

group’s elements to add to the XOR group. All other
elements are discarded.

Any number of potential filtering options can be
used. Our experiments evaluated a number of filter-
ing strategies, such as choosing (1) the K highest val-
ued items, (2) a random group of K items, and (3) a
group of K items evenly distributed across the items’
range of weights. We define a feature’s weight or size
as the amount of each resource consumed by the fea-
ture. We found that selecting the K items with the
best ratio of V alue√

P

rc2

i

, where rci is the amount of the

ith resource consumed by the item, provided the best
results. This sorting critera has been used success-
fully by a number of other MMKP algorithms [2]. An
example conversion with K = 3 and random selection
of items is shown in Figure 5.

Figure 5: Converting a cardinality group to an XOR
Group with K=3 and Random Selection

Individual features with cardinality expressions at-
tached to them are converted to XOR groups using
the same method. The feature is considered as a car-
dinality group containing M copies of the feature,
where M is the upper bound on the cardinality ex-
pression (e.g. [L..M] or [M]). The conversion then
proceeds identically to cardinality groups.

Optional features are converted to XOR groups by
replacing the optional feature O with a new required
feature O′. O′ in turn, has two child features, O

and ∅ forming an XOR group. O′ and ∅ have zero
weight and value. An example conversion is shown
in Figure 6.

3.4 Step 3: Flattening with Filtered

Cartesian Products

For each independent subtree of features that now
only have XOR and required relationships, an

Figure 6: Converting an Optional Feature into an
XOR Group

MMKP set needs to be produced. Each MMKP set
needs to consist of a single top-level XOR group. To
create a single top-level XOR group, we perform a se-
ries of recursive flattening steps using filtered Carte-
sian products to produce an MMKP set containing
complete and valid partial feature selections for the
subtree.

For each feature with a series of required children,
a set of items is produced from a filtered Cartesian
product of the sets produced by recursively running
the algorithm on its children. For each feature with
an XOR group child, a set of items is produced con-
sisting of the Cartesian product of the feature and the
union of the sets produced by recursively applying the
algorithm to the features in its XOR subgroup. This
process is repeated until a single set of items remains.
A visualization of this process is shown in Figure 7.

Figure 7: Flattening an XOR Group

Once each independent subtree has been converted
into an MMKP set, we must mark those sets which
represent optional configuration choices. For each set
that does not include the root feature, we add an item

∅ with zero weight and zero value indicating that no
features in the set are chosen. This standard MMKP
method handles situations where choosing an item
from some sets is optional. Since the root feature
must always be chosen, the ∅ item is not added to its
set.

3.5 Step 4: MMKP Approximation

The first three steps produce an MMKP problem
where each set contains items representing potential
partial configurations of different parts of the feature
model. One set contains partial configurations for
the mandatory portions of the feature model con-
nected to the root. The remaining sets contain partial
configurations of the optional subtrees of the feature
model.

The final step in deriving an optimal architectural
feature selection is to run an existing MMKP approx-
imation algorithm to select a group of partial config-
urations to form the feature selection. For our imple-
mentation of FCF, we used a simple modification of
the M-HEU algorithm [2] that puts an upper limit on
the number of upgrades and downgrades that can be
performed. Since FCF produces an MMKP problem,
we can use any other MMKP approximation algo-
rithm, such as C-HEU [10]) which uses convex hulls
to search the solution space. The solution optimality
and solving time will vary depending on the algo-
rithm chosen.

3.6 Algorithmic Complexity

The complexity of FCF’s constituent steps can be
analyzed as follows, where n is the number of features
in the feature model:

• The first step in the FCF algorithm, cutting the
tree, requires O(n) time to traverse the tree and
find where to make the top-level optional fea-
tures.

• The second step of the algorithm requires
O(Kn ∗ S) steps, where S is the time required
to perform the filtering operation. Simple fil-
tering operations, such as random selection, do
not add any algorithmic complexity. In these

cases, at most n sets of K items must be cre-
ated to convert the tree to XOR groups, yielding
O(Kn). In our experiments, we selected the K

items with the best value to resource consump-
tion ratio. With this strategy, the sets must be
sorted, yielding O(Kn2 log n).

• The third step in the algorithm requires flatten-
ing at most n groups using filtered Cartesian
products, which yields a total time of O(Kn∗S).

• The solving step incurs the algorithmic complex-
ity of the MMKP approximation algorithm cho-
sen.

This analysis yields a total general algorithmic
complexity for FCF of (n + (Kn ∗ S) + (Kn ∗ S) +
MMKP +n) = O(Kn∗S+MMKP +n). As long as
a polynomial time filtering operation is applied, FCF
will have an overall polynomial time complexity. For
large-scale problems, this polynomial time complex-
ity is significantly better than an exponential running
time.

4 Results

To evaluate our FCF approximation technique, we
generated random feature models and then created
random feature selection problems with resource con-
straints from the feature models. For example, we
would first generate a feature model and then assign
each feature an amount of RAM, CPU, etc. that it
consumed. Each feature was also associated with a
value. We randomly generated a series of available
resources values and asked the FCF algorithm to de-
rive the feature selection that maximized the sum of
the value attributes while not exceeding the randomly
generated available resources. Finally, we compared
the FCF answer to the optimum answer.

We performed the experiments using 8 dual proces-
sor 2.4ghz Intel Xenon nodes with 2 GB RAM. Each
node was loaded with Fedora Core 4. We launched
2 threads on each machine, enabling us to generate
and solve 16 optimal feature selection with resource
constraints problems in parallel.

The results from solving 18,500 different feature se-
lection problems, each with a feature model of 5,000
features and 2 resource types (RAM and CPU) is
shown in Figure 8. We set the max set size, K, in
the filtering steps to 2,500. The X axis shows the per-
centage of optimality. The Y axis shows the number
of problem instances or samples that were solved with
the given optimality. The overall average optimality
was 93%.

Figure 8: FCF Optimality on 18,500 Feature Models
with 5,000 Features and 2 Resources

5 Related Work

Benavides et al. [4] present a technique for using Con-
straint Satisfaction Problems (CSPs) to model and
solve feature selection problems. This technique can
be modified to solve feature selection problems sub-
ject to resource constraints [13]. Their technique
works well for small-scale problems, where an ap-
proximation technique is not needed. For larger-scale
problems, however, their technique is too computa-
tionally demanding. In contrast, FCF performs well
on these large-scale problems.

Other approaches to automated feature selection
rely on propositional logic, such as those presented

by Mannion [8] and Batory [3]. These techniques
were not designed to handle integer resource con-
straints and thus are not equipped to handle optimal
feature selection problems subject to resource con-
straints. Moreover, these techniques rely on SAT
solvers that use exponential algorithms. FCF is a
polynomial-time algorithm that can handle integer
resource constraints and thus can perform optimal
feature selection subject to resource constraints on
large-scale problems.

6 Conclusion

Approximation algorithms are needed to optimally
select features for large-scale feature models subject
to resource constraints. Although there are numerous
approximation algorithms for other NP-hard prob-
lems, they do not directly support optimal feature
selection subject to resource constraints. The closest
possible class of approximation algorithms that could
be applied are MMKP approximation algorithms but
these algorithms are not designed to handle the hier-
archical structure and non-XOR constraints in a fea-
ture model. This lack of approximation algorithms
limits the scale of model on which automated fea-
ture selection subject to resource constraints can be
performed.

This paper shows how the Filtered Cartesian Flat-
tening (FCF) approximation technique can be ap-
plied to optimally select features subject to resource
constraints. FCF creates a series of filtered Cartesian
products from a feature model to produce an equiv-
alent MMKP problem. After an equivalent MMKP
problem is obtained, existing MMKP approximation
algorithms can be used to solve for a feature selection.
The empirical results in Section 4 show how FCF can
achieve an average of at least 93% optimality for large
feature models. The results can be improved by using
more exact MMKP approximation algorithms, such
as M-HEU [2].

From our experience with FCF, we have learned
the following lessons:

• For small-scale feature models (e.g., with < 100
features) MMKP approximation algorithms do

not provide optimal results. For these smaller
problems, exact techniques, such as those de-
signed by Benavides et al. [4], should be used.

• For large-scale feature models (e.g., with > 5,000
features) exact techniques typically require days,
months, or more, to solve optimal feature selec-
tion problems subject to resource constraints. In
contrast, FCF typically requires between 1-5 sec-
onds for a 5,000 feature problem.

• Once a feature model has been subdivided into a
number of independent subtrees, these subtrees
can be distributed across independent processors
to flatten and solve in parallel. The FCF tech-
nique is thus highly amenable to multi-core pro-
cessors and parallel computing.

An implementation of FCF is included with the
open-source GEMS Model Intelligence project and is
available from eclipse.org/gmt/gems.

References

[1] M. Akbar, E. Manning, G. Shoja, and S. Khan.
Heuristic Solutions for the Multiple-Choice
Multi-Dimension Knapsack Problem.
International Conference on Computational
Science, pages 659–668, May 2001.

[2] M. Akbar, E. Manning, G. Shoja, and S. Khan.
Heuristic Solutions for the Multiple-Choice
Multi-Dimension Knapsack Problem. pages
659–668. Springer, May 2001.

[3] D. Batory. Feature Models, Grammars, and
Prepositional Formulas. Software Product
Lines: 9th International Conference, SPLC
2005, Rennes, France, September 26-29, 2005:
Proceedings, 2005.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortés.
Automated Reasoning on Feature Models. 17th
Conference on Advanced Information Systems
Engineering (CAiSE05, Proceedings), LNCS,
3520:491–503, 2005.

[5] P. Clements and L. Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley,
Boston, 2002.

[6] T. H. Cormen, C. E. Leiserson, and R. L.
Rivest. Introduction to Algorithms. MIT, 1990.

[7] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin,
and M. Huh. FORM: A Feature-Oriented
Reuse Method with Domain-specific Reference
Architectures. Annals of Software Engineering,
5(0):143–168, January 1998.

[8] M. Mannion. Using first-order logic for product
line model validation. Proceedings of the
Second International Conference on Software
Product Lines, 2379:176–187, 2002.

[9] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: engineering an efficient
SAT solver. Proceedings of the 38th conference
on Design automation, pages 530–535, 2001.

[10] M. Mostofa Akbar, M. Sohel Rahman,
M. Kaykobad, E. Manning, and G. Shoja.
Solving the Multidimensional Multiple-choice
Knapsack Problem by constructing convex
hulls. Computers and Operations Research,
33(5):1259–1273, 2006.

[11] R. Rabiser, P. Grunbacher, and D. Dhungana.
Supporting Product Derivation by Adapting
and Augmenting Variability Models. Software
Product Line Conference, 2007. SPLC 2007.
11th International, pages 141–150, 2007.

[12] P. Van Hentenryck. Constraint Satisfaction in
Logic Programming. MIT Press Cambridge,
MA, USA, 1989.

[13] J. White, K. Czarnecki, D. C. Schmidt,
G. Lenz, C. Wienands, E. Wuchner, and
L. Fiege. Automated Model-based
Configuration of Enterprise Java Applications.
In The Enterprise Computing Conference,
EDOC, Annapolis, Maryland USA, October
2007.

Knowledge Based Method to Validate Feature Models

Abdelrahman Osman, Somnuk Phon-Amnuaisuk, Chin Kuan Ho
Center of Artificial Intelligent and Intelligent computing,

Multimedia University, Cyberjaya, Malaysia

abdelrahman.osman.06@mmu.edu.my,somnuk.amnuaisuk@mmu.edu.my,ckho@mmu.edu.my

Abstract

Feature model has been used to support requirements

analysis and domain engineering in Software Product

Line by representing variability. This paper proposes a

knowledge base method to validate feature model.

Validation of feature model has been split into two main

processes, automated consistency check (by defining rules

control the variation selections considering cross-tree

constraint dependencies) and the second process is

automated error detection(two types of errors, dead

feature and inconsistency, was defined and validated).

Variability was described among feature model, and then

variability was represented as a knowledge base

containing predicates and rules. In addition to validation,

the proposed method can be used to identified and

provide auto support for some operations on the

automated analysis of feature models (propagation,

cardinality validation, explanation, and optimization).

1 INTRODUCTION

Software Product lines has been defined by Meyer
and Lopez as “a set of products that share a common core
technology and address a related set of market
applications”[1]. Software product lines has two main
processes; the first process is the domain engineering
process which represents problem space and responsible
for preparing domain artifacts including variability. The
second process is the application engineering which aims
to consume specific artifact, picking through variability,
with regard to the desired application specification. One
of the useful techniques to represent variability is the
feature model introduced first in [2]. A particular product-
line member is defined by a unique combination of features.
The set of all legal feature combinations defines the set of
product-line members.

1.1 Feature Models

According to [3], the two most popular definitions of
feature models are: i) an end user visible characteristic of
a system, and ii) a distinguishable characteristic of a
concept (e.g., system, component, and so on) that is
relevant to some stakeholder of the concept. A feature

model is a description of the commonalities and
differences between the individual software systems in a
software product family. In more detail, a feature model
defines a set of valid feature combinations. Each such
valid feature combination can serve as a specification of a
software system [4]. Czarnecki defines Cardinality-based
feature modeling as integrates a number of extensions to
the original FODA notation in [5]. It is very important to
producing error-free feature models, including the
possibility of providing explanations to the modeler so
that errors can be detected and removed; this process is
unfeasible to be done manually.

2. Related Work
One of the earlier and famous usages of knowledge

based systems in requirement engineering are:
"knowledge base software assistant, (KBSA)"[6], and
“knowledge Based system for Modeling software system
Specifications (KBMS)” [7]. Schlich and Hein proved the
needs and benefits of using the knowledge base
representation for configuration systems in [8].
Knowledge Acquisition and Sharing for Requirement
Engineering (KARE) is a project aims to support
Requirement Engineering process with knowledge
engineering [9]. A knowledge-based product derivation
process [10], [11] is a configuration model that includes
three entities of Knowledge Base. The automatic
selection provide a solution to complexity of product line
variability, but in contrast to our proposed method, the
knowledge-based product derivation process does not
provide explicit definition of variability notations and for
the selection process. In addition to that, knowledge-

based product derivation process is not focused on
modeling and validating variability.

Mannion was the first to connect propositional
formulas to feature models [12]. Zhang [13] defined a
meta-model of feature model using UML core package
and he took Mannion’s proposal as base and suggested
the use of an automated tool support based on the SMV

System, Model Checking @CMU. Benavides[14]
proposed a method for mapping feature model into
constraint solver, his method does not cover dependencies
such as require or exclude constraints. Batory [15]
proposed a coherent connection between FMs, grammars
and propositional formulas; he represented basic FMs
used context–free grammars plus propositional logic.
Janota [16] used higher-order logic to reasoning about
feature models, but there is no real implementation was
described. Czarnecki proposed a general template-based
approach for mapping feature models in [17]. And he used
object- constraint language (OCL) in [18] to validate constraint

rules. In contrast to all these models our proposed method
defines across-tree constraints between (variation point-
variation point), (variation point-variant), and (variant-
variant) and can validate cardinality and extended
features.

Benavides in [19] presented a survey on the
automated analysis of feature models.

Trinidad defined a method to detect dead features
based on finding all products and search for features not
used in them [20]. He automated error analysis based on
theory of diagnosis [21], mapped feature model to
diagnose model and used CSP to analyze feature models.
Trinidad’s method just deals with a dead feature, while
our approach deals with three types of errors,
inconsistency, dead features, and redundancy.
Inconsistency error in feature model was described by
Batory [22] as a research challenge. Compare with
methods discussed in this literature review this method is
first method to deal with inconsistency.

3. Modeling variability using knowledge base

rules

A method of modeling variability was proposed to

represent domain engineering process as a knowledge
base.

First traditional feature model was extended by adding
variability notations and modeling domain engineering
process as a knowledge base, and then variation point,
variants, and constraint dependency rules was represented
using predicates. In the next sections we describe
extension of feature model using variability notations,
how we can automate consistency check using knowledge
base rules, and we illustrate how our method can be used
to identify and provide auto support for error check and
for some operations in feature model analysis process.

3.1. Extending Feature Models by Variability

Notations

To maximize the benefits of feature models variability
notations was characterized from Orthogonal Variability
Model (OVM) [23], in feature models as appears in figure
1. Orthogonal Variability Model is one of the useful
techniques to represent variability which provides a cross-
sectional view of the variability through all software
development artifacts. Variability - in OVM- is described
by variation points, variants and constraint dependencies
rules. Constraint dependencies rules as in [24] are:
variation point require or exclude variation point, variant
require or exclude variant, and variant require or exclude
variation point.

Optional and mandatory constraint were defined in
figure 1 by original feature model notations [2] ,and
constraint dependencies were described using OVM
notations.OVM and feature models can easily become
very complex to model a medium level system, i.e.,
several thousand of variation points and variants are
needed. For this reason we propose an intelligent method
to modeling variability in software product line.

Figure1: Feature model representing variability with e-shopping

Table 1: predicates represent constraint dependency rules in the proposed method.

requires_v_v: Variant requires variant

require_v_v(x,y)| x,y {V}; V= variant

The selection of a variant V1 requires the selection of
another variant V2 independent of the variation points the
variants are associated with. e.g. requires_v_v (ecash,
ssl).

excludes_v_v: Variant excludes variant

exclude_v_v(x,y)| x,y {V}; V= variant

The selection of a variant V1 excludes the selection of the
related variant V2 independent of the variation points the
variants are associated with .e.g.
excludes_v_v(public_view, personal_discount).

 requires_v_vp: Variant requires variation point

require_v_vp(x,y)| x,y {V,VP}; V= variant.Vp=variation

point

The selection of a variant V1 requires the consideration of
a variation point VP2. e.g. requires_v_vp
(member_view, member_reword).

 excludes_v_vp: Variant excludes variation point

excludes_v_vp(x,y)|x,y {V,VP};V=variant.VP= variation

point

The selection of a variant V1 excludes the consideration
of a variation point VP2. e.g. excludes_v_vp (not
registered, payment_by).

 requires_vp_vp: Variation point requires variation point

require_vp_vp(x,y) | x,y {VP}; VP= variation point

A variation point requires the consideration of another
variation point in order to be realized. e.g.
requires_vp_vp (item_search, view_type).

 excludes_vp_vp Variation point excludes variation point

excludes_vp_vp(x,y)|x,y {VP}; VP= variation point

The consideration of a variation point excludes the
consideration of another variation point. .e.g.
excludes_vp_vp (security_payment, credit_card_type).

3.2. Variation points and variants as predicates

 In this section variation point and variant were
described using predicates: (examples are based on figure
1)

- type: Describes the type of feature; variation point
or variant. e.g.: type (view_type, variationpoint),
type (register, variant).

- variant: Identifies the variant of specific variation
point. e.g.: variant(view_type, not registered)

- max: Identifies the maximum number allowed to
be selecting of specific variation point. e.g. max
(payment_by, 4).

- min: Identifies the minimum number allowed to be
selecting of specific variation point. e.g. min
(payment_by, 1).

The common variant(s) in a variation point is/are not
included in maximum-minimum numbers of selection.

- common: describe the commonality of specific
feature. e.g. common (search_name, yes). If the
feature is not common, the second slot in the
predicate will become No -as example- common
(register, no).

Predicates were used to represent constraint
dependency rules between features. Table 1 describes
predicates represent constraint dependency rules with
examples from figure 1.

(1..3)

(0..1)

Require-v-v

 Require-v-vp

 require-vp-vp (1..2)

(1..4)

(1..2)

(1..3)

Exclude-vp-vp

 Exclude-v-vp Exclude-v-v

transfer

registered Search
name

Search
number

By
price

By
category

Exchange
reward

Collect
reward

Personal
discount

Member reward

Member
view

Public view

Shopping-cart-view Item-search

not
registered

Security payment

Credit card

Https

Credit card types

Set Ssl Citibank visa

Payment by

View-type

Special search

e-cash cash

 Exclude-v-vp

DescriptionSimilar

(1..2)

(1..2)

Table 2 describe the proposed predicates using Backus–
Naur form (BNF).

Table 2: Representation of variant and variation point

using Backus–Naur form (BNF).

<type > ::= <variationpoint> |< variant>
<variationpoint>::=[<name><cardinality><variant>
 <common>]
<name> ::= <String>
<cardinality> ::= [<min> <max>]
<min> ::= <Digits>
<max> ::= <Digits>
<variant> ::= <variant> <variant>
<variant> ::= [<name> <common>]
<common> ::= <Yes> | <No>

Table 3 shows the representation of view-type variation
point from figure 1. Table 4 shows the representation of
not registered variant from figure 1.

Table 3: view-type representation

type (view-type, variationpoint).
variants (view-type, registered).
variants (view-type, not registered).
common (view-type, yes).
min (view-type, 1).
max (view-type, 3).
requires_vp_vp(view-type,search_item).

Table 4: not registered representation

type (not registered, variant).
common(not registered, no).
excludes_v_vp(not registered, payment by).

Table 5: Abstract representation of the main rules in the proposed model

3.3 Validation Rules

To validate the selection process, our proposed
method triggers rules based on constraint dependencies.
With regard to validation process result, the choice is
added to knowledge base or rejected, then an explanation
of rejection reason is provided and correction actions
suggested. At any new solution generated, new fact
(select or notselect) added to the knowledge base and
backtracking mechanism validates all. At the end of the
process all select facts represent the product. Table 5
shows the abstract representation of the main rules in the
knowledge base. The proposed method contains 13 main
rules to validate the selection process based on constraint
dependencies.
Rule 1:

For all variant x and variant y; if x requires y and x is
selected, then y should be selected.
Rule2:

For all variant x and variant y; if x excludes y and x is
selected, then y should not be selected.

Rule 3:

For all variant x and variation point y; if x requires y and x

is selected, then y should be selected.
This rule is applicable as well if y selected with the same
condition:

 x, y: type(x, variant) type(y, variationpoint)

require_v_vp(x, y) select(y) select(x)

For all variant x and variation point y; if x requires y and y

is selected, then x should be selected.
Rule 4:

For all variant x and variation point y; if x excludes y and
x is selected, then y should not be selected.
This rule is applicable as well if y selected with the same
condition:

 x, y: type(x, variant) type(y, variationpoint)

exclude_v_vp(x, y) select(y) notselect(x)

For all variant x and variation point y; if x excludes y and
y selected, then x should not be selected.
Rule 5:

For all variation point x and variation point y, if x requires
y and x selected, then y should be selected.

1. x, y: type(x, variant) type(y, variant) require_v_v(x, y) select(x) select(y)

2. x, y: type(x, variant) type(y, variant) exclude_v_v(x ,y) select(x) notselect(y)

3. x, y: type(x, variant) type(y, variationpoint) require_v_vp(x, y) select(x) select(y)

4. x, y: type(x, variant) type(y, variationpoint) exclude_v_vp(x, y) select(x) notselect(y)

5. x, y: type(x, variationpoint) type(y, variationpoint) require_vp_vp(x, y) select(x) select(y)

6. x, y: type(x, variationpoint) type(y, variationpoint) exclude_vp_vp(x, y) select(x) notselect(y)

7. x, y: type(x, variant) type(y, variationpoint) select(x) variants(y, x) select(y)

8. x y:type(x, variant) type(y, variationpoint) select(y) variants(y, x) select(x)

9. x, y: type(x, variant) type(y, variationpoint) notselect(y) variants(y, x) notselect(x)

10. x, y: type(x, variant) type(y, variationpoint) common(x,yes) variants(y, x) select(y) select(x)

11. y: type(y, variationpoint) common(y,yes) select(y)

12. x, y: type(x, variant) type(y, variationpoint) variants(y, x) select(x) sum(y,(x)) ≤ max(y,z)

13. x, y: type(x, variant) type(y, variationpoint) variants(y, x) select(x) sum(y,(x)) ≥ min(y,z)

Rule 6:

For all variation point x and variation point y, if x
excludes y and x is selected, then y should not be selected.
Rule 7:

For all variant x and variation point y, where x belongs to
y and x is selected, that means y should be selected.
This rule determines the selection of variation point if one
of its variants was selected.
Rule 8:

For all variation point y there exists of variant x, if y
selected and x belongs to y, x should be selected.
This rule states that if a variation point was selected, then
there is variant(s) belong to this variation point should be
selected.
Rule 9:

 For all variant x and variation point y; where x belongs to
y and y defined by predicate notselect(y), then x should
not be selected.
This rule states that if a variation point was excluded,
then none of its variants should be selected.
Rule 10:

For all variant x and variation point y; where x is a
common and x belongs to y and y is selected, then x
should be selected.
This rule states that if a variant is common and its
variation point selected then it must be selected.
Rule 11:

For all variation point y; if y is common, then y should be
selected.
This rule states that if a variation point is common then it
should be selected in any product.
Rule 12:

For all variant x and variation point y; where x belongs to
y and x is selected, then the summation of x should not be
less than the maximum number allowed to be selected
from y.
Rule 13:

For all variant x and variation point y; where x belongs to
y and x is selected, then the summation of x should not be
greater than the minimum number allowed to be selected
from y.
 Rules 12 and 13 validate the number of variants'

selection considering the maximum and minimum

conditions in variation point definition. The predicate

sum(y, (x)) return the summation number of selected

variants belong to variation point y.

From these rules we can define a full common variant,

variant included in any product, as:
x,y:type(x,variant) type(y,variationpoint) variants(y,x)

common(y,yes) common(x,yes) full_common(x)

A full common variant is a common variant belongs to

common variation point. A common variation point

included in any product (rule 11), a common variant

belongs to selected variation point should be selected

(rule 10).

These rules were implemented using SWI-Prolog

[25]. In real implementation we have numerous rules to

cover all situations, but all the rules based on the 13 main

rules. Definitions and examples were described in the

next section (based on figure1) to illustrate the usefulness

of our proposed method of modeling variability.

3.4. Operations on the Automated Analysis of

Feature Models:
The main operations of automated analysis of feature

models defined in [19]. Our proposed method can define

and provide auto support for a number of operations

(feature Model validation, propagation, explanation,

optimization, dead feature detection, inconsistency

detection, and cardinality validation).

3.4.1. Propagation. This operation returns a feature

model where some features are automatically selected (or

deselected).

Definition 1

Selection of variant n, select(n), is propagated from

selection of variant x, select(x), in three cases:
i. x,y,z,n:type(x,variant) variants(y,x) select(x) requires_v

p_vp(y,z) type(n,variant) variants(z,n) common(n,yes)

select(n).

If x is a variant and x belongs to the variation point y and

x is selected, that means y is selected (rule 7), and the

variation point y requires a variation point z, that means z

is selected also (rule 5), and the variant n belongs to the

variation point z and the variant n is common that means

the variant n is selected (rule 10).
ii. x,n: type(x,variant) type(n,variant) select(x)

requires_v_v(x,n) select(n).

 If the variant x is selected and it requires the variant n,

that means the variant n is selected, (rule 1). The selection

of variant n propagated from the selection of variant x.
iii. x,z,n:type(x,variant) select(x) type(z,variationpoint) req

uires_v_vp(x,z) type(n,variant) variants(z,n)

common(n,yes) select(n).

If the variant x is selected and it requires the variation

point z that means the variation point z is selected (rule

3), and the variant n is common and is belongs to the

variation point z that means the variant n is selected (rule

10). The selection of variant n propagated from the

selection of variant x.

Example 1

Suppose the user entered this choice select (register), the

system answered yes (acceptance of user selection) user

announced by selection of the variant search_name, as

propagated from selection of the variant register.

Table 6: example 1
?select (view_type.register).

yes

You selected also…. search_name

 This example illustrates case 1. view_type variation
point requires item_serach variation point and
search_name is mandatory variant belongs to the
variation point item_search . The direct selection of
variant register makes view_type variation point selected
(rule 7), and the selection of view_type variation point
makes the item search variation point selected (rule 5),
then the common variant search_name(belongs to
item_search variation point) should be selected (rule
10). The main result of this example is the additions of
two new facts select (register) and select (search_name)
to knowledge base.

3.4.2. Explanation. This operation takes a feature model
as an input and returns an explanation in the case when
the feature model fails. Definition of error source (the
constraint dependency rule(s) that causing the error) is the
main aim of explanation in feature models.
Definition 2

Selection of variant n, select (n), fails due to selection of
variant x, select(x), in three cases: i. x,y,n:type(x,variant) select(x) type(y,variationpoint) vari

ants(y,x) type(n,variant) excludes_v_vp(n,y)

notselect(n).

If the variant x is selected, and it belongs to the variation
point y, which means y is selected (rule 7), and the variant
n excludes the variation point y, which means n should
not be selected (rule 4 is applied also if the variation point
is selected). ii. x,y,z,n:type(x,variant) select(x) type(y,variationpoint) va

riants(y,x) variants(z,n) excludes_vp_vp(y,z)

notselect(n).
If the variant x is selected and x belongs to the variation
point y, that means y is selected (rule 7), and the variation
point y excludes the variation point z, that means z should
not be selected (rule 6), and the variant n belongs to
variation point z, that means n should not be selected
same wise (rule 9). iii. x,n type(x,variant) select(x) type(n,variant)

excludes_v_v(x,n) notselect(n).

If the variant x is selected, and it excludes the variant n,
which means n should not be selected(rule 2).

 In addition to defining the source of error, these rules
can be used to prevent the errors. The predicate
notselect(n) validate users by prevent selection.

Table 7: example 2
? select (personal_discount).
Reject
You have to deselect public_view first

Example 2
Suppose user selected public_view before and entered

new selection, and asks to select personal_discount, the
system rejects his choice and directed him to deselect
public_view first. Table 7 describes example 2, this

example represents case 3. The example illustrates how
the model guides users to solve the rejection reason.
In addition to that the proposed method can be used to
prevent rejection reasons; example 3 explains this.

Table 8: example 3
? select (Http).
Yes
notselect (credit_card_types) added to knowledge
base.

Example 3

User asks to select the variant https, system accept his
choice and add notselect(credit_card_types) to the
knowledge base to validate future selections. Table 8
describes example 3.
Selection of the variant Http from security_payment
variation point leads to the selection of security_payment
(rule 7), and security_payment excludes
credit_card_types variation point, which means
credit_card_types should not be selected (rule 6).The
predicate notselect(credit_card_types) prevents the
selection of its variants according to rule 9.

3.4.3. Optimization. This operation returns the output,
product, according to a given function or predefined
criteria.

One of the advantages of our proposed method is that
it can handle the extra-functional features proposed in
[14], we can use extra-functional feature to optimize the
search or to make filtering.

Example 4

Suppose we defined price as extra-functional feature
to security_payment variation point in figure 1, as a result
we have new three facts price(http,100), price(ssl,200),
and price(set,350). We want to ask about the feature with
price greater than 100 and less than 250(price(X, Y), Y >
100, Y< 250), the system triggers the variant ssl with
price 200. Table 9 describes example 4.

Table 9: Example 4
? price(X, Y), Y > 100, Y< 250.
X = ssl
Y = 200

3.4.4. Dead Feature Detection. A dead feature is a
feature that never appears in any legal product of a feature
model, defined [26] as a frequent case of error in feature
model.
Definition 3

A variant x can be a dead feature in 3 cases: i. x,y,z,n:type(x,variant) type(y,variationpoint) variants(y,x

) type(z,variant) type(n,variationpoint)

variants(n,z) common(n,yes) common(z,yes)

excludes_v_vp(z,y) dead_feature(x).

If variant x belongs to the variation point y, and the
common variant z belongs to the common variation point

n, which means the variant z included in any product (
rules 11 and 10), the variant z excludes the variation point
y that means none of its variants should be selected at
all(rule 4). ii. x,y,z:type(x,variant) type(y,variationpoint) variants(y,x)

type(z,variationpoint) common(z,yes) excludes_vp_vp(z,y)

 dead_feature(x).

If the variant x belongs to the variation point y and the
common variation point z excludes the variation point y
that means y should be excluded (rule 6). Exclusion of the
variation point y prevents selection of its variants (rule 9). iii. x,y,n:type(n,variant) type(y,variationpoint) variants(y,n)

common(y,yes) common(n,yes)

type(x,variant) excludes_v_v(n,x) dead_feature(x).

If the common variant n belongs to the common variation
point y that means y should be selected in any product (
rule 11), when y is selected n should be selected (rule 10),
which means n should be selected in any product. The
variant n excludes the variant x that means x should not
be selected in any product (rule 2).

Example 5

In figure1 the variant search_name is a common
feature from a common variation point item_search that
means it is included in any product(rules 11 and 10), and
it excludes the variation point special_search which
means none of its variants should be selected in any
product (rule 9). This means that all variants belonging to
the variation point special_ search are dead features.
Table 10 describes example 5, user inquired about dead
features and system triggered the variants similar and
description as dead features, this example represents case
1.

Table 10: example 5
? dead_feature(X).
X = similar
X = Description

Trinidad proposed in [20] a method to detect dead
features based on finding all products and search for not
used features. Our proposed method to detect dead
features is better because it searches only in the above
three cases.

 3.4.5. Inconsistency. Inconsistency in feature model is a
relationship between features that cannot be true at the
same time. e.g. (A require B) and (B exclude A)
Definition 4

The inconsistency (error) can be detected in five cases: i. x,y:type(x,variant) type(y,variant)

requires_v_v(x,y) excludes_v_v(y,x) error.

If the variant x requires the variant y that means selection
of x leads to selection of y (rule 1). And the variant y
excludes the variant x that means if y selected, x should
not be selected (rule 2), this is an error.

ii. x,y:type(x,variationpoint) type(y,variationpoint) requires

_vp_vp(x,y) excludes_vp_vp(y,x) error.

If the variation point x requires the variation point y that
means selection of x leads to selection of y (rule 5), and
the variation point y excludes the variation point x means
if y, selected x should not be selected (rule 6), this is an
error. iii. x,y,n,z:type(x,variant) type(y,variationpoint)

variants(y,x) type(n,variant) type(z,variationpoint) varian

ts(z,n) requires_v_v(x,n) excludes_vp_vp(y,z) error.

If the variant x belongs to the variation point y, and the
variant n belongs to the variation point z, and x requires n
that means if x selected n should be selected (rule1).
Selection of the variant x means selection of the variation
point y, and selection of variant n means selection of
variation point z (rule 7). The variation point y excludes
the variation point z that means if one of the variants
belongs to y is selected none belongs to z should be
selected (rules 6, 7, and 9), this is an error. iv. x,y,z:type(x,variant) common(x,yes) type(y,variationpoint

) variants(y,x) type(z,variationpoint) excludes_v_vp(x,z)

requires_vp_vp(y,z) error.

If the common variant x belongs to the variation point y,
and x excludes the variation point z that means if x

selected no variant belongs to z should be selected (rules
4, and rule 9), and the variation point y requires the
variation point z that means if y is selected z should also
be selected(rule 5). Selection of the variation point y
means selection of the common variant x (rule 10) but x
excludes z, this is an error. v. x,y,z:type(x,variant) common(x,yes) type(y,variationpoint

) variants(y,x) type(z,variationpoint) requires_v_vp(x,z)

excludes_vp_vp(y,z) error.

If the common variant x belongs to the variation point y,
selection of x means selection of y (rule 7), and x requires
the variation point z that means selection of x leads to
selection of z (rule 3); but the variation point y excludes
the variation point z which means if y is selected z should
not be selected (rule 6), this is an error.
 Feature models can contain some other complicated
forms of inconsistencies like (A requires B) and (B
requires C) and (C excludes A). To avoid this
complication the following rules were defined: i. x,y,z:type(x,variant) type(y,variant)

requires_v_v(x,y) type(z,variant) requires_v_v(y,z)

requires_v_v(x,z).

 If the variant x requires the variant y, and the variant y
requires the variant z that means the variant x requires the
variant z. ii. x,y,z:type(x,variationpoint) type(y,variationpoint) requir

es_vp_vp(x,y) type(z,variationpoint) requires_vp_vp(y,z)

requires_vp_vp(x,z).

If the variationpoint x requires the variation point y, and
the variation point y requires the variation point z that
means x requires z. iii. x,y,z:type(x,variant) type(y,variationpoint) requires_v_vp

(x,y) type(z,variationpoint) requires_vp_vp(y,z)

 requires_v_vp(x,z).

If the variant x requires the variation point y, and y
requires the variation point z that means the variant x
requires the variation point z. iv. x,y,z:type(x,variant) type(y,variant) requires_v_v(x,y) ty

pe(z,variationpoint) requires_v_vp(y,z)

 requires_v_vp(x,z).
If the variant x requires the variant y and y requires the
variation point z that means the variant x requires the
variation point z. v. x,y,z:type(x,variant) type(y,variant) excludes_v_vp

(x,y) type(z,variant) excludes_v_v(y,z)

excludes_v_v(x,z).

 If the variant x excludes the variant y and the variant y
excludes the variant z that means the variant x excludes
the variant z. vi. x,y,z:type(x,variationpoint) type(y,variationpoint) exclud

es_vp_vp(x,y) type(z,variationpoint) excludes_vp_vp(y,z)

 excludes_vp_vp(x,z).

If the variationpoint x excludes the variationpoint y, and
the variation point y excludes the variation point z that
means x excludes z. vii. x,y,z:type(x,variant) type(y,variationpoint) excludes_v_v

p(x,y) type(z,variationpoint) excludes_vp_vp(y,z)

 excludes_v_vp(x,z).

If the variant x excludes the variationpoint y, and the
variation point y excludes the variation point z that means
x excludes z. viii. x,y,z:type(x,variant) type(y,variant) excludes_v_v(x,y) ty

pe(z,variationpoint) excludes_v_vp(y,z)

 excludes_v_vp(x,z).

If the variant x excludes the variant y, and y excludes the
variation point z that means the variant x excludes the
variation point z. Using backtracking mechanism the
above rules can solve more complex shapes of
inconsistency such as ((A requires B) and (B requires C)
and (C requires D) and (D requires F) and (F excludes
A)).
Our proposed method to auto detected error in feature
model is better than that suggested by Trinidad (P.
Trinidad 2008) because it defines two types of error in
feature models.

3.4.6. Cardinality. Cardinality of variation point
represents the minimum and maximum number of variant
selection.
Definition 5

We define cardinality using two predicates:
i. min(name,num) represent the minimum cardinality;

name represents variation point name, and num is an
integer represents the minimum number allowed to be
selected from variation point described in name.

ii. max(name,num)represent the maximum cardinality;
name represents variation point name, and num is an
integer represents the maximum number allowed to be

selected from variation point described in name. Rule
12, and 13 validate cardinality.

4. Discussions and Comparison with Previous

Work

In addition to automated consistency check among
constraints during modeling, our proposed method can be
considered as a validation and analysis method within
modeling. Our proposed method can substantially define
and provide an automated mechanism to the following
operations:

• Definition of propagation states: identify when the
propagation can happen.

• Provide explanation: We identified when the
feature model fails to answer users, and we
identified all features’ relations those lead to
feature model failure, i.e. source of error. In
addition to that we illustrated how the method
can guide users in correction process, in
comparison with literature our method is a
unique method which can provide correction
process; besides all these we defined a validation
predicate - unselect(x)- this predicate can prevent
users from errors. We illustrated how the feature
model can be optimized using predicates; the
method can deal with the extra features.

• All cases of the dead features were defined using
rules: To detect dead features search only for the
corresponding defined cases.

• All cases of inconsistency were represented in
feature mode using rules: provide a method to
detect inconsistency in a feature model is a
novel. In addition to that we used rules to define
complex types of inconsistency and illustrated
that how our method can prevent and solve these
types of inconsistencies, which also considered
as a core contribution.

5. Conclusion and future work

By modeling variability using knowledge base rules
we can get both formalized variability specifications, and
support selection process within variability more
precisely. Firstly we proposed a method of modeling
variability in feature models based product line. We
started by used notations of orthogonal variability model
to define variability in basic feature model, and then
developed knowledge base. Our proposed method of
modeling variability aims to improve the effort of
producing fully automated product derivation and to deal
with the complexity of variability in product line
approach (intractability). The proposed knowledge base
can be used to configure new product from SPL,

analyzing SPL and produce error free feature model.
Russell defined five steps to build knowledge [27], as we
defined the five steps therefore our work can be
considered as knowledge base of variability in domain
engineering process.

We are planning to extend our work using constraint
handling rules (CHR) to calculate and obtain all
products, calculate variability (the ratio between all
product and all variants in the model) , and calculate
commonality. Also we are planning to develop software
tool to support our method. Finally validate our method
by applying it to real life case studies from industry.

 6. References

[1] Meyer, M. H., and Luis Lopez, “Technology Strategy in a
Software Products Company”. Product Innovation

Management, Blackwell Publishing, vol 12, 1995, 294-306.
[2] K. Kang, S. C., J. Hess, W. Novak, and S. Peterson,
“Feature–Oriented Domain Analysis (FODA) Feasibility Study”
(Technical Report No. CMU/SEI-90-TR-21) Software
Engineering Institute, Carnegie Mellon University,1990.
[3] Krzysztof Czarnecki, U. Eisenecker , Generative

Programming: Methds, Tools, and Applications, Addison-
Wesley, Boston MA, 2000.
[4] Timo Asikainen , T. Männistö, T. Soininen , “Representing

Feature Models of Software Product Families Using a

Configuration Ontology”, Paper presented at the General
European conference on artificial intelligence (ECAI)Workshop
on Configuration , 2004.
[5] Krzysztof Czarnecki, S. Helsen, U. Eisenecker, “Staged

configuration using feature models”, Paper presented at the
Third International Conference of Software Product Lines,
SPLC 2004, Boston MA, USA. 2004.
[6] White D. A., “The Knowledge Base Software Assistant: A

program Summary”, Paper presented at the Knowledge-Based
Software Engineering Conference, New York USA,1991
[7] kacem Zeroual , P.N. Robillard, “KBMS: A Knowledge

Based System for Modeling Software System Specification”,
IEEE Transactions on Knowledge and Data Engineering,

4(3),1992 , 238 – 252.
[8] Michael Schlick, A. Hein, “Knowledge engineering in

software product lines”, Paper presented at the 14th European
conference on Artificial Intelligent, Workshop on Knowledge-
Based Systems for Model-Based Engineering, 2000.
[9] S. Ratchev , E. Urwin, D. Muller , K.S. Pawar, and I.
Moulek,“Knowledge Based Requirement Engineering for one-

of-a-kind Complex Systems”, Knowledge base systems ,Elsevier,
16(1), 2003,1-5.
[10] Lother Hotez , T. Krebs, “Supporting the Product

Derivation Process with a Knowledge Base Approach”, Paper
presented at the 25th International Conference on Software
Engineering (ICSE2003), 2003.
[11] Lother Hotez , T. Krebs, “A knowledge based product

derivation process and some idea how to integrate product

development”, Paper presented at the Software Variability
Management Workshop, Groningen The Netherlands, 2003.

[12] M. Mannion , “Using First-Order Logic for Product Line

Model Validation”, Paper presented at the Second Software
Product Line Conference (SPLC2), San Diego, CA. , 2002.
[13] Wei Zhang, H. Z., and Hong Mei, “A Propositional Logic-

Based Method for Verification of Feature Models”, Paper
presented at the 6th International Conference on Formal
Engineering Methods (ICFEM),2004.
[14] David Benavides, P. Trinidad, and A.Ruiz-Cortes,
“Automated Reasoning on Feature Models”, Advanced

Information Systems Engineering (Vol. 3520/2005,), Springer,
Berlin Heidelberg, 2005, pp. 491-503.
[15] Don Batory,”Feature Models, Grammars, and

Propositional Formulas”, Paper presented at the 9th
International Software Product Lines Conference (SPLC05),
Rennes, France, 2005.
[16] Mikolas Janota, Joseph Kiniry, “Reasoning about Feature

Models in Higher-Order Logic”, Paper presented at the 11th
International Software Product Line Conference (SPLC07),
2007.
[17] Krzysztof Czarnecki, Michal Antkiewicz, “Mapping

features to models: A template approach based on

superimposed variants”, Paper presented at the 4th International
Conference on Generative Programming and Component
Engineering (GPCE'05), Tallinn, Estonia, 2005.

[18] Krzysztof Czarnecki, Krzysztof Pietroszek, “Verifying

Feature-Based Model Templates Against Well-Formedness OCL

Constraints”, Paper presented at the 5th international

conference on Generative programming and component

engineering (GPCE'06), 2006.

[19] David Benavides, Antonio Ruiz Cortés, Pablo Trinidad,

and Sergio Segura, “A survey on the automated analyses of

feature models”, Jornadas de Ingeniería del Software y Bases

de Datos(JISBD 2006), 2006.

[20] Pablo Trinidad, David Benavides, and Antonio Ruiz-

Cort´es, “Isolated features detection in feature models”, Paper

presented at the Advanced Information Systems Engineering

(CAiSE), Luxembour, 2006.

[21] Pablo Trinidad , D. Benavides, A. Dura´n, A. Ruiz-Cortes,

and M. Toro, “Automated error analysis for the agilization of

feature modeling”, systems and software,

doi:10.1016/j.jss.2007.10.030, 2008.

[22] Don Batory, David Benavides, Antonio Ruiz-Cortés,

“Automated Analyses of Feature Models: Challenges Ahead”,

Special Issue on Software Product Lines ,Communications of

the ACM, December 2006.

[23] Timo Käkölä, Juan C. Dueñas , Software Product Lines

Research Issues in Engineering and Management, Springer,

Verlag Heidelberg Germany, 2006.

[24] Klaus Pohl, Günter Böckle, and Frank van der Linden,

Software Product Line Engineering Foundations Principles and

Techniques, Springer, Verlag Heidelberg Germany, 2005.

[25] Jan Wielemaker ,SWI-Prolog (Version 5.6.36) free

software, Amsterdam, University of Amsterdam,2007.

[26] Krzysztof Czarnecki, Chang Hwan Peter Kim,

“Cardinality-based Feature Modeling and Constraints: A

Progress Report”, Paper presented at the International

Workshop on Software Factories at (OOPSLA’05), San Diego

California, 2005.

[27] Stuart J. Russell , Peter Norvig , Artificial Intelligence A

Modern Approach , Prentice Hall, New Jersey 07632, 1995.

�����������	�
	����������	
��	������	����	
�

�

�

���������	��
��	�

����������	
�	�
�����	
��������		

����������	
�	������	
����	�
�	����		

� !!	"#	#���$�%��	
�$�	&��$��'��%�	

����%()������������'	

���������������

����������	
�	�
�����	
��������	

����������	
�	������	
����	�
�	����		

� !!	"#	#���$�%��	
�$�	&��$��'��%�	

��*�'��
)������������'	

����������	��

�+���������	,��
�����-��	
.�
'�	%��	/�����	

0�	��	"'���%	1���'���	
2	3	004!�	&�����	��%��	4�	

&������		
2�����	

5
$�������
����)��������
�

�

�������	
	

6�	 �������	 ��	 �'*
���$�	 �$��$	 �'��������	
�
���������	 ��
�	 �	 ������	 �
%�'	 �$
��	 ������	
%��*���	��	�	����	��%	�$
��	�
���������	���	7��-����7	

�	 7���'%��7	 �
����������	 �$�	�'*
���$�	�
�������	�	
������	 ����	 �$��$	 $��	 �$�	 ����	 ���������	 ��	 �$�	

��*���'	 ������	�
%�'�	�$�	�
������
��'	�
��'�����	

�	 �$�	 �'*
���$�	 ��	 ���
������'	 ��	 �$�	 ��(��	
�	
�
����������	 (�	 '�����	 ��	 �$�	 ��(��	
�	 ��������	�$�	
�'*
���$�	 �''
��	 �
	 ���������'�	 �
����	 ��
�������	
�	
��
%��	'����	�$
��	������	�
%�'	�
������	
�	�	������	
����	��%	�	���''	��(��	
�		7��-����7	��%	7���'%��7	
�
����������	 "�	 ������('�	 �����������
�	
�	 �$�	
�'*
���$�	 ��	 *����	 ��	 �$�	 �����
��'	 ��
������	
'��*�*�	/����%���
�

��	�����������	
�

�	����	����	�����	���	�������	�������	����������������

�������	��������� ���	�� !"#$%�&��	����	����	�����������

��� �� �	����	� ���'���� ���� �� (��������� 	����)� �	�� ���

�����������%� *�	� �	����	� ���'���� ��� 	���	�� �� ��		� ��� ��

����	�� ���	��	�� �������� '����� (+,&�)%� *�� ������	�

����	���	�������	���	����	���������	������������	����	����

��� ���	� ��	� �	����	� ���'���� ��� �� ��		� ���� ��	�	� ��	� ���

�����������-� ��	� ������� ����	�� �	������	� ���������� ���

��		�%� ������	� ��	��	����	����'���������+,&����� ��	�	�

��	� �����������"� ��������'�����	���	����� ��	��	�����	��

�������	� �������� ���	� ��� ����� ���	� ���������%� ��� ��

����	�������������	�������	����	�����	"��	����	����	���

��	�����	�� ��� ���	�� ����� ��������	�.�
	�����	�� 	�� ��%�

 /$� ��	� 0���������� 1������������ �����	��"�
������ 2$�

��	��3�'���*�����4����	����	�1���	�������05���	���

����6��� 7$���	�
������,	�������,��'����%�

��� ����� ���	�� �	� ��	�	��� ��� ��������� ������ ��	��

�	����	���		�������	��������������������	"���	�	���������'�

��� ����	� ��� �������	� ��� ��	� �����	�� ����	�	��%� 8	�

������	�� ��	����	���	�	� ��	� �	����	����'���� ��� �� ��		"�

���� ��	�	� ��	� ��	� ������ 9�	:���	�9� ���� 9	;����	�9�

�����������%�8	���	�	��������'�������������	�������	��

��	� �����������"� ���� �	���	��� �� �	����	� ��		� ������ ���

	:�����	��� ��� ��	� ����	�� �	����	� ��		������ �����������%�

����	���	�� ��� ��	� �������	� �������� ���	� ���� ��	�� �	�

������	������	������	���������������	����	���		�%��

��� ��	� �	;�� �	������ �	� ������	� ���	� ��	���������

�	���������%� ��� �	������ /� �	� ������	� ���	� ��;�������

��'�������%� ��� �	������ 2� �	� ��	�	��� ��	� ��'������� ���

	�������	� �����������%� ��� �	������ 7� �	� �������� ��	�

�������������������	;�������������'������"����������

����� ���� �����	;���� ��� 	;���	������ ��� ��	� ����	�� ���

�����������"��������	��������	�����	������	����	�%�������

���	���;��	�'��	��������	�	�	;	������	� ��	�����������

��� ���� ��'�������� ��� ��	� ����������� ���'������'�

���'��'	�4������%�

�

��	�����������	
�

*�	��	����	����	��������������	����������������	����	�

��		� ���� �� �	�� ��� �����������%� &� �	����	� ��		� ��� �� ��		�

����	����	����	�����	���	����	�%�*�	�	���	����		����	��

��� ���	�.� 4���<��� �	����	�"� <�� �	����	�� ���� =���

�	����	�%�

&� 4���<��� �	����	� ���� ���� ������ ��� ����	����	�"�

����	�� ���������� ���� ��������� ����	����	��

�	��	����	��%� <�� �	����	�� ���� =��� �	����	�� ���	� #� ���

���	� ����	����	�%� &� �	��� ��� ��	� ��		� ��� �� 4���<���

�	����	�������������	����	�%�

&����������������	���	����	������9�!��	:���	���#9����

9�!�	;����	���#9�

*�	� �	�������� ��� ����� �� �	����	����	�� ��� �� �	�� ���

��������"���	�	�	������������������	������	����	��������

������ ��� ��	� ��		� >$%� &� �������� �	���'�� ��� ��	�

�	�������� ��� ��	� �	����	� ���	�� ��� ���� ����� ��� � ���

�������	�� ��	� ������������ ����� ��	� ��		� ��� �	��� ��� ��	�

	;������������������%�

&����������������	����	��������������������	���		���.�

�� ��������������	�����������	���		%�

�� ����	�����	����	�	;�	�����	�����������	��������"�

��	������������������������������	����	����	%�

�� ���� 	���� 4���<��� �	����	� ��� ��	� �������"� ��	�

�������� ����� ��������� ���� ���� ����������

����	����	�%�

�� ����	����<���	����	������	��������"� ��	���������

����������������	�������	������������	����	�%�

�� ����	����=����	����	������	��������"���	���������

��������������	;��������	������������	����	�%�

&� �������� �������	�� �� ����������� 9�!� �	:���	�� �#9�

��	�"� ��� ��� ����������!� ��� ���������������#%�&���������

�������	���������������9�!�	;����	���#9���	�������	������

��������������!������#��

��������� ��	�	��	����������'�������	���'�������"��	�

�����	� ��	� 	;���	��	� ��� �� ��	����� �	����	� ��		� ��3"�

������ ������� ������ ��� �����		� ��� ���	�� ��		�"� ����

���������������������%�

�

��	��������	���������	

�
���������	�������	���	�	����������;���������'�������"�

�������	���������������	���������	����	������	�	�����

������	����	"��	��	����	��%�

*�	� ������ ��;������� ��'������� ������	�"� '��	�� ��

�	����	� ��		�*� ���� �� �	����	��"� ��	� �	����	� ��		�*(?�)"�

����	� ��������� ��	� ��	���	��� ����	� ��������� ��� *�

������ �������� �%� *�	� ��'������� ����������� *� �����

*(?�)�����	���������	���������'���	��.�

�
����������	
�����������������	��	
�����
��
��������
���������
���	��������������	��	
�����
��
������
����	����	����	����	����	�������	����

�� ������
������������	����	��������
�
��� ���������
���	����	�� �� 	� �� ��
��������!�
���	����	�������

�� ��� �� �
� ��� "��� �	����	�� �� 	� �� ��
���������	����	�#������
����
�
��$�	�
��������!�
���	����	� ���� ��
� ���
���������
���	����	
�� %��� ���	��

���	����	
��������	��	��&	���������	�
��		��

�� ��� �� �
� ��� ��� �	����	�� �� 	� �� ��
���������	����	�#������
����
�
��$�	�
��������!�
���	����	�� ���� ��
� ����
���	��
���	����	
� ��� �� �
� ���������

���	����	
��

'��(����
�	����#��������
�	���������

�

*�	� �	����� ��;������� ��'�������������	�"� '��	�� ��

�	����	� ��		� *� ���� �� �	����	� �"� ��	� �	����	� ��		� *(@�)�

����	� ��������� ��	� ��	���	��� ����	� ��������� ��� *�

������ ��� ���� �������� �%� *�	� ��'������� ����������� *�

�����*(@�)�����	���������	���������'���	��.�
�
����������	
�����������������	��	
�����
�
������
���������
���	��������������	��	
�����
��
��������
����	����	����	����	����	�������	����

�� ������
������������	����	��������
�
�� ��������!�
���	����	� ��� ��� (����

�	����#��������
�	���������

�� ������
������������	����	��������
�
��� ���������
���	����	� ��� ��� �	�	�	�
���

�� ��� �� �
� ��� "��� �	����	� ��� ��� ���
�	����	���	�	�	��)��������
����!���	�
�	������$�
���	����	�� �� 	� �� ��
���������	����	�������
�
���	����	���
��������!�
���	����	��

�

 �	�����������	�
	����������	

�
3	�����	����	����	���	�'��	��������	����	���		�*�����

�� ����������� 9&� �	:���	��
9%� 8	� ����� ��� ���������� ��

�	����	� ��		� ����	� ��������� ��	� ����	� ��������� ��� *�

������ ��������
� ��	�� ��	�� �������� &%� *���� �	�� ���

��������������	������������	����������	������*(?
)�����

*(@&@
)%�A	�	�*(@&@
)��������������������(*(@&))(@
)%�

�	����������	������(?
)�����*(@&@
)���	����B����%�1��

��	� �	:���	�� �	����	� ��		� ���� �	� ������	�� ��� ����'� ��

�	��=����	����	�������������������*(?
)�����*(@&@
)�

�������	����	�%�*�	���'����������	�������	�9&��	:���	��

9������*���.�

�
*��
������+,-.������+/%/-.��
����������		
���	�����	0��������������	��
��	��	
������
�
�
��������	#�������#����
�
����"����	����	��#����
���	����	
��+,-.�
�����+/%/-.������+/%/-.��
�	0������������
��	�� ��	� �	
���� �
� �+,-.�� ��� �+,-.� �
�
	0��������������	����	��	
�����
��+/%/-.��
�

�����	�����	����	����	���	�'��	��������	����	���		�

*� ���� �� ����������� 9&� 	;����	��
9%� 8	� ����� ���

���������� �� �	����	� ��		� ����	� ��������� ��	� ����	�

������������*���������������������������&�����
%�*����

�	�������������������	������������	����������	������*(@
)�

����*(@&?
)%�4��	��	�"���	����������	������*(@
)�����

*(@&?
)���	����B����%�1�� ��	� �	:���	�� �	����	� ��		�����

�	�������	���������'����	��=����	����	���������������

����*(@
)�����*(@&?
)��������	����	�%�*�	���'�������

���	�������	�9&�	;����	��
9������*���.�

*��
������+/-.������+/%,-.��
����������		
���	�����	0��������������	��
��	��	
������
�
�
��������	#�������#����
�
����"����	����	�#����
����		
��+/-.�����
�+/%,-.�� ��� �+/-.� �
� 	0���� ��� ����� ��	��
��	� �	
���� �
� �+/%,-.�� ��� �+/%,-.� �
�

	0��������������	����	��	
�����
��+/-.%�

�

���	� ����� ��	� �	����	� ��		�� ������	�� ��� ��	�	�

��'�������� ���	� ��	� ����	���� ����� �	����	������ ������

���	���������	%�A��	�	�"��������	�������	��	����	����

����	�	��������		��������=����	����	"��������������������

���	��������	�������	��	������	����	�%�

8�	�� ��	�	� ��� ���	� ����� ��	� ����������"� ��	�	�

�����������������	�	�������	������	:�	�%�*�	���;�������

��'�������� ��� �	������ /� ��	�� ������� �	� ������	�� ���

�����'� �� �	�	������� ��	�� �������	� ������	��	�� ���

�	����	���������		%�

*�	� 	�����	���� ��� ��	� ��'�������� ��	�	��	�� ����	�

�����	�������	�������������.�

�� ����	������	���������'�������������� ����� ��	�����	�

��		"� 	�������	� ��	� ����������� ����� ��	� �����	���

�����		����������������&�����
%�

�� �	������ �������� ���'������'.� 		�� ����� ���

��	������������		�"������	��������	���������	��������

�����	������������		����������	"�����'��	���5�����%�

�

!�	����"��	
�

��� ����� �	������ �	� ������	� �� �����	� 	;����	� ���

���������	� ��	� �	����� ��� ��	� ��'�������� ��� ��	� ��	������

�	������%�0�����	����	��	����	���		�*������'��	�!%�

�

�
�

��'��	�!%�C;����	��	����	���		��

�

A	�	� ��	� ����	��� �������	� ���� 	���� �	����	� ��	�

����	�� ��� ��������� ������ ����	������ ��� ���� �����		%�

*�	�	� ����	��� ��	� ��������	�� ����� ��	� ��������'�

�����'�����������	������	���'������.�

�
�� ���� �� �������� �	����	�� ��	� ����	�� ���

������
��
���	�������������	�����	�
�
���������
�������������!�
���	����	
��
���� ��	� ����	�
� ��� ������
�

���	�	��	�� �!� �� ���� ���������

���	����	
��

�� ���� ��� ��� �	����	�� ��	� ����	�� ���
������
��
����	

���	����	�����������
��	� ����	�
� ��� ������
� ��� ��
�

���	����	
����	�	��	���!����

�� ���� ��� "��� �	����	�� ��	� ����	�� ���
������
��
���	�
��������	�����	�
����
������
������
�
���	����	
��

�

���	� ����� ��	�����	��������������������<���	����	�

	:����� ��	� ����	�� ��� �	����	�� ��� �� 4���<��� �	����	���

�������������� ���	������"���������	%�&����	� ������"�

�	����	����	"��	�������������������'����������'��	�������	�

���	���;%�

���� ������	� ��	�	� ��� ��� ����������� ����������.� 9,�

�	:���	�� �9%� *�	� ��'������� ��� �	������ 2� ������

	�������	�����������������������*�'��	����	��	����	���		�

�����'��	�#.�

�

�
�

��'��	�#%�C;����	��	����	���		"��

�����������9,��	:���	���9�	�������	��

�

*�	� �������� ����� �	����	� ��		� ��� ���	��=��� �	����	-�

�����	��������		����*(?�)�����������'��������		����*(@,@�)%�

&'���"� ��	� ����	�� ��� ��������"� ��������	�� ����� ��	�

��'�����������	"���	�����������	�����	����	%�

����������	���	�	�����������������������������.�9,�

	;����	�� �9%� *�	� ��'������� ��� �	������ 2� ������

	�������	�����������������������*�'��	����	��	����	���		�

�����'��	�/.�

�

�
�

��'��	�/%�C;����	��	����	���		"��

�����������9,�	;����	���9�	�������	��

�

*�	� �������� ����� �	����	� ��		� ��� ���	��=��� �	����	-�

�����	��������		����*(@�)�����������'��������		����*(@,?�)%�

&'���"� ��	� ����	�� ��� ��������"� ��������	�� ����� ��	�

��'�����������	"���	�����������	�����	����	%�

�

#�	���"���������	���"������	
�

*�	� ��'�������� '��	�� ��� �	������ 2� ��	����� ���	�

���	��� ���	� �����	;���%� A��	�	�"� 	����������� ��� ��

����������������	����������	������	����	���5	������	���		%�

*�	�	���	"� ��� ��	������� ���	"� ��	� ��5	� ��� ��	� �	������'�

��		������ �	� 	;���	������ ��� ��	� ����	�� ��� �����������%�

&�'��������������������	�����	���	������������������	�

���������	���������'���������������������	����	���		������

��	�	���	� ������� ���	� 	;���	������ ������ ���	� ���	�

�����	;���%� A��	�	�"� 	;���	������ ��������������

�����	;���������	������	"�����	"�����	������������	���"�

��	��	������������	����	��	������������	����	���		������

������������ ���� ��� �	���� ��	� �������"� ��� ��@�����	�	%�

1�"���	�	����������	����������'�����������������������

�������������� �����	;���%� *�������������� ��� ��	�

�	����	����	�� �����
������,	�������,��'������	������

�	��"� ����	� ����� ��������������� ���	��� ���� 	;���	������

�������������� �����	;���%� &�� �������'	� ��� ����

��������� ��� ����"� ��	�� ��	� ����	�� ��� ������������ ���

�����"� ��	� ��'�������� ����� �	�������� �	� �	�����	%� ����

�������	"���	���'�������������������	����	�����	�����

��������"�'��	�������	���	�������	�����"��	���'�������	�

�����	;����������<(�D#4)"���	�	��������	�����	�����

�	����	�� ��� ��	� �	����	� ��		� ���� 4� ��� ��	� ����	�� ���

�����������%�

�����	����������	��������	������	����	��	���������

���	����	����	�����������'��	��������	����	���		�������

�	�� ��� ������������ ���� ��� �	���� ��	� �������� ��� ��@

�����	�	%�8	������������������'��������	����������������

�����	��1&*"������� �����@�����	�	"� �����	� �	���	��

��� ���� �����	�� ��� ����������� ���	%� *���� ��������� ���

�������� ��� ��	� ��������� ��� 1�����	��� 	�� ��%� >$"�����

����� ����� ��	� ����	�������'� �����	�� ����� +,&���

����	��� ��� ��		�� ��� ��@�����	�	%� 1&*� ��� ��	� �����	��

��	��	�� ��� ���� ��
���	��� 	;��	������ ������ �����

���������
���	��� �������	�� ���� ��	��� �	'������"� ����

������ ��� ��� ���B������	�������� ����"������	� �������	��

��� ����'���'�
���	��� ����	�� ��� ��	� �������	�%� &��

	;����	� 	;��	������ ��� (=�E)���=��E)���=��E)%�

���� ����� 	;��	�����"� �	� ���������� ��	� �	����	� ��		� ���

��'��	� 2%� ���� 	���� �����	� ��� ��	� 	;��	������ ��	� �����

�	����	� ���� �� ���������� ����	����	%� C���� ��� ��	�	�

����	����	�������<���	����	"������'�	��������������	��������

����	����	%��

*�	� 	;��	������ ��� ����������	� ��� ���� ����� ��� ��	�

�	����	���		�������������������������������������%�A	�	�

����������������������������	����������������	��������	�

�
�

��'��	�2�

�

F"���	�����������������������F������F%���������������

��������������� ���� �	� 	;����	�� ��� ����������'�

�����������%�����	����������	��	������	���		�����	����	��

F������F����� ���	��������	�F��	����� ��	������������

����� ��	�	� �	����	�� �	� ��������� 	;������	%� ��� ��	�

	;����	������'��	�2"���	�	���	�2�����������������%�1���	�

����� ������������� ��� ��	� �	����	� ���	�� ����� �	:���	��

����������� ���	"� ����� ����	�� ����� ���� �����	�� �����@

�����	�	%�

A	�	� ��� ��� ���	�	����'� ��� ���	� ����� ��� ��� ���� ��	�

��	�	��	� ��� ��	� ��������������������	�� ��	� �����	��

��@�����	�	%� ��� �	����	� ��		�� ������ ����� ��������

4���<��� �	����	�"� ��	� �����	�� ���� �����������

�������������� �����	;���%� *���� ���� �	� ������ ���

�	�����'� ��� ��� #1&*"� ��	� ��������������� �����	����	�	�

	���� ���B�������� ��������� ����� #� ���	����"� ������ ����

������������������������������	;���%�

�

$�	����������	

�
8	� ���	� ��	�	��	�� ��'�������� ��� 	�������	�

9�	:���	�9� ���� 9	;����	�9� ������������ ����� �� �	����	�

���	������	��	����	����'�����������		"���������������'�

�� �	����	� ��		� ������ ���� ��	� ���	� �	�������� ��� ��	�

���'������	����	���		�����������������%�*�	�	���'��������

���������	�����	�����������	�����	���	����������������	��

����	� �	����	� ���	�� ��������� ��� �� �	����	� ��		� ���� ��

����������	�����9�	:���	�9�����9	;����	�9������������%�

�

%�	��&��'���������	
	

*������������������	�������	�C����	���

0����������'������1*@//G!H�@�&��	��@<��	��	�"�

4��	�@,���	����������3��	�C�'��		���'�(&4�3C)%�

�

(�)�
������	

�
 !$�6%0%�6��'"�1%�%�0��	�"��%&%�A	��"�8%C%����������&%1%�

�	�	����"� 9�	����	@<��	��	�� ,������ &�������� (�<,&)�

�	���������� 1����9"� *	�������� +	����� 04IJ1C�@KH@*+@#!"�

1������	�C�'��		���'� ��������	"�0���	'�	�4	�����I���	������

(!KKH)%�

�

 #$�6%�05���	��"�I%�C��	�	�	�"�8���������	��
*������*9	
/��$
%�	�

'�	��%	"��'�����
��"�&������@8	��	��(#HHH)%�

�

� /$� ,%�
	�����	�"� �%� *�������� ���� &%� +��5@0���L�"�

9&������	�� +	������'� ��� �	����	� 4��	��9"� ��.� <%� �������

�����%��������	�0�����(C��%).�0&�1C�#HH7"�3	����	����	�����

0�����	��1��	��	�/7#H"�1����'	�@F	���'�
	�����A	��	��	�'"�

#HH7"���%�2K!@7H/%�

�

 2$� ,%�
�����"� 9�	����	� 4��	��"� ��������"� ����

�������������� ��������9"� ��.�A%�<����� ����6%� ����� (��%).�

1������	� ��������3��	��0���	�	��	� #HH7"�3	����	����	�� ���

0�����	��1��	��	�/G!2"�1����'	�@F	���'�
	�����A	��	��	�'"�

��%�G@#H"�#HH7%�

�

 7$� 6%� 05���	��� ���� �%� 6��"� 0����������@���	�� �	����	�

4��	���'� ���� 0����������.� &� ���'�	��� +	����"� ��.�

����		���'�� ��� ��	� ���	���������� 8������� ��� 1������	�

�������	�"�<<�13&�#HH7"�#HH7%�

����.JJ�������	�������	�%���J��������J<<�13&@#HH7J�

���	��J05���	��%���%�

�

 >$� �%@E%� 1�����	��"� �%� A	�����"� �%@0��%� *��'��;� ���� E%�

���	���"� 9�	�	���� 1	�������� ��� �	����	� ,��'����9"�

�
�����	&���
�:��7!"�#HHG"����%�27>M2GK%�

�

 G$�,%�*���	�"�4������.������@���������������������'��'	������

������������ ���	�"� ��.� ����������� ���'������'� 3��'��'	��

���� 0�����	�� &�����	����	"� 3	����	� ���	�� ��� 0�����	��

1��	��	� F��� #H!"� �%@�%� ���������� (�%)"� 1����'	�@F	���'"�

	����"�A	��	��	�'"�!KN7"���%�!@!>%�

�

�""�����	
�

��� ����� ���	���;� �	� ������	� �� �����	�	� 	;	������	�

��	����������� ��� ���� ��'�������� ��� ��	� �����������

���'������'����'��'	�4������� G$%�

�

������ �	� '��	� ���	� ���	� �	���������%� A	�	� ��������

��� �
��
� ������� ���� ��4���<��� �	����	� ����� ���	�

��"��
������	������������������������	����	��������������	�

����������������������	����	�%�

�
���	�11�2���3�
��		�441������������	�2��		3�2��		3�5�
���������������	�2��		3�5�
���������"������	�2��		3�5��
�������������
��
�������441�6	0���	
����	����	�5�
���������������78���	
����	����	�
�	����	9���	��11�+��		�2��
������3.�
�

*�	�	;��	�������	�	�	�������������	����	���		�

����	������������	���	���������������	��	����	���		����

����������������	��	����	���������	�����
�
�	�	�	�44����	�/:���		�/:���		�
�	�	�	��������1�����
�	�	�	����+�����������
��
.��

��1����������1���;<��	��	���
������
��1������������
��+����	��+=1����.��
�.��
����������������������������������	�#�
	�
����#�	�	�
�����
��1�2�	�	�	�����5�>/�
3�
�����
��1�2�	�	�	�����5�>/�
3�
�	�	�	����+"�������
.�
��1����������1���
��1�������������
��23�����?��
��>����
��1�"�������
������	�#�
	�
����#�	�	�
������
��1�����	��+=1����.��
�������������������2�	�	�	������5��>/��
3�
�	�	�	����+�������
.�
��1����������1���
��1�������������
��23�����?��
��>���
��1��������
������	�#�
	�
����#�	�	�
������
��1�����	��+=1����.��
�������������������2�	�	�	������5��>/��
3�
�

*�	�	;��	�����������������������	��	����	���		�

����	������������	���	���������������	��	����	���		����

����������������	��	����	���������	�����
�
������44����	�/:���		�/:���		�
�������������1�����
������������1�����������
�������������1���������	�#�
	�
���������������#�	�	�
���������������+�����.�1��������������
�
�������44����	�/:���		�/:�+��		�����.�
��������������1�+�������
	.�
����������+�����������
��
.��
��1�+�����������
��
�����	.������1���
��1�+�����������
���
�����	.���
����������������������������+����
����
�.�
��1�+����������+�
,,�
'.��
������	.���
�������������������������������
'�=1�23�
��1�+�����������
��
�����
	.������	�#�
	�
����#�	�	�
�����
��1�2�����������5�>/�
3�
�����
��1�2�����������5�>/�
3�
�����
��1�2�5+���.>/�
�3�
�����
��1�2��5+����.>/�
�)�=�3�
�����
'�1�2��5+����.>/�
�)��3�
����������+"�������
.�
��1�+"�������
�����	.������1���
��1�+�����������
�23�����	.�����?�
�1���
��1�+"������
�����	.�����?�
:1��
��1�+"�������
�����
	.�����	�#�
	�
����#�	�	�
������
��1�2������������5��>/��
3�
�����
�1�2��5+����.>/��
�)��3�
����������+�������
.�
��1�+�������
�����	.������1���
��1�+�����������
��
�����	.������
�=1�23�
��1�+�������
�����
	.�����	�#�
	�
����#�	�	�
������
��1�2������������5��>/��
3�
�����
�1�2��5+����.>/��
�)�=�3�
�����
�1�2��5+����.>/��
�)��3�
�

�	�	;��	������7�����
�����	�����	����	����	�����

��'��	��"������	���������	����	���		��������	����	�

�	��������
�
	���*��
���44��	����	9���	��/:���		�
	���*��
���+����6	0���	
�����4�
.�
��1�	���*��
���+"���@@���
��
.����?��
:��
��1�	���*��
���+��������@@���
�23��
.��
�����������������������������������?��
1��
��1���������	�#�
	�
����#�	�	�
������
�1�����	��+=1���.�2�	�	�	����
��������������+�	�	�	�����.������������3�
	���*��
���+����78���	
�����4�
.��
��1�	���*��
���+"���@@���
��
.����?��
:��
��1�	���*��
���+��������@@���
�23��
.��
�����������������������������������?��
1��
��1���������	�#�
	�
����#�	�	�
������
�1�����	��+=1���.�2�	�	�	�������
�������������������	�	�	���+����������.3�
	���*��
���+���23.�1����

�

*�	����������������
�������	����	�����	�����

���������������	����	���		�

�
������
�44��	����	9��		�/:�����
������
�����1�A�
������
�+������������
��
.��
��1��������+����������
��
.�B��
�����������+����+,�.�+����������
��
..�
������
�+"��������
.��
��1�
���+����������
���
.�
������
�+��������
.��
��1��������+���+,�.�+����������
���
../��

Understanding Decision-Oriented Variability Modelling

Deepak Dhungana Paul Grünbacher

Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University Linz, Austria

{dhungana | gruenbacher}@ase.jku.at

Abstract

Researchers and practitioners have been developing a

wide range of techniques and tools to model and man-

age variability as a response to the heterogeneity of

application areas and the diversity of implementation

practices in different domains. In our own research

we have been developing a tool-supported approach to

decision-oriented variability modelling, which is highly

customizable to domain-specific needs. In the past we

have reported on our experiences on using the approach

and its benefits in diverse industrial contexts. In this

paper we present a more formal description of our ap-

proach and define the execution semantics of decision-

oriented variability models.

1. Introduction

Variability is an emergent property of software sys-

tems and results from different design decisions taken to

address requirements and contexts from different users.

Experience from large-scale long-living systems shows

that knowledge about variability is mostly tacit in nature

and manifests itself in many different kinds of artefacts

(documents, software components, test cases, configu-

ration parameters, etc.) and different mechanisms sup-

ported by programming languages, architectural styles,

design patterns, etc. Variability models have been pro-

posed as a means of communication to deal with ex-

plicit documentation of tacit knowledge and better uti-

lization of the flexibility and adaptability provided by a

system.

The importance of variability in software systems

and the necessity of making knowledge about vari-

ability explicit in models have already been identi-

fied as important research areas in software engineer-

ing. Depending on the background of different re-

searchers, the needs of different industrial contexts and

the kinds of systems under investigation, several vari-

ability modelling tools and techniques are already avail-

able [1, 5, 14, 15, 18, 19]. However, due to the broad

spectrum of application areas and the diversity of im-

plementation practices in different domains, a “stan-

dard approach” for dealing with variability will prob-

ably never exist. There are a lot of “island solutions”

for variability modelling which either focus one partic-

ular level of abstraction or are monolithic and fixed to a

certain grammar, with a set of predefined features. This

hinders the widespread use of the existing approaches

in different domains and application contexts. Despite

the importance of variability modelling and the usage

of such models in a wide array of contexts, researchers

and practitioners are still struggling to find tools and

techniques that best suit their modelling needs.

Feature modelling is probably the most promi-

nent approach for modelling variability. Starting from

FODA [13], the feature-oriented view of the world has

already gone far beyond variability modelling and sys-

tem documentation. Several formal interpretations (e.g.

survey in [19]) of feature models and their applications

have already been published. Today several variants

of feature-based variability modelling tools and tech-

niques are available.

A comparably smaller number of publications pro-

pose decision-oriented approaches to modelling vari-

ability. The idea of decision modelling in product lines

is not new; it was introduced by Campbell et. al. [4, 2]

in the early 1990s, where decisions were “actions which

can be taken by application engineers to resolve the

variations for a work product of a system in the do-

main” [2]. Forster et. al. [10], Schmid et. al. [18],

Sellier et. al. [20] and others have been actively pub-

lishing their research results in this area. Astonishingly,

researchers have not yet found a common basis on the

notion of decisions. Some researchers follow decision

modelling on a rather informal basis (e.g. using tables

[18]), while others have already automated the decision

making procedure by using executable descriptions and

formal approaches.

We have incorporated a decision-oriented approach

into our tool suite DOPLER [8] consisting of the tools

DecisionKing [7, 6], ProjectKing [17] and Configura-

tionWizard [16]. Here we describe decision models

used in DOPLER tools more formally based on our ex-

periences and feedback from industry. We provide a

definition of the decision-oriented variability modelling

language DoVML.

2. The basics of DoVML

Modelling the variability of software systems in-

volves modelling the problem space (i.e., stakeholder

needs or desired features) and the solution space (i.e.,

the architecture and the components of the technical so-

lution). Separation of concerns based on problem space

and solution space was also dealt with by Metzger et. al

[14]. Our decision-oriented variability modelling lan-

guage (DoVML) supports the modelling of the problem

space using decisions and the solution space using as-

sets.

The basic constructs for modelling variability using

DoVML are depicted in figure 1. A Variability model

is a set of decisions, assets and rules. Decisions can be

organized in groups. The dependencies between deci-

sions are expressed using visibility conditions and valid-

ity conditions. The dependencies among assets and de-

cisions are established using inclusion conditions. Visi-

bility conditions, validity conditions, and inclusion con-

ditions are boolean expressions (the concrete syntax of

the expression language can be defined by the mod-

eller). Rules are comparable to constraints that ensure

that certain conditions always hold.

Figure 1. Constructs used in DoVML.

Product Line variability models built using

DoVML are constructed such that they can be used

for highly automated product derivation processes. The

structure of the decision models and the concepts used

therefor show high resemblance to process modelling

approaches. As for example: (i) Visibility conditions

are used to distinguish between decisions which are rel-

evant for the user and the ones which are not. This

guides the user through a product derivation process.

(ii) Decision attributes like questions, descriptions and

images are used to communicate decisions to the user.

(iii) Rules are executed automatically to ensure the con-

sistency of the decision making procedure.

2.1. The notion of a decision

A decision is a set of choices available at a certain

point in time and arises whenever for a given goal there

exist two or more ways of achieving it. Decisions can be

used to represent the variation points in a product line

model, and serve basically two purposes: (i) document-

ing and planning variability in the development phase

and (ii) guiding users and automating product configu-

ration during derivation phase. The process of taking

a decision involves judging the merits of multiple op-

tions and selecting one of them for action (e.g., based

on a consideration of customer requirements). In other

terms a decision making process leads to the selection

of a course of actions among several available alterna-

tives.

Decisions are not independent of each other and

cannot be made in isolation for two reasons: (i) Due to

the dependencies surrounding a given decision, many

decisions made earlier lead to new decisions and (ii)

Many decisions are limited (constrained) depending on

the context of already taken decisions.

In our modelling approach, we take care of two

kinds of dependencies among decisions. Firstly, we

need to be aware of the fact that not all decisions are

equally important or relevant at a certain time. We

therefore need constructs to model the hierarchy of de-

cisions. Secondly, taking a certain decision may have

implications on other decisions which also need to be

considered (constraints). We therefore need to take care

of the factors that influence the decision making process

itself.

2.2. Decision vs. decision variable

For modelling purposes, we sometimes refer to a

decision as a decision variable. A decision is a variable

(like in programming languages) enriched with infor-

mation regarding:

1. the set of possible values (including infinite sets,

multiple ranges, and/or range constraints)

2. the specification of its position in the decision hi-

erarchy (in relation to other available decisions)

3. the specification of the implications of taking the

decision (on other decisions) and

4. labels and annotations (information for the user to

better understand the decision).

Therefore, taking a decision is equivalent to bind-

ing a variable to a value.

Figure 2. Simplified representation of a vari-

ability model in DoVML.

2.3. The notion of an asset

Assets are used to describe the set of artefacts and

their dependencies that are available in a certain devel-

opment environment. The structure and organization of

the solution space is specific to the domain/industrial

context at hand, therefore the core of DoVML can be

parameterized with an asset-meta model. Our approach

doesn’t assume fixed types of assets for modelling vari-

ability. By providing an abstract conceptual represen-

tation of structured data, the modeler defines the “mod-

eling language” for the solution space. Due to lack of

space in this paper, we omit the details about asset meta-

modelling. In our modelling approach, the assets are

linked to decisions via inclusion conditions, which are

arbitrary boolean expressions built using the decision

variables.

Figure 2 depicts a simplified representation of a

variability model. It depicts the two key modelling ele-

ments (decisions and assets). The types of decisions in

use (Boolean, Enumeration, Integer etc.) and the types

of assets in use (Components, Resource, etc.) have been

ommitted. For a better understanding of the terms and

concepts presented in this paper, figure 2 is used as an

running example. In the example, we assume a simple

concrete syntax of the different expressions in use and

the kind of relationships between different assets (e.g.

requires) to be fixed.

2.4. Key concepts

In this paper the constructs of DoVML are de-

fined using elementary set theory. We use the terms

types, variables and expressions in the same way as

in typed λ -calculus and functional programming lan-

guages. This means that expressions do not have side-

effects and variables are bound to values. It also means

that complex expressions are built from variables and

simpler sub-expressions, by means of functions and op-

erations. To give an abstract definition of decision mod-

els, it is not necessary to fix the concrete syntax in which

the modeller writes the expressions, and thus we shall

assume that such a syntax exists (together with well de-

fined semantics). It is now possible in an unambiguous

way to talk about the following:

1. The type of a decision υ is denoted by τ(υ) and the

type of an expression ε is denoted by τ(ε). For a

type τ , we also use τ to denote the set of elements

in τ .

2. The set of decisions involved in an expression ε
is denoted by V(ε). This set of variables only in-

cludes the free variables, i.e., those which are not

bound internally in the expression (e.g. by local

definition).

3. For a set of decision variables {υ1, υ2, .., υn}, the

binding of the decisions in the set is denoted by

β=〈υ1:η1, υ2:η2, .., υn:ηn〉. It is required, that

η i∈τ(υ i).

4. Furthermore EB(S) is defined as the set of Boolean

expressions (terms and formulae), that can be

built using the variables in the set S. In other

words ∀ε∈EB(S): τ(ε) ∈ B ∧ V(ε) ∈ S, where

B={true,false}.

3. Variability modelling with DoVML

DoVML needs to be parameterized (configured) to

the specifics of the domain, before it can be used to

model the variability. Such configurability of the lan-

guage provides us with the flexibility required to adapt

the approach to the needs of different variability imple-

mentation practices. We therefore define Σ, L, A and

AMM as needed, where

Σ is a finite set of data types, specifying the types of

variables to be used in the model, e.g. Boolean,

Enumeration, String, Double, Character etc. This

set can be extended with other types, as required by

the domain. E.g., more complex compound data

types (e.g. Date and Time) are also possible. In

the overview depicted in figure 1, the set Σ is rep-

resented by decision types.

L is a finite set of labelling functions providing detailed

information for every decision variable. Such an-

notations have no formal meaning, but are help-

ful in understanding the model. Examples of such

labels are- description of υ , images and URLs to

elaborate the meaning of υ to the user, the question

which the user is asked etc. Use of labelling func-

tions (as compared to unstructured text-tags) helps

in better interpretation of the tags. In the overview

depicted in figure 1, such labels represent the deci-

sion attributes.

A is a finite set of actions, which are carried out upon

taking decisions defined in the decision model.

Read only actions are used to validate the actual

status of the decisions taken by the user (e.g. as-

sertions that can be made in order to make sure that

certain constraints are fulfilled). Other actions can

be used to make changes in the model: variables

can be bound to new values and other properties

of decisions can be changed. The execution se-

mantics of the action should be provided with its

definition. Actions can be compared to domain-

specific functions for manipulation of decisions.

AMM is the meta-model of the assets, whose variability

needs to be modelled. It is comparable to “entity-

relationship models” in relational databases. The

asset meta-model specifies (defines) the language

for describing the solution space.

A decision model (DM) is a set of decision variables of

the defined types ∀υ ∈ DM : τ(υ) ∈ Σ. Every decision

variable in a decision model is a unique identifier and

can be bound to a certain set of values. The names

have no formal meaning but they have huge practical

importance for the readability of a decision model (just

like the use of mnemonic names in traditional program-

ming). The range of possible values is partly specified

by the type of the variable.

Furthermore the decisions in DM are specified in

more detail using fval , fvis and ℜ where

1. fval is a validity function restricting the range of

variables ∀υ ∈ DM : fval(υ) → EB(DM).

2. fvis is a visibility function specifying the hierarchy

of decisions ∀υ ∈ DM : fvis(υ) → EB(DM\{υ}).

3. ℜ is a set of rules in the form “if condition then ac-

tion” (e.g. EB(DM) ⇒ 〈υ1 : η1〉, where a condition

implies a binding).

Using the asset meta-model AMM defined for the do-

main at hand, we also create an asset model AM, which

describes the set of available artefacts. We associate a

function finc to every asset α in the asset model, which

specifies when α needs to be included in the final prod-

uct ∀α ∈ AM : finc(α) → EB(DM).

3.1. Validity condition fval(υ)

The set of possible values of a variable specified by

the type of the variable is often too broad. As an exam-

ple let us consider a decision υ , where τ(υ) = R. In

order to further restrict the range of the variable, one

can make use of a validity condition, a Boolean ex-

pression involving variables in DM, fval(υ)→EB(DM).

A validity condition fval(υ) of a decision can be seen

as the post-condition which has to be fulfilled after

υ is bound to a certain value. Using validity con-

ditions, it is possible to specify multiple ranges too

(e.g. fval(υ)→(υ≥η1∧υ≤η2)∨(υ≥η3∧υ≤η4)). It

can therefore also be seen as a range constraint, which

is evaluated before a variable binding can take place.

A binding β=〈υ :η〉 is valid if η∈τ(υ)∧ fval(υ), for

∀υ∈DM.

Example: For a decision variable υ , τ(υ)=R the va-

lidity condition could be defined as fval(υ)→(υ%2=0),

which would mean, that only even numbers are

valid values of the variable. In figure 2, we make

use of a validity condition for decision scale,

fval(scale)→(scale≥1), meaning that only positive

number from Z are valid values of scale.

3.2. Visibility condition fvis(υ)

For each decision variable υ∈DM, there exists a vis-

ibility function fvis(υ), which specifies, when a certain

decision can be taken by the user at a certain point in

time during derivation. The visibility condition needs

to be evaluated, before a value has been assigned to

the variable υ , so the expression returned by fvis(υ)

must not contain the variable υ itself. In other words,

∀υ∈DM: fvis(υ)∈EB(DM)∧V(ε)⊆(DM\{υ}).

Hierarchy based on visibility conditions: The hi-

erarchy of decisions (the order in which the decisions

need to be taken) is partly specified by fvis. To elaborate

on the effects of visibility conditions, we define a rela-

tionship ⋄ between decision variables with respect to

their visibility conditions. A variable υ1 is said to have

a ⋄ relationship to another variable υ2, if the variable

υ2 appears in the visibility condition of υ1. This kind

of relationship between variables, which is written as

υ1⋄υ2 (read as υ1’s visibility depends on υ2) is given if

υ2∈V(fvis(υ1)). ⋄ is non-reflexive (the visibility condi-

tion of a variable cannot depend on itself), strictly anti-

symmetric (variables cannot depend on each other) and

transitive.

Example: In figure 2, the decisions are orga-

nized in a hierarchy based on their visibility condi-

tions. Lets consider the decision regarding the medium

to archive: fvis(medium)→archive. The decision

medium can be taken by the user only if the deci-

sion archive is bound to the value true. This

implicitly requires, that the decision archive needs

to be taken before medium. We can also note that

fvis(archive)→true and fvis(oracle)→false,

which means these decisions are always/never visible

to the user respectively.

3.3. State variables

Decisions which are never visible to the user, i.e.

fvis(υ)→false, are referred to as state variables and

can be bound to their values only as a result of rules

(ℜ). Such decision variables can be used to keep track

of different execution states of the model. They are

bound to their values automatically as a result of exe-

cuting the rules. Such rules help in aggregating values

of decisions which have already been taken and allow

to simplify complex expressions in models. For exam-

ple (cf. figure 2) the decision variable oracle deter-

mining whether a oracle database is needed for the final

system may be bound to a certain value automatically

after the user decides on the size (scale) of the final

system.

3.4. Specification of rules ℜ

The effects of taking a decision (on other decisions)

are modelled using a set of rules. Rules can be used ba-

sically for (i) Assertion, (ii) Binding, (iii) Update and

(iv) Information. The semantic of rules used for asser-

tion and binding is identical to constraints specified us-

ing boolean expressions in constraint satisfaction prob-

lems (CSPs). However, by using rules to update the

model and to communicate to users at runtime, one can

go beyond the borders of traditional constraints (as this

is not the focus of constraints in CSPs). This also shows

that variability models based on DoVML are created

with the focus of an interactive product derivation pro-

cess. The rules are specified in the form:

if 〈condition〉 then 〈action〉,
where condition∈EB(DM) and action ∈ A.

A rule is activated or triggered when its condition

evaluates to true. Here we present a few examples of

rules and their application. For the sake of simplicity

in the examples, we assume the syntax of the rules to

be similar to Pascal like programming languages. Rules

could be used for:

(i) Assertion: Dependencies among de-

cisions, where certain conditions always

need to hold, e.g. a constraint in the form

(υ1=η1)⇒(υ2=η2) could be specified using the

rule: if(υ1=η1)then assert(υ2=η2) or simply

assert(¬(υ1=η1)∨(υ2=η2)). The assert action is a

read-only action. It does not change the value of the

variables, but only makes sure that the condition holds.

(ii) Binding: Whenever there is a need to change

the values of the variables we make use of binding ac-

tions. e.g. if (υ1=η1) then setValue(υ2,η2).

In general a binding action is comparable to a con-

straint as in CSPs, i.e. a condition implies a binding

EB(DM)⇒(β=〈υ1:η1〉). In contrast to the assertion ac-

tion, binding actions change the actual value of the de-

cisions (i.e., they take decisions on behalf of the user).

Here setValue is used as an example of a binding ac-

tion (the actual syntax and semantics of all the actions

is fixed when defining A).

(iii) Update: Not only the values but also dif-

ferent attributes of decisions can be updated/manipu-

lated using rules. As for example, depending on the

value of one decision, the validity condition of an-

other decision might change, e.g. if (υ1=η1) then

update(fval(υ2)→(η2÷5 6=3)). Such an update ac-

tion can be used to change the specification of model at

runtime. Modification of the decision model itself as an

implication of the decisions taken by the user can how-

ever also lead to problems regarding the determinability

of the decision making procedure.

(iv) Information: Rules can also be used for in-

formative purposes. By defining actions like inform,

or display one can also capture knowledge which is

required for the user during product derivation. Such

rules have no formal semantics, but can be very help-

ful to the user to improve guidance during deriva-

tion. Example usage scenarios for this would be the

creation of recommender systems based on variabil-

ity models e.g. if (υ1=η1) then inform(’It is

recommended that . . .’) [17].

3.5. Building an asset model

Asset models are instances of the asset-meta model

describing the structure of the solution space. When

building an asset meta-model the types of assets to be

used, their attributes and dependencies among them can

be defined. At this point, it is important to point out

some peculiarities of the asset meta-models which we

use in our approach.

Inclusion conditions: We associate a Boolean ex-

pression called inclusion condition to every asset α
in the asset model (AM). ∀α∈AM: finc(α)→EB(DM).

Such an expression specifies the condition under which

the asset α will be included in the final product. If

an asset is always included in the system (e.g. util-

ity classes, common libraries) then its inclusion con-

dition is simply true. Considering the example pre-

sented in figure 2, the inclusion condition of the compo-

nent XMLPersistor is defined as medium==xml.

This means that the component XMLPersistor is in-

cluded in the final product, if the decision medium is

set to xml. The inclusion condition can be arbitrar-

ily complex and can involve any number of variables,

thus supporting not only 1:1 mappings between deci-

sions and assets.

Basic dependency types: Often assets are not in-

cluded or excluded from the final product directly be-

cause of decisions taken by the user but rather because

of technical dependencies resulting from their imple-

mentation. For example (cf. figure 2), the component

FileManager is included in the final product because

it is required by the component FilePurger. In or-

der to model such technical dependencies (functional

and structural) we provide with a set of predefined re-

lationship types (for automated interpretation of asset-

dependencies). Examples of such basic relationship

types are inclusion, exclusion, parent, child, predeces-

sor, successor, implementation, abstraction etc. When

specifying the asset meta-model for a certain organiza-

tion, the modeler can define his own name for depen-

dency types (e.g. “requires”) and link it with a prede-

fined type (e.g. “inclusion”). The naming of depen-

dency types is similar to the concept of stereotypes in

the UML.

When defining the semantics of decision-oriented

variability models, we ignore L, and fvis, as they are

primarily modeled with the focus of the product deriva-

tion process. We also don’t care of the concrete syntax

in which fval and A are written. Further constructs like

“roles of users”, “configuration tasks” and project spe-

cific adaptations of the variability model [17] are out of

scope of this paper.

4. Semantics of DoVML

A decision model represents the set of all pos-

sible valid variable bindings of the vari-

ables in the decision model, resolution of DM ≡
ϒ(DM)={β 1,β 2,. . .,β n}, where n is possibly ∞ due to

variables with infinite ranges. The process of taking de-

cisions selects one possible binding from ϒ. The reso-

lution of a decision model is given by β∈ϒ.

A concrete binding β∈ϒ can then be used for eval-

uating (calculating) the list of required assets. From the

product derivation perspective, the assets can be seen as

boolean variables, whose values are determined by the

evaluation of their inclusion conditions. Every asset α
can be interpreted as a boolean variable τ(α)=B, whose

binding is given by 〈α: finc(α)〉.

Furthermore, if asset dependencies are defined be-

tween assets α1, α2, α3, such that α1 requires α2

requires α3, then the dependency requires can

be seen as a copy function, that assigns the same in-

clusion condition finc(α1) to finc(α2) and finc(α3). i.e.

α1 requires α2 requires α3 ⇒ (finc(α3) ≡ finc(α2) ≡

finc(α1)). The consequence is that if α1 is included in

the final product, then α2 and α3 are also included.

4.1. Interpreting/executing a variability model

The operational semantics of decision-oriented

variability models can be explained by the algorithm in

figure 3, which can interpret such variability models.

The result of executing such a variability model is a set

of taken decisions (binding of decision variables) and a

set of assets required for the desired product.

Decision-making based on variability models (e.g.,

Figure 3. Overview of a sample algorithm for

the execution of variability models.

as a part product derivation/configuration) is an inter-

active process. Decisions can either be visible or in-

visible to the user. The transition between these states

is regulated by the evaluation of the visibility condi-

tion, which is triggered whenever a new variable bind-

ing takes place. All visible decisions are presented to

the user. The variable binding takes place either as a re-

sult of user interaction or as a result of rules which are

evaluated as required after a decision is taken. An asset

can either be included in or excluded from the desired

final product. The transition between these states occurs

as a result of the evaluation of the inclusion condition of

the assets.

Firstly, the visibility condition of each decision

variable is evaluated. If the condition holds, then a ques-

tion is presented to the user (possibly with other labels

of the decision variable) so that the variable is better un-

derstood when taking the decision. The input from the

user is evaluated against the validity condition. If the

input was a valid one, then the variable is bound to the

input value. Such a binding has two implications:

(i) It triggers the rule engine, which evaluates all

the rules and executes them as necessary (overview of

rule engine depicted in algorithm 1). Such rules can also

cause a variable binding, which leads to a recursive call

of the rule engine. So the execution of the action spec-

ified in the rule requires that the condition evaluates to

true. The execution of the action can change the set of

already bound variables; can however also only be in-

formative. As the rule engine can trigger the evaluation

of the rules again, it is important that there are no cyclic

dependencies in the model. Cycles in the rules can be

detected using standard cycle detection algorithms for

graph like data structures.

(ii) It triggers the evaluation of asset inclusion,

which is the process of figuring out which assets need to

be included in the final product. The process (depicted

in algorithm 2) consists of two phases: (i) evaluation

of the inclusion condition and (ii) evalutation of asset

dependencies. The set of included assets can then be

used by domain-specific application generators simula-

tors and deployment tools for further processing.

Algorithm 1 Sample evaluation of rules (rule engine)

Require: Binding β⊆{υ1:η1, υ2:η2, .., υn:ηn}
for all Rule ρ in ℜ do

if ρ .condition holds then

if ρ .action is of type binding then

β = β ∪ {〈ρ.action.υ:ρ.action.η〉}
re-evaluate all rules

else

domain-specific interpretation of ρ .action

end if

end if

end for

return Binding β

Algorithm 2 Sample evaluation included assets

Require: Binding β⊆{υ1:η1, υ2:η2, . . ., υn:ηn}
initialize set of included assets L

for all Asset α in AM do

if finc(α) holds ∧ then

L = L ∪ {α}
{evaluate asset relationships}
evaluate technical dependencies of α

end if

end for

return set of included assets L

5. Implementing DoVML

The approach described in this paper has been

implemented in a meta-tool for modelling variability

called DecisionKing [7, 9]. In order to reflect on the

current implementation status of the tool (from the per-

spective of the modelling language features), let us con-

sider the overview diagram depicted in figure 1. In De-

cisionKing we have realised the abstract core elements

of DoVML (i.e. Decisions, Assets, Groups and Rules)

by providing simple implementations for exemplifica-

tion.

Types of decisions (data types): DecisionKing

currently supports four basic types of decisions–

Boolean decisions are used to simulate yes/no ques-

tions. Number decisions are used mostly for parameter

values, where the user decides on a numerical value.

These are comparable to the type “double” in program-

ming languages. Other numerical types: integer, short

etc can be simulated using number decisions. String

decisions are used for similar purposes as number deci-

sions. They correspond to the data type “String” in pro-

gramming languages. Enumeration decision can be

seen as arrays of strings. Such decisions are used when-

ever different alternatives to the same variation point

need to be modeled.

Decision attributes (labelling functions): Currently

we support three decision attributes to communicate the

meaning of a decision to the user Descriptions are

blocks of text (e.g., in HTML) is used to clarify the

meaning of a decison. HTML also allows the easy in-

tegration of images, videos and animations to improve

guidance of product derivation process. Questions

are formulated in a concise way in the user’s problem

space language, such that the answer to that question

implies the value of the decision. By making use of

Annotations one can attach arbitrary information (in

textual form) to a decision.

Expression language (functions and actions): We

are currently using an expression language, which

shows high syntactic resemblance to Pascal. One can

make use of standard operators (e.g. +,−,÷,∗,=, 6=,≤

,≥,<,>,∨,∧, etc.) to build expressions. DecisionKing

provides an expression editor (with syntax highlighting

and auto completion, cf. figure 4) to ease the modelling

process. Apart from the standard operators we provide

the following actions to query the value of decisions

and build more complex expressions. setValue(d1,

p1) is an assignment function, which assigns the

value p1 to decision d1. selectOption(ld1,

op1), deselectOption(ld1, op1) are used to se-

lect/deselect an alternative in a enumeration decision.

contains(ld1, op1) is a set operator which can be

used in enumeration decisions to simulate ⊂,⊆,∈ oper-

ations. allow(ld1, op1), disallow(ld1, op1)

are used to expand/restrict the set of possible values in a

enumeration decision. isTaken(d1) is used to query,

whether a decision has already been taken by the user.

reset() is used to retract a taken decision. Retract-

ing a decision also resets all its implications modelled

in the rules. These functions and actions add syntac-

tic sugar to the actual implementation of the engine that

evaluates the rules. We are currently using a rule en-

gine based on JBOSS Rules1. All rules written using

the functions defined above are translated into their cor-

responding representation in drools2 notation. As for

example the following rule

1 i f (nu m s t r a n ds >4) then

2 s e t V a l u e (c a s t i n g m o d e , {” S i n g l e ”}) ;

3 e n d i f

is automatically translated into drools rule:

1 r u l e ”0”

2 s a l i e n c e 0

3 no−l oop t ru e

4 when

5 n u m s t r a n d s : RuleNumberDecis ion (

6 name == ” n u m s t r a n d s ” ,

7 a c t i v e == t ru e) and

8 e v a l (n u m s t r a n d s . ge tPVa lue () >4) then

9 A r r a y L i s t <S t r i n g > d r o o l s a ;

10 i . i d e n t i f y () ;

11 d r o o l s a = new A r r a y L i s t <S t r i n g > () ;

12 d r o o l s a . add (” S i n g l e ”) ;

13 i . s e t (0 , ” c a s t i n g m o d e ” ,

14 new A r r a y L i s t <S t r i n g >(d r o o l s a)) ;

15 end

Asset meta-models:As described earlier, for the de-

scription of the problem space, which is specific to im-

plementation practices in different domains, our tool

suite can be parameterized with a meta-model which is

comparable to ER-models. Until now, we have created

several such meta-models.

– Siemens VAI: For our industry partner we created a

meta-model consisting of Components, Resources and

Properties as asset types. Two dependency links (re-

quires and contributes to) were used to describe the

technical dependencies [7].

– ERP System: In order to model the variability of an

enterprise resource planning (ERP) systems, we created

a meta-model consisting of .NET “Plugins” as the basic

asset type [21].

– IAS System: We also modeled the variability of an in-

dustrial automation system (IAS) to automate the run-

time reconfiguration process [11].

– DOPLER tool suite: The variability of the DOPLER

tool suite itself was modelled using DoVML. For this

1http://www.jboss.com/products/rules
2http://www.jboss.org/drools/

Figure 4. Modelling decision dependencies in DecisionKing.

purpose we create a meta-model consisting of Eclipse

plugins, extension points and extension contributions as

the asset types [12].

6. Summary and further work

In this paper we presented the details of our vari-

ability modelling approach based on decision mod-

elling. Several publications in the past have already

elaborated on the tools DecisionKing, ProjectKing and

ConfigurationWizard, which are based on the modelling

approach described in this paper.

Our modelling approach focuses on one of the pri-

mary goals of a product derivation process, i.e. the iden-

tification of the required assets to fulfil the needs of the

customer specified in the form of taken decisions. This

is however only one application area of variability mod-

els based on decisions. Flexibility and adaptability is

introduced in our modelling approach by providing pa-

rameterization facilities for the language itself (e.g. by

defining Σ, L, A and AMM for each domain).

To illustrate the wide range of application areas, we

have already used our approach and tools to automate

the configuration of steel plant process automation soft-

ware [7], to manage runtime adaptation of enterprise re-

source planning systems [21], to manage the lifecycle

of industrial automation systems [11], and to monitor

service-oriented systems at runtime [3].

We are currently working on more formal represen-

tations of decision-oriented variability models and their

formal semantics. One longer term goal in this perspec-

tive is the formal definition and comparision to other

available decision modelling approaches.

Apart from that, we are continuously extending the

expression language used in our tool suite, which gives

us the power to express variability constructs using

functions at a higher level of abstraction. This includes

implementation of different set operators, actions and

other functions to model the dependencies among deci-

sions/assets.

Ongoing work includes consistency checking and

static analysis of decision-oriented models (e.g., by

converting them into constraint satisfaction problems or

petri nets) and further validation of the approach and

tools in real world examples of our industry partner.

7. Acknowledgements

This work has been conducted in cooperation with

Siemens VAI and has been supported by the Christian

Doppler Forschungsgesellschaft, Austria. We would

like to express our sincere gratitude to Stefan Wallner

for his contribution in implementing the rule language

based on JBOSS Rules.

References

[1] D. Batory. Feature models, grammars, and propositional

formulas. In 9th International Software Product Line

Conference (SPLC 2005), volume LNCS 3714, pages 7–

20, Rennes, France, 2005.

[2] G. H. Campbell, S. R. Faulk, and D. M. Weiss. Introduc-

tion to synthesis. Technical report, Software Productiv-

ity Consortium, Herndon, VA, USA, 1990.

[3] R. Clotet, D. Dhungana, X. Franch, P. Grünbacher,

L. López, J. Marco, and N. Seyff. Dealing with changes

in service-oriented computing through integrated goal

and variability modeling. In Second International Work-

shop on Variability Modelling of Software-intensive Sys-

tems (VAMOS 2008), pages 43–52, Essen, Germany,

2008.

[4] S. P. Consortium. Synthesis guidebook. Technical re-

port, SPC-91122-MC. Herndon, Virginia: Software Pro-

ductivity Consortium, 1991.

[5] K. Czarnecki, S. Helson, and U. Eisenecker. Staged

configuration using feature models. In R. Nord, edi-

tor, Lecture Notes in Computer Science, Software Prod-

uct Lines, Third International Conference (SPLC 2004),

volume LNCS 3154, pages 266–283. Springer-Verlag,

2004.

[6] D. Dhungana, P. Grünbacher, and R. Rabiser. Deci-

sionking: A flexible and extensible tool for integrated

variability modeling. In First International Workshop

on Variability Modelling of Software-intensive Systems

- Proceedings, pages 119–128. Lero - Technical Report

2007-01, Limerick, Ireland, 2007.

[7] D. Dhungana, P. Grünbacher, and R. Rabiser. Domain-

specific adaptations of product line variability model-

ing. In IFIP WG 8.1 Working Conference on Situational

Method Engineering: Fundamentals and Experiences,

Geneva, Switzerland, 2007.

[8] D. Dhungana, R. Rabiser, P. Grünbacher, K. Lehner,

and C. Federspiel. Dopler: An adaptable tool suite for

product line engineering. In 11th International Software

Product Line Conference (SPLC 2007), Tool Demon-

stration, volume Second Volume, pages 151–152, Ky-

oto, Japan, 2007. Kindai Kagaku Sha Co. Ltd.

[9] D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neu-

mayer. Integrated tool support for software product line

engineering. In Tool Demonstration, 22nd IEEE/ACM

International Conference on Automated Software Engi-

neering (ASE 2007), Atlanta, Georgia, USA, 2007.

[10] T. Forster, D. Muthig, and D. Pech. Understanding deci-

sion models : Visualization and complexity reduction of

software variability. In Second International Workshop

on Variability Modeling of Software-Intensive Systems,

volume 22, pages 111–119, 2008.

[11] R. Froschauer, D. Dhungana, and P. Gruenbacher. Man-

aging the life-cycle of industrial automation systems

with product line variability models. In 34th EU-

ROMICRO Conference on Software Engineering and

Advanced Applications (SEAA), Parma, Italy, 2008.

[12] P. Grünbacher, R. Rabiser, and D. Dhungana. Product

line tools are product lines too: Lessons learned from

developing a tool suite. In 23rd IEEE/ACM Interna-

tional Conference on Automated Software Engineering

(ASE 2008), L’Aquila, Italy, 2008.

[13] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peter-

son. Feature-oriented domain analysis (foda) feasibility

study. Technical report, Technical Report CMU/SEI-

90TR-21, Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA, USA, 1990.

[14] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, and

G. Saval. Disambiguating the documentation of vari-

ability in software product lines: A separation of con-

cerns, formalization and automated analysis. In 15th

IEEE International Requirements Engineering Confer-

ence (RE’07), pages 243–253, New Delhi, India, 2007.

[15] V. Myllärniemi, M. Raatikainen, and T. Männistö. Kum-

bang tools. In 11th International Software Product Line

Conference (SPLC 2007), Tool Demonstration, volume

Second Volume, pages 135–136, Kyoto, Japan, 2007.

Kindai Kagaku Sha Co. Ltd.

[16] R. Rabiser and D. Dhungana. Integrated support for

product configuration and requirements engineering in

product derivation. In 33rd EUROMICRO Conference

on Software Engineering and Advanced Applications

(EUROMICRO-SEAA’07), Lübeck, Germany, 2007.

[17] R. Rabiser, P. Grünbacher, and D. Dhungana. Support-

ing product derivation by adapting and augmenting vari-

ability models. In 11th International Software Product

Line Conference (SPLC 2007), Kyoto, Japan, 2007.

[18] K. Schmid and I. John. A customizable approach to full-

life cycle variability management. Journal of the Sci-

ence of Computer Programming, Special Issue on Vari-

ability Management, 53(3):259–284, 2004.

[19] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bon-

temps. Feature diagrams: A survey and a formal seman-

tics. In 14th IEEE International Requirements Engineer-

ing Conference (RE’06), pages 139–148, Minneapolis,

MN, USA, 2006.

[20] D. Sellier and M. Mannion. Visualizing product line

requirements selection decisions. In 11th International

Software Product Line Conference (SPLC 2007), 1st In-

ternational Workshop on Visualisation in Software Prod-

uct Line Engineering (ViSPLE 2007), volume Second

Volume, pages 109–118, Kyoto, Japan, 2007. Kindai

Kagaku Sha Co. Ltd.

[21] R. Wolfinger, S. Reiter, D. Dhungana, P. Grünbacher,

and H. Prähofer. Supporting runtime system adap-

tation through product line engineering and plug-in

techniques. In 7th IEEE International Conference

on Composition-Based Software Systems (ICCBSS),

Madrid, Spain, February 2008. IEEE Computer Society.

Automated Analysis of Orthogonal Variability Models. A First Step

Fabricia Roos-Frantz ∗†

Universidade Regional do Noroeste

do Estado do RS (UNIJUI)

São Francisco, 501.

Iju 98700-000 RS (Brazil)

frfrantz@unijui.edu.br

Sergio Segura
Department of Computer Languages and Systems

University of Seville

Av. de la Reina Mercedes S/N,

41012 Seville, Spain

sergiosegura@us.es

Abstract

The automated analysis of variability models is a chal-

lenge to be reached in SPLE (Software Product Line En-

gineering). Only recently researchers have devoted their

attention to the reasoning on these models. However, their

work has focused on Feature Models. Orthogonal Variabil-

ity Modeling (OVM) is one of the approaches for modeling

variability in software product line. Hence, an automated

support is needed to reasoning on orthogonal variability

models (OVMs). Although the automated analysis of OVMs

has been proposed, it only deals with a small number of

analysis operations, which are implemented using a specific

logical representation and solver. In this position paper, we

present the proposal that we will carry out to achieve an ad-

equate tool to the analysis on OVMs. As part of this paper,

we informally define some analysis operations on OVMs.

In addition, we propose to study the possibility of extend-

ing FAMA framework for supporting analysis on OVMs. We

consider that FAMA (FeAture Model Analyzer) could be a

suitable option to automate this analysis since it provides a

formal basis, integrate multiple solvers and already provide

tools.

1. Introduction and Preliminaries

The automated analysis of variability models is a chal-
lenge to be reached in SPLE (Software Product Line En-
gineering). Although there are several kinds of variability
models, the majority of the research works on analysis of
these models has focused on Feature Models. In the lit-
erature, there are different proposals providing automated
support for the analysis of feature models [3, 4, 8, 9, 10,
11, 13, 18, 22]. Each one of them use different logical

∗PhD student at the University of Sevilla
†Supported by the Evangelischer Entwicklungsdienst e.V. (EED)

paradigm or formalism to provide the automated support
(e.g. description logic, propositional logic, constraint pro-
gramming). Most of them use SAT, BDD or CSP off-the-
shelf solvers to automate various analysis operations, e.g. ,
checking if a product is valid, checking if a model is void,
detecting dead features, etc.

To the best of our knowledge only Metzger et al. [13]
provide a automated support for the analysis of OVM. They
introduce a formalization of OVMs and propose using SAT1

solvers to automate analysis operations on OVMs. This
proposal only deal with five operations and whose seman-
tics is based on feature models. Besides, they use just
one type of solver to automate the analysis. The various
solvers (SAT, BDD and CSP solvers) have varying degrees
of performance and coverage with regard to analysis opera-
tions [2, 5].

Benavides [4] proposes a formal framework FAMA-F
for the automated analysis of software product lines in gen-
eral and feature models in particular. The framework is in-
dependent of the variability model (VM) used for the anal-
ysis. FAMA-F integrate some of the most commonly used
logic representations and solvers proposed in the literature
(BDD2, SAT3 and CSP4 solvers are implemented). It inte-
grates different solvers in order to combine the best of all of
them in terms of performance. We wonder if is possible to
extend this framework to automate various reasoning tasks
on OVMs, e.g., verifying if a product is valid, checking if
a model is void, detecting “dead” nodes, etc. (see Sect. 3).
We consider that FAMA-F could be a suitable option to au-
tomate the analysis of OVM since it provides a formal basis,
integrate multiple solvers and has available tools.

To achieve a suitable automated support for the analysis
of OVMs, we identify three issues to be addressed, namely:
i) specification of operations, ii) formal representation of

1They use SAT4j solver http://www.sat4j.org
2JavaBDD solver, http://javabdd.sourceforge.net
3SAT4j solver http://www.sat4j.org
4Constraint Satisfaction Problem www.4c.ucc.ie/

model and operations, and iii) implementation of opera-
tions. These aspects motivated some of the main research
questions to be addresses in our future work.

1.1. OVM (Orthogonal Variability Model)

OVM is a proposal for documenting software product
line variability [14]. In an OVM only the variability of the
product line is documented. In this model a variation point

(VP) documents a variable item and a variant (V) docu-
ments the possible instances of a variable item. All VPs
are related to at least one V and each V is related to one VP.
Both VPs and Vs can be either optional or mandatory (see
Figure 1). A mandatory VP must always be bound, i.e, all
the product of the product line must have this VP and its Vs
must always be chosen. An optional VP does not have to
be bound, it may be chosen to a specific product. Always
that a VP, mandatory or optional, is bound, its mandatory
Vs must be chosen and its optional Vs can, but do not have
to be chosen. In OVM, optional variants may be grouped in
alternative choices. This group is associated to a cardinal-
ity [min...max] (see Figure 1). Cardinality determines how
many Vs may be chosen in an alternative choice, at least
min and at most max Vs of the group. Figure 1 depicts the
graphical notation for OVMs [14, 13].

Figure 1. Graphical notation for OVM

In OVM, constraints between nodes are defined graph-
ically. A constrain may be defined between Vs, VPs and
Vs and VPs and may be an excludes constraint or a re-

quires constraint. The excludes constraint specifies a mu-
tual exclusion, for instance, a variant excludes a optional
VP means that if the variant is chosen to a specific prod-
uct the VP must not be bound, and vice versa. A requires

constraint specifies an implication, for instance, a variant
requires a optional VP means that always the variant is part
of a product, the optional VP must be also part of that prod-
uct. Figure 2 depicts a example of an OVM inspired by the
mobile phone industry.

Figure 2. OVM example: mobile phone prod-
uct line

1.2. Automated Analysis of OVM

To the best of our knowledge, there is only one proposal
dealing with the automated analysis of OVM [13]. Metzger
et al. are working in a tool support for variability manage-
ment, which offers support for the analysis of OVM. Their
prototype uses the off-the-shelf SAT solver library SAT4J.
This SAT solver request a Boolean formula in CNF (con-
junctive normal form) and delivers all variable assignment
that evaluate the input formula true. If no such assignment
exists, the formula is unsatisfiable. This proposal provides
analysing of only five operations and using one solver. Fur-
thermore, it makes the automated reasoning on OVM using
the VFD semantics.

VFD (Varied Feature Diagram) is based on FFD (Free
Feature Diagrams) which is a parametric construct designed
to define the syntax and semantics of FODA-inspired FD
(Feature Diagram) languages in a generic way [16, 17].
Metzger et al. propose reusing this formalization of feature
diagrams, in other words VFD, to introduce a formalization
of OVMs. They introduce a formal version of OVMs ab-
stract syntax and describe a translation from OVM to VFD,
thereby they give OVM a formal semantic.

1.3. FAMA framework

FeAture Model Analyzer (FAMA-F), proposed by Bena-
vides [4], is a formal framework for the automated analysis
of software product lines in general and feature models in
particular, in other words, this is a framework independent
of the variability model. This framework defines different
reasoning operations on feature models, like calculating the
number of products in a Software Product Line (SPL), get-
ting a list of its products, filtering products according to a
criterion or detecting and explaining errors. Thus, we pre-
sume it could be extended with OVM. It is defined with
a high abstraction level, provides support for the most ex-
tended feature model notations and can be extended with
new operations and solvers as needed.

The FAMA-F is defined in four layers from a higher (i.e.
abstract foundation layer) to a lower abstraction level (i.e.
implementation layer), see Figure 3.

Figure 3. The four-layers FAMA-F

The FAMA-F abstract foundation layer provides an ab-
stract and formal definition of software product lines and
the operations of analysis that can be performed on them.
The abstract foundation layer defines characteristic models
as those that describe the allowed products configurations
of the software product line. In the FAMA-F character-
istic model, a specific variability model must be formally
defined. Up to now feature models are the only variabil-
ity model considered. In this layer the semantics of a spe-
cific feature model (FAMA-FM) is formalized with a for-
mal language Z. The operational paradigm layer depends
on the variability model used and provides a logical rep-
resentation to the semantics of feature model and analysis
operations, it allows using different logical representation.
In the implementation layer, a translation from the logical
representation described in the operational paradigm layer
to the real solvers is provided. FAMA-F allows the usage
of multi solvers to resolve a logical representation, may be
used CSP, SAT and BDD solvers.

Additionally, Benavides et al. [7] presented an imple-
mentation of this framework, the FAMA Eclipse plug-in

(FAMA-EP)5. It is an extensible tool for the automated anal-
ysis of feature models that integrated three logic paradigms
and their respective solvers: Constraint Solver Program-
ming (CSP) by means of JaCoP, Propositional Satisfiabil-
ity (SAT) by means of SAT4j and Binary Decision Diagram
(BDD) by means of JavaBDD. FAMA-EP allows the inte-
gration of different logic representations and solvers in or-
der to optimize the analysis process.

In addition to FAMA-EP, Benavides et al. [20] provide
the FAMA Framework (FAMA-FW) with the intention of
allowing third parties to integrate their automated reason-
ing techniques into a workspace where some basic features
are provided by default. FAMA-FW is a tool for the auto-
mated analysis of variability models (VM). Its main objec-
tive is providing an extensible framework where current re-
search on VM automated analysis might be developed and
easily integrated into a final product. It is built following

5http://www.isa.us.es/fama

the SPL paradigm supporting different variability metamod-
els, reasoners or solvers, analysis questions and reasoner
selectors, easing the production of customized VM analy-
sis tools. FAMA-FW is the result of research presented in
[8, 5, 2, 19].

1.4. Structure of this paper

The remainder of this paper is structured as follows: Sec-
tion 2 provides an overview about semantics OVM. Section
3 provides an informal specifications of some operations on
OVM. In Section 4 we propose the use of FAMA frame-
work as tooling to automated analysis of OVMs. Finally,
we summarize our future research in Section 5.

2. What specific formal semantics of OVM

should be used?

To carry out the automated reasoning on OVM, we need
a well defined semantics of these model. There are several
options to give formal semantics to OVM. One of them is
translating OVM to a feature model, since the semantic of
these has already been defined [16, 17]. Another way is
using a formal language, such as Z [21] or B [1].

To the best of our knowledge, there is only one for-
mal semantics OVM in the literature, proposed by Metzger
et al.[13], which has been obtained through a translation
from OVM to VFD. This way to give semantics to OVM
makes its semantics dependent of VFD. Such dependency
may result in an drawback, due to the increase in the model
size. When a OVM model is translated into a VFD model,
a larger number of non-primitive nodes are generated and
consequently the model becomes bigger, therefore it may
damage the performance of the operations. Besides, one
of the advantages that OVM offers is a significant reduc-
tion in the model size and complexity, because only the
variable aspects of a product line are documented in a first-
class model [15]. We wonder using VFD to give semantics
to OVM contradict the advantage of OVM concerning the
model size.

We will study other ways to give semantics to OVM
aiming to evaluate these alternatives and have more con-
clusions. The first work will be on translating OVM to the
feature model metamodel used in FAMA-F. This approach
would allow us to reuse the formal foundation and sup-
port multi solver [6] provided by FAMA-F for reasoning on
OVM. The other alternative is to study the usage of a for-
mal specification language Z or B, without the translation
to another language.

3. Operations on OVM

In the last years, different analysis operations over fea-
ture models have been identified [5, 4, 17, 3]. We select
some of them and informally describe these on OVM. These
operations observe the properties of a model without modi-
fying it, they take a OVM as an input and provide a response
as a result. Next, we define informally those operations,
namely:

Valid product. This operations checks whether a given
product belongs to the set of products represented by the
OVM or not. For instance, let us consider the products P1
and P2, described below, and the OVM of Figure 2.

P1 = {Connectivity, USB, Wifi}
P2 = {Calls, Data, Connectivity, USB, Wifi}
The product P1 is not a valid product for the OVM since

it does not include the mandatory variation point Calls. On
the other hand, the product P2 is a valid product for the
OVM because it is included in the set of products repre-
sented by the model.

Void OVM. This operation checks whether a OVM is
void or not, i.e. if it represents at least one product. The
reasons that may make a OVM to be void are related with
a wrong usage of the constraint dependencies. As an ex-
ample, Figure 4 depicts a void OVM. The excludes VP VP
constraint makes not possible the selection of the mandatory
VP Functions, what adds a contradiction to the model.

Figure 4. Void OVM

Core nodes. This operation returns the set of nodes (vari-
ants or variation points) that appear in all products of the
software product line. For instance, the set of core nodes of
the OVM presented in Figure 2 is {Calls}.

Dead nodes. This operation returns a set of dead nodes
(if any), i.e. those that do not appear in any product. Dead
nodes are caused by a wrong usage of constraint dependen-
cies and are the responsible of making a OVM to be void.
The Figure 5 depicts some common cases of dead nodes on
OVMs. Dead nodes in the figure are labeled with D.

All products. This operation returns all the products rep-
resented by a model. As an example, the set of all the prod-
ucts of the OVM presented in Figure 2 is detailed below:

Figure 5. Common cases of dead nodes on
OVM

P1 = {Calls, Voice}

P2 = {Calls, Voice, Connectivity, Wifi, USB}

P3 = {Calls, Voice, Data, Connectivity, Wifi, USB}

P4 = {Calls, Data}

P5 = {Calls, Data, Connectivity, Wifi, USB}

To automate the computation of those operations iden-
tified we have to formally define them. The formalization
found in the literature for this operations were defined ac-
cording to VFD semantics [13]. Metzger et al. suggest for-
mal definition to the operations: void model, valid product,
core nodes, dead nodes and all products. We will study how
to formalize these and all the others operations identified in
relation to OVM.

3.1. How to specify the equivalent models
operation on OVM?

The equivalent models operation checks whether two
models are equivalent. Two models are equivalent if they
represent the same set of products [4]. If we observe the ex-
ample depicted in the Figure 6, we can say that both models
are equivalent, because they represent the same set of prod-
ucts. We believe that this operation is not correct to OVM
because a variant is different of a variation point. In the
product of the first model, Media is a variation point and in
the second one, Media is a variant. Therefore, we believe
that these models represent different set of products, then
the equivalent operation should be redefined for OVM.

Figure 6. Equivalent models?

3.2. How to specify the merging operation
on OVM?

We conclude that a new concept of merging operation
can be applied to OVM, the merging into parts. This oper-
ation takes as input one part from one OVM model and an-
other part of another OVM model and returns a new OVM
model with the merging of those parts.

Three kinds of merging operations on feature models
were identified by Schobbens et al. [17], particularly: Inter-
section, Union and Reduced product. The former, returns
a feature model that encompasses the products included in
both inputs models. The second, returns a feature model
that encompasses all the products included in any of the in-
puts models. The later, returns a feature model including all
the products of the input models plus all the new possible
feature combinations. The merging of models may be help-
ful in a collaborative environment in which different people
modify the model concurrently [12].

The Figure 7 depicts a visual example of the merging
into parts operation on OVM, which is based on the merging
operations proposed in [17]. According to the example, the
Connectivity VP of the model A allows configuring three
products: P1{Connectivity, Wifi}, P2{Connectivity, USB},
and P3{Connectivity, Wifi, USB}. The Connectivity VP of
the model B also allows configuring three others products:
P1{Connectivity, Wifi}, P2{Connectivity, Bluetooth}, and
P3{Connectivity, Wifi, Bluetooth}. Then, if we merge both
Connectivity VPs, we will have three new models as the
result of the merging operation.

4. Tooling

We will study how to extend FAMA-F [4] to support
the analysis of OVMs. FAMA-F is a framework supporting
the usage of different logics paradigms and solvers in order
to optimize the performance of the analysis process. This
framework is independent of the type of variability model,
e.g. it is possible to use feature models or OVM. The first
step to be done is to define the FAMA’s characteristic model
layer using OVM as variability model of SPL. At this layer
OVM must be formally defined using the specification lan-

Figure 7. Merging into parts on OVM

guage Z. Afterwards, OVM must be translated by a logical
representation. In particular, in the operational paradigm
layer of FAMA-F, a OVM will be translated into a generic
Constraint Satisfaction Problem (CSP). At last, we have to
translate from the abstract CSP to the real CSP solver. At
this framework multiples solver can be used: CSP, SAT and
BDD solvers. Additionally, we can use the tool FAMA-FW
as a support for implementing our tooling.

5. Future work

We will study a way to achieve a suitable tooling to anal-
ysis of OVMs. To do this, we intend to study what is the ad-
equate semantics OVM to be used. Besides, we will specify
all the operations that may be applied to OVM and to for-
mally define them. Additionally, as one of the main moti-

vations of our research, we will study a possible extension
of the FAMA framework for supporting analysis operations
on OVM.

6. Acknowledgement

This work was partially supported by the European Com-
mission (FEDER) and Spanish Government under CICYT
project Web-Factories (TIN2006-00472) and by the An-
dalusian Government under project ISABEL (TIC-2533).

References

[1] J. R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[2] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated
analysis of feature models: Challenges ahead. Communica-

tions of the ACM, December:45–47, 2006.
[3] D. S. Batory. Feature models, grammars, and propositional

formulas. In Software Product Lines Conference, volume
3714 of Lecture Notes in Computer Sciences, pages 7–20.
Springer–Verlag, 2005.

[4] D. Benavides. On the automated analysis of software prod-

uct lines using feature models. PhD thesis, University of
Sevilla, 2007.

[5] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Segura. A
survey on the automated analyses of feature models. In Jor-

nadas de Ingenierı́a del Software y Bases de Datos (JISBD),
pages 367–376, 2006.

[6] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Corts. A
first step towards a framework for the automated analysis of
feature models. In Managing Variability for Software Prod-

uct Lines: Working With Variability Mechanisms (SPLC’06),
2006.

[7] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Corts.
FAMA: Tooling a framework for the automated analysis of
feature models. In Proceeding of the First International

Workshop on Variability Modelling of Software-intensive

Systems (VAMOS), pages 129–134, 2007.
[8] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated

reasoning on feature models. In Advanced Information Sys-

tems Engineering: 17th International Conference, CAiSE

2005, volume 3520 of Lecture Notes in Computer Sciences,
pages 491–503. Springer–Verlag, 2005.

[9] K. Czarnecki and A. Wasowski. Feature diagrams and log-
ics: There and back again. In 11th International Software

Product Lines Conference (SPLC 2007), volume 0, pages
23–34. IEEE Computer Society, 2007.

[10] S. Fan and N. Zhang. Feature model based on descrip-
tion logics. In Knowledge-Based Intelligent Information

and Engineering Systems, volume 4252, pages 1144–1151.
Springer, 2006.

[11] M. Mannion. Using first-order logic for product line model
validation. In Proceedings of the Second Software Product

Line Conference (SPLC2), LNCS 2379, pages 176–187, San
Diego, CA, 2002. Springer.

[12] T. Mens. A state-of-the-art survey on software merging.
IEEE Trans. Softw. Eng., 28(5):449–462, 2002.

[13] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and
G. Saval. Disambiguating the documentation of variabil-
ity in software product lines: A separation of concerns, for-
malization and automated analysis. In Requirements Engi-

neering Conference, 2007. RE ’07. 15th IEEE International,
pages 243–253, 2007.

[14] K. Pohl, G. Böckle, and F. J. van der Linden. Software Prod-

uct Line Engineering: Fundations, Principles and Tech-

niques. Springer–Verlag, Berlin, DE, 2005.
[15] K. Pohl, F. van der Linden, and A. Metzger. Software prod-

uct line variability management. In SPLC, page 219, 2006.
[16] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps.

Feature diagrams: A survey and a formal semantics. In
Proceedings of the 14th IEEE International Requirements

Engineering Conference (RE’06), Minneapolis, Minnesota,
USA, September 2006. IEEE Computer Society.

[17] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bon-
temps. Generic semantics of feature diagrams. Computer

Networks, 51(2):456–479, Feb 2007.
[18] J. Sun, H. Zhang, Y.-F. Li, and H. H. Wang. Formal seman-

tics and verification for feature modeling. In Proceedings of

the ICECSS05, pages 303–312, 2005.
[19] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and

M. Toro. Automated error analysis for the agilization of fea-
ture modeling. Journal of Systems and Software, 81(6):883–
896, 2008.

[20] P. Trinidad, D. Benavides, A. Ruiz-Corts, S. Segura, and
A. Jimenez. Fama framework. In Software Product Line

Conference Tool Demonstrations (SPLC 08 Tools Demos)

(in press), 2008.
[21] J. Woodcock and J. Davies. Using Z: Specification, Refine-

ment, and Proof. Prentice Hall, 1996.
[22] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based

method for verification of feature models. In J. Davies, ed-
itor, ICFEM 2004, volume 3308, pages 115–130. Springer–
Verlag, 2004.

A Method to Analyze Variability Based on Product Release History:

Case Study of Automotive System

Kentaro Yoshimura, Fumio Narisawa, and Koji Hashimoto
Hitachi Research Laboratory, Hitachi, Ltd.

(MD#244) 7-1-1 Omika, Hitachi, Ibaraki 319-1292, Japan
kentaro.yoshimura.jr@hitachi.com

Tohru Kikuno
Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
kikuno@ist.osaka-u.ac.jp

Abstract

Variability is a keystone for developing reusable soft-

ware product line (SPL) assets. Top-down approaches like

feature-oriented analysis are widely used for detecting vari-

ability. However, when we introduce the SPL approach into

existing products, analyzing variabilities of requirements

and comparing them to legacy assets depend on the exper-

tise of the analysts and are time consuming.

We present an complemental approach to analyze the

variability candidates from existing product release history.

We apply factor analysis method to detect co-change pat-

terns of the legacy artifacts across product releases, and

to suggest the variability candidates. To examine the ap-

plicability of our approach, we conducted an experimen-

tal application using a software repository of automotive

engine-control software. As a result of the experiment, four

variabilities and their variation points are detected success-

fully.

1 Introduction

SPL approach has been proposed as a development
method for software that has variations. For reusing soft-
ware across a product line, variabilities that are differences
in requirements between product variations are analyzed.
For migrating from existing products to SPL, understand-
ing variability of the existing products and variation points
of the artifact is an important practice.

Research in SPL engineering has mostly focused on the
construction of product line infrastructures and activities
based on requirements of future products: scoping, domain

analysis, architecture creation, and variability management
[2][3][8]. On the other hand, existing products contain a lot
of domain expertise and are reliable from an industry point
of view. The commonality and variability analysis for ex-
isting software is one of the most important issues to define
a future product line while reusing existing software.

Variability analysis of existing software is a block
against migrating into SPL engineering. Related studies
have proposed methods for analyzing commonality and
variability from a requirement point of view and connect-
ing that to the implementation [6][7]. However, require-
ments and implementations of existing software are enor-
mous. Moreover, such requirement analysis strongly de-
pends on the expertise of the analysts and is time consum-
ing. Some industrial case studies reported that commonality
and variability analysis takes a long time[11][12]. There is
a need for analyzing the commonality and variability in an
automatic way.

We focus on the release history of existing products. Ex-
isting products contain their variability in their change his-
tory. If we could extract the variability from the existing
products, that will be useful information for migrating the
software product line because most of the existing variabil-
ity information will also be valid in future product lines.
Specifically, we analyze the product release history. When
the bindings of variability were different between products
releases, the realization of the software components that re-
lates to the variability was also different. A major variabil-
ity should occur several times, and the relationship to the
software components (variation point) could be detected as
a significant change pattern in the history.

We developed a method to suggest variability candi-
dates across existing software with analyzing the co-change

Factor
analysis
Factor

analysis

Product
variations

・
・
・

Co-change
patterns

Defining
variability
Defining

variability

Variability

Modified SWC

Figure 1. Overview of proposed method

pattern[14]. The idea is inspired by factor analysis. Factor
analysis is a multivariable analysis technique used to ex-
plain commonality among observed variables in terms of
fewer unobserved variables called ”factors.” The observed
variables are modeled as linear combinations of the fac-
tors plus ”specific variables.” The factor analysis extracts
the co-change pattern as the commonality of changes be-
tween products and a set of software components that have
changed with variability candidate. We thus tried to apply
the factor-analysis technique to detect variability in exist-
ing products and call our approach ”FAVE: Factor Analysis
based Variability Extraction”.

In this paper, we apply FAVE method to an industrial
case study and discuss its results. The previous paper [14]
describes FAVE method and applies it to an industrial, but
small case study. In contrast, we apply the method to rela-
tively large example in order to evaluate the method and to
analysis the future works.

An overview of the proposed method and scope of this
paper are shown in Figure 1. Inputs of FAVE are the change
history of the products, and the output is variability in the
product line. The factor analysis extracts the change pat-
tern as commonality of changes and a set of software com-
ponents that have changed with variability. After that, the
detected variability is refactored as a variation point and its
variants.

This paper describes a brief overview of the FAVE
method and an experimental application to the software
repository of automotive engine-control software. This pa-
per is structured as follows: Section 3 summarizes related
work. Section 2 describes a brief overview of the factor-
analysis technique. Section 4 describes our FAVE method
for detecting variability in existing products. The applica-
tion of the proposed method to existing automotive control
software is the topic of Section 5. Section 6 describes our
work in progress and a conclusion.

2 Factor Analysis

An overview of the factor analysis is shown in Figure 2.
Factor analysis is a well-known multivariable analysis tech-

Product

A to B

Product

B to C

Product

C to D

Product

D to E

Product

E to F

Product

F to G

Factor 1 Factor 2

Observed
Variables

Factor

SWC1

SWC40

.

.

.

0 1 0 1 0 0

1 0 1 0 0 0

.

.

.

Factor Loading

Factor 1

Factor 2

Factor
Score

SWC：
SoftWare Component

Data

Factor
SWC1

SWC40

Change
Vector

Element

Figure 2. Overview of factor analysis

nique used to explain commonality among observed vari-
ables in terms of fewer unobserved variables called ”fac-
tors”.

A factor loading is the degree of correlation between the
observed variable and the factor. The factor has a strong
relationship with the observed variable if its factor loading
is significantly high.

Each factor also correlates with elements of the observed
variables. The degree of correlation between the element
and the factor is called a factor score. Using the factor score,
we can expect that the meaning of the elements is based on
the meaning of the factor.

3 Related Work

SPL engineering is an investment in future products, so
various researchers have studied roadmap-oriented product
line engineering[2][3][10]. There are also many studies
about product line engineering for legacy software. Kang[7]
analyzed the requirements of the legacy system and mod-
eled them as a feature tree to migrate into SPL. John[6] an-
alyzed documents of the legacy system to detect variability.
Steger[11] analyzed electric and electronic architecture of
the controller as variation points of the system. However,
researchers have started mainly from current products to fu-
ture products. In contrast, our approach focuses on the re-
lease history of the product line from the past to the present
and analyzes how the product have varied. This result of the
extraction helps developers understand the variability of the
existing products.

We have already developed a method for evaluating com-
monality between two current products in a quantitative
way [13]. In the proposed method, the commonality be-
tween products was detected, but we were unable to detect
the variability across the variants. The difference between
products consists of variability and product-specific parts.
We could not separate them even when analyzing only two

2

Release
history

Co-change
pattern

Converting
to Vector

Factor
analysis

Defining
variability

Variability and
variation points

Expert

Spec+

Figure 3. Overview of FAVE process

products. In contrast to our previous work, FAVE extracts
the variability from the differences between multiple exist-
ing products.

In [4], Fischer proposed an approach to detect coupling
between modules of multiple product variants by mining
their code repositories. Their approach detects the degree of
coupling between modules across the change history of the
variants. In contrast to their work, FAVE detects the vari-
ability among the product release history in the orthogonal
region and the variation points as correlation to the software
components.

Loesch[9] presented a method to optimize variability
provided in a product line. Their approach analyzes the
usage of variable features in actual products derived from
the product line. They applied a formal concept-analysis
method for optimization. In contrast, our approach ana-
lyzes the release history of the existing products that have
not been migrated into SPL yet.

Independently from SPL, Zimmermann[15] developed
an approach to detect couplings of software components
from the version history. However, their focus was on
checking software components that were often modified at
the same time. In contrast, our approach also clusters the
change pattern of legacy software and extracts that as a vari-
ation point in the concept of SPL.

4 FAVE - Factor Analysis based Variability

Extraction

4.1 Overview

The purpose of FAVE is to detect product-line variability
that has already occurred in existing products. An overview
of the FAVE process is shown in Figure 3. We have already
developed the method in our previous work [14], so we de-
scribe the process briefly in this section.

Variability analysis is the first step for migrating existing
products into software product lines. In this step, we an-
alyze the existing product artifacts and classify them into
common parts, variable parts, and product-specific parts.
The aim of FAVE is the variability mining of existing prod-
ucts.

As shown in Figure 3, we convert product release histo-
ries to change vectors so that we could analyze them numer-
ically. Then, we apply the factor analysis to the change vec-
tors and identify co-change patterns as the variability can-
didates of the product line. After that, we define the means
of the variability from the viewpoint of requirements and
specifications.

In the following subsections, we explain briefly how
FAVE is applied to existing products.

4.2 From Product Release History to
Change Vectors

Product release history is not numerical data, so we can-
not apply the factor analysis directly. For analyzing vari-
ability based on factor analysis, we convert the release his-
tory to change vectors.

An overview of the product release history is shown in
Figure 4. Typically, an organization develop new product
from the released product that has similiar requirements.
Based on the difference of the requirements, e.g. differ-
ent mechanical parts or new functionality, some software
components (SWCs) are altered, added or deleted.

We define a change vector as a set of binary data that in-
dicates difference in software components between product
releases. For example, in Figure 4, software component 1,
2, 3 and 5 are changed from product A to B. Therefore, the
change vector of product A to B is (1, 1, 1, 0, 1, ...)

T
.

Product release history often branches because of the
pararell development of product variations. In that case,
change vector is generated from the difference between the
last and the first product release over the branch point. For
example, in Figure 4, software component 1, 4 and 5 are
changed from product B to D. Therefore, the change vector
of product B to D is (1, 0, 0, 1, 1, ...)

T
.

After change vectors are generated based on changes be-
tween all serial product release, the vectors are used as ob-
served variables for the factor analysis in the next step.

3

Product
release

Requirements
for product B

1, 5

Changed
SWC

2, 3 1, 5 4 10 10

Branch

Requirements
for product C

Requirements
for product D

Product CProduct BProduct A

Product D

1, 5

Changed
SWC

Figure 4. Product release hisotry

4.3 Factor Analysis

After converting the release history, we apply the factor
analysis. As a result of the factor analysis, we obtain the
following data.

• Factor

A factor indicates a commonality of the changes be-
tween existing products. We can extract the factor as
variability candidate in the product line because com-
monality of the change vector is a co-change pattern of
how the existing software changes across the release
history.

• Factor Loading

A factor loading indicates which change vector is cor-
related with the variability candidate. When the factor
loading is high, the variability candidate may be re-
lated to some specifications that changes in the change
vectors.

• Factor Score

A factor score indicates which software components
are correlated with the variability candidate. Compo-
nents that have high factor scores were modified to-
gether, and the timing is related to the variability can-
didate. This suggests that a cluster that consists of soft-
ware components is a variation point of the variability
candidate.

4.4 Defining Variability

A process of how domain experts define the means of the
extracted variability based on the result of the factor analy-
sis is shown in Figure 5.

First, significant factors are selected for defining the vari-
ability. The details of the selection process depend on the
analysis method of the factor analysis such as the promax
method and varimax method. For example, the number of

significant factors is decided by using the chi-squared test
and cumulating ratio of the factors.

Next, we analyze the product release histories that cor-
relate the factors. We select the change vectors that have
high factor loadings. The factor may be a variability that
occurred in the selected change vectors between the exist-
ing products. In this step, we do not go into the details of
the release, but define which change vectors are related to
the variability.

Then, we select the set of software components that indi-
cates the variation point. If the factor score is significantly
high, the software component has been modified when a
variability occurred in release histories that has a high factor
loading. In the context of SPL, a set of the software com-
ponents means the variation point of the variability. In the
next step, we also speculate on the meaning of the variabil-
ity candidate by referring to the combination of the software
components’ features.

As the last step, the candidate is interpreted as a vari-
ability of the SPL. For example, we guess the meanings of
the candidate as indicating the abstracted feature from the
set of the software components that have high factor scores.
Then, we check whether the variability has occurred in the
change vectors that have a high factor loading. Although
only this step is an iterative step and depends on the exper-
tise of an analyst, the result of the factor analysis will be
helpful information for the analyst.

5 Case Study

5.1 Overview

An overview of an engine-control system is shown in
Figure 6. The system monitors engine status and driver re-
quests, and controls the engine by regulating the amount of
fuel injection, ignition timing, and quantities of intake air,
for example. There are a number of variations that correlate
to the mechanical structure, which satisfy the product spec-

4

(3) Selecting significant software
components that constitute a variation
point by using factor score

(1) Selecting significant factors

(2) Analyzing significant change
histories that are affected by
variability by using factor loadings

(4) Interpreting variability according
to product specifications

Factor Loading Factor Score

Change Histories Software Components
(Variation Point)

Variability

Factor Analysis Result

Figure 5. Process for defining variability

Throttle EngineRevolutionAccelerator PedalSensor
ECS (Engine Control System) Throttle EngineRevolutionAccelerator PedalSensor
ECS (Engine Control System)

Accelerator PedalSensor
ECS (Engine Control System)

Figure 6. Engine-control system

ification, e.g., number of cylinders, transmission type, fuel
type, and fuel injection.

We apply FAVE to part of the engine-control application
layer. Generally, an engine-control system consists of a ba-
sic software layer and application software layer. As de-
fined by an industrial standard for automotive control soft-
ware [1], most software components in the basic software
layer correspond to the electronic architecture of the control
system, such as microprocessors, LSIs, and network proto-
cols. The variability of basic software is easily visible and
the relationship between the variability and variation point
is simple in this example. On the other hand, a feature of the
application layer calculates engine phenomena, i.e. intake
airflow, fuel combustion, and exhaust gas. These phenom-
ena are correlated to many kinds of physical components
such as engine size, number of cylinders, valves, fuel in-
jectors, and fuel type. Moreover, there are some nonfunc-
tional requirements that cause variability such as exhaust
gas regulation by different countries and drivability. There-
fore, the features in the application layer have much invisi-
ble variability, and the correlations between the feature and
the variability are complex. Thus, we apply FAVE to extract
the variability of a feature in the application layer and the
mappings to software components of the feature.

Table 1. Case study example
Application Engine-control software

of products 16
of software components 49

Table 2. Case study environment
Environment R ver 2.6.1

Method Maximum likelihood estimation
Rotation Orthogonal (varimax)
Scores Regression

An overview of the case study is shown in Table 1.
The repository has data about sixteen products that were
released for different vehicles. We extracted one control
subsystem that consists of forty-nine software components.
Each software component is responsible for a fine-grained
feature of the engine or the control system itself. To com-
pute the factors, we applied R [5] and configured the param-
eter, as shown in Table 2.

5.2 Analyzing Variability

We analyzed the variability by following the process in
Fig. 3.

5.2.1 Converting to Change Vector

First, we converted the release histories to the change vec-
tors. We obtained fifteen change vectors from sixteen re-
leases of existing products from the software repository.
The release of software corresponds to different vehicles in
the market.

Due to a company confidentiality issue, we are unable
to disclose the organization of the software repository and
change vectors.

5

Table 3. Examination result for # of factors
of factors 1 2 3 4

p-value 1.43E-24 5.74E-16 5.39E-8 0.0105
X squared 301.1 220.2 141.7 77.15

Cumulating 0.229 0.359 0.501 0.594

Other41%
 Factor 413% Factor 313%

 Factor 216%
 Factor 117%

Figure 7. Factor proportion

5.2.2 Factor Analysis

• Number of factors

Next, we examined the number of significant factors of
the product line. We applied the chi-squared test and
checked the cumulative variable of the factors. The re-
sult of the examination is shown in Table 3. When the
number of factors is four, p-values of the chi-squared
test are larger than 0.01 and the cumulating value is
0.594. Therefore, we defined the numbers as ”4”.

The percentages of factors are shown in Fig. 7. The
other than the factors indicates specific changes for
each change history. From the viewpoint of the SPL,
this portion corresponds to product-specific modifica-
tions.

• Factor 1

Next, we define the variabilities for each factor based
on the factor loadings and scores. Because of the page
limit, we explain about factor 1 and 2 case only.

The loading of factor 1 is shown in Figure 8. Change
vectors F, H, and J correlate with factor 1. The experi-
mental result suggests that variability relating to factor
1 has occurred in change vectors F, H, and J.

The score of factor 1 is shown in Figure 9. Some
software components have a factor score significantly
higher than 1.4, and the other components have a low
factor score. The experimental result suggests that

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A B C D E F G H I J K L M N O

Change History

F
a
ct

o
r

L
o
a
d
in

g

Figure 8. Factor loading (factor 1)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 412345678910111213141516171819202122232425262728293031323334353637383940414243444546474849

S
o
ft

w
a
re

 C
o
m

p
o
n
e
n
t

ID

Factor Score

Figure 9. Factor score (factor 1)

software components No. 3, 18, 24, 27, 28, 29, 30,
47, 48, and 49 are correlated with each other. This
means that there is a set of software components that
have been changed together in the change vectors and
FAVE extracted the set automatically.

Finally, we define the variability of factor 1. We select
software components No. 3, 18, 24, 27, 28, 29, 30,
47, 48, and 49 as the variation point of the variability
based on the factor score. Then, we check the features
of the components and suppose what kind of variabil-
ity is related to an abstracted feature. From the con-
trol specification point of view, software components
No. 24, 27, 28, 29, and 30 are strongly related to the
variable valve timing control feature and the others are
related to the phenomenon of intake airflow. There-
fore, we checked how the products are modified in the
change histories F, H, and J, and then found that the
valve system was modified from the fixed type to the
variable type and from the variable type to the fixed
type. Therefore, we defined factor 1 as the variability
of ”Variable Valve Timing Control” and the selected
software components as variation points.

6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A B C D E F G H I J K L M N O

Change History

F
a
ct

o
r

L
o
a
d
in

g

Figure 10. Factor loading (factor 2)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 412345678910111213141516171819202122232425262728293031323334353637383940414243444546474849

S
o
ft

w
a
re

 C
o
m

p
o
n
e
n
t

ID

Factor Score

Figure 11. Factor score (factor 2)

• Factor 2

The loading of factor 2 is shown in Figure 10. Change
vectors L, M, and N correlate with factor 2. The exper-
imental result suggests that variability relating to factor
1 has occurred in the change vectors L, M, and N.

The score of factor 2 is shown in Figure 11. Software
components No. 8, 13, 14, 33, and 44 have a factor
score significantly higher than 2.8, and the other com-
ponents have a low factor score. The experimental re-
sult suggests that software components No. 8, 13, 14,
33, and 44 are correlated with each other. Again, this
means that there is a set of software components that
has been changed together in the change vectors and
FAVE extracted it correctly.

We select software components No. 8, 13, 14, 33, and
44 as the variation point. All of them are strongly
related to the ignition timing control. Therefore, we
checked how the products are modified in the change
histories L, M, and N, and then found that the basic
functionality of the ignition timing control was up-
dated in the histories. Therefore, we defined factor 2
as the variability of ”Ignition Timing” and the selected

software components as variation points.

5.2.3 Result

The detected variability in the case study is shown in Table
4.

5.3 Evaluation

We confirmed the result of the analysis with senior engi-
neers in the business division to evaluate the practicality of
FAVE.

The detected variability is the actual variability of the
product line that has occurred in the product release history
that we analyzed. FAVE detects the variability that causes
modifications for the software components. This means that
we can focus on only the detected variability and omit the
remaining possible variability at least for the existing prod-
ucts. Moreover, FAVE detects variability that the engineers
have not expected. For example, they thought that modifi-
cations related to the fuel type (factor 3) had a very minor
effect on the software. As FAVE detected, the modification
caused a significant effect on some of the software compo-
nents and its proportion ratio was 13%. Note that the sample
data is very important and the census survey is desirable.

The detected variation points that relate to software com-
ponents are also relevant. Even for the expert, defining an
exact set of software components that are modified by a
variability is very difficult for an engineer because of the
complexity and non-linearity of the physical phenomenon
of the engine system. FAVE detects software components
that match the experience of the expert successfully. This
means that FAVE has potential to extract tacit knowledge
implemented in the existing products, and we could use that
as explicit knowledge. Moreover, FAVE detects some soft-
ware components that we did not expect as variation points.
Some software components suggested by the experimental
result looked irrelevant to the variability. However, we un-
derstood that the component should be included to the vari-
ation point, after we analyzed the specification of software
components. This means that FAVE may extract variation
points that we have not noticed yet.

Variability 3 (Fuel type) and 4 (Intake valve) contain
software component No. 4 as one of their variation points.
This means that the variability in the legacy software was
not orthogonal to each other. To improve modularity of the
variability, software component No. 4 should be refactored.
For example, we can divide the software component into
two components in which one is related to Fuel type and
the other is related to the Intake valve. FAVE detects the
variability itself and overlap of the variability that should
be refactored in the future.

In the experimental application, people performed only
defining the number of significant factors and defining the

7

Table 4. Variability of experimental application
Factor ID 1 2 3 4

Variability Variable valve Ignition Fuel type Intake valve
timing control

Variation points 3, 18, 24, 27, 28, 8, 13, 14, 33, 44 4, 10, 23, 32, 39, 4, 25, 26, 41
(SWC ID) 29, 30, 47, 48, 49 40
Proportion 0.17 0.16 0.13 0.13

variability. FAVE will reduce the overhead for introducing
SPL approach.

6 Conclusion

In this paper, we proposed an approach to suggest vari-
ability candidates across existing software products by ana-
lyzing the change history. We applied a factor analysis tech-
nique to analyze variability of the existing products and call
our approach ”FAVE: Factor Analysis based Variability Ex-
traction.” We apply the factor analysis to changes between
existing products and detect the co-change patterns that may
indicate the variability of the product line.

In the case study of the automotive engine-control sys-
tem, we detected four variabilities and their variation points
from the change history. The detected variability corre-
sponds to the variability from the requirement viewpoint.

Clearly, this work is in its initial stage. We are currently
exploring several extensions to it.

We used a part of a software product as an example for
the experimental application. We hope that FAVE can be
used for a whole software product, and there are many tech-
nical issues. For example, we will need to visualize the
results to be understandable for domain experts. In the fu-
ture, we will analyze a larger data set and study appropriate
solutions.

Variability analysis is an important step, but not the goal.
We need to refactor the analyzed software components so
that the components can be reused as core assets of the
product line. The refactoring of the detected variability is
the key challenge for migrating the software product line.

FAVE only detects the existing variability. To introduce
variability from a roadmap of future products, we need to
integrate our approach and requirement-oriented variability
analysis.

The products release history contains information about
variability that occurred in the past. The history may help
us to understand its variability.

References

[1] AUTOSAR. AUTomotive Open System ARchitecture.
http://www.autosar.org/. visited on Jan. 18, 2008.

[2] J. Bayer and et al. PuLSE: A methodology to develop soft-
ware product line. In Proceedings of the Fifth ACM SIG-

SOFT Symposium on Software Reusability (SSR’99), pages
122–131, May 1999.

[3] P. Clements and L. M. Northrop. Software Product Lines:

Practices and Patterns. Addison-Wesley, 2001.
[4] M. Fischer and et al. Mining evolution data of a product

family. In Proceedings of 2nd International Workshop on

Mining Software Repositories (MSR’05), pages 1–5, 2005.
[5] R. Foundation. The R project for statistical computing.

http://www.r-project.org/. visited on Jan. 18, 2008.
[6] I. John. Software Product Lines, chapter Capturing Product

Line Information from Legacy User Documentation, pages
127–160. Springer, 2006.

[7] K. C. Kang, M. Kim, J. Lee, and B. Kim. Feature-oriented
re-engineering of legacy systems into product line assets - a
case study. In Proceedings of Software Product Lines: 9th

International Conference (SPLC 2005), pages 45–56, 2005.
[8] C. Lai and D. Weiss. Software Product Line Engineering.

Addison Wesley, 1999.
[9] F. Loesch and E. Ploedereder. Optimization of variability in

software product lines. In Proceedings of Software Product

Line Conference 2007 (SPLC2007), pages 151–160, 2007.
[10] K. Pohl, G. Bockle, and F. V. D. Linden. Software Product

Line Engineering: Foundations, Principles And Techniques.
Springer-Verlag New York Inc, 2005.

[11] M. Steger and et al. Introducing pla at bosch gasoline
systems : Experiences and practices. In Proceedings of

Software Product Lines: International Conference (SPLC

2004), pages 34–50, 2004.
[12] C. Tischer, A. Mueller, M. Letterer, and L. Geyer. Why

does it take that long? Establishing product lines in the au-
tomotive domain. In Proceedings of Software Product Line

Conference 2007 (SPLC2007), pages 269–274, 2007.
[13] K. Yoshimura, D. Ganesan, and D. Muthig. Defining a strat-

egy to introduce software product line using the existing em-
bedded systems. In Proceedings of 6th ACM & IEEE Con-

ference on Embedded Software (EMSOFT06), 2006.
[14] K. Yoshimura, F. Narisawa, K. Hashimoto, and T. Kikuno.

FAVE - Factor analysis based approach for detecting product
line variability from change history. In Proc. of 5th Work-

shop on Mining Software Repository (MSR2008), 2008. (to
appear).

[15] T. Zimmermann and et al. Mining version histories to guide
software changes. In Proceedings of the 26th International

Conference on Software Engineering (ICSE 2004), pages
429–445, 2004.

8

The Linux Kernel Configurator as a Feature Modeling Tool

Julio Sincero and Wolfgang Schröder-Preikschat
Department of Computer Science 4

Friedrich-Alexander University Erlangen-Nuremberg
{sincero,wosch}@cs.fau.de

Abstract

In order to contribute to the understanding of how the

SPL community and the open source community can benefit

from each other, we present the Linux Kernel Configurator

(LKC). We describe its capabilities and explain how it can

be used for the design of feature models.

1. Introduction

A software product line (SPL) is a set of software com-
ponents that can be composed in order to deliver a spe-
cific product. The scientific community has proposed a
variety of techniques to support the development of SPLs,
feature modeling, product line scoping, feature implemen-

tation techniques, variability management, among others.
These approaches aim at producing flexible software archi-
tectures, reducing time-to-market, enabling substantial code
reuse, and, consequently, providing high-quality software
products. The literature has plenty of study cases showing
the benefits of the adoption of such techniques.

Different sectors of the software industry have been
adopting the SPL approach in their development process.
However, another increasingly interest is the use of open

source software. This can be motivated by many reasons,
but mainly, due to cost factors and the attested quality of
many open source projects. In addition, it has been shown
that some open source projects, due to its technical imple-
mentation, can be considered to be SPLs [8], even though
during its development process no methods proposed by the
SPL community were used.

Therefore, it is clear that both communities share inter-
ests and goals. We believe that for a better understanding of
how these communities could benefit from each other, tech-
nical issues should be discussed. This paper presents the
variability management employed by the Linux Kernel. We
present the open source tool that is used for this task, and
also, how it can be adapted to be used by the SPL commu-
nity as a feature modeling tool.

Motivation

We are specially interested in addressing the configuration
of non-functional properties (NFPs) in SPLs[9, 5]. We be-
lieve that information about NFPs should be provided dur-
ing feature selection so that the application engineer can be
aware of the impact of a determined feature on the final
product. Therefore, our idea was to extend a feature mod-
eling tool in order to appropriately present this information
that cannot be accommodated in the feature diagram, as it
can be in the form of graphs or charts.

Nevertheless, we were not able to find any open source
feature modeling tool to bring our extensions, and also, our
goal was not to develop one from scratch. As the Linux
Kernel configurator is open source and very flexible, we de-
cided to test if it could meet our needs. It turned out that
it could be easily used as a feature modeling tool. In this
paper we demonstrate how to design features models with
it. 1

2. The Linux Kernel Configurator

The Linux Kernel Configurator (LKC) is a tool that is de-
livered within the Linux Kernel in order to enable its config-
uration (feature selection) . Its first prototype was proposed
in 2002, the current version is 1.3, and as the Linux Kernel,
it is released under the GNU General Public License.

2.1 A Little bit of History

In 2001 the community around the Linux Kernel started
to show dissatisfaction with the kernel configuration tool,
back then known as configuration menu language (CML1).
With the growth of the kernel, the configuration process was
getting very complicated. The tool was responsible for se-
lecting the capabilities to be built into the kernel, handling
dependencies and providing the user interface for feature
selection. Moreover, it was comprised of a mixture of code

1The aforementioned extensions regarding NFPs will be subject of an-
other publication.

written in Tcl/Tk scripts, awk scripts, pearl and C, which
made it hard to understand and to maintain[1].

In order to solve this problem, a configuration menu lan-
guage 2 (CML2) was proposed. It was a mini-language

designed specifically for configuring kernels. A ruleset de-
scribing all the available options and their dependencies can
be translated into a rulebase that is read by the front-end in
order to configure the kernel[7]. After more then two years
of development, several flame wars on the mailing list, and
many improvements over the previous system, the project
was dropped and not accepted in the official kernel tree (this
fact shows how restrictive and demanding is the community
regarding new code being merged in the official tree). Nev-
ertheless, the source code is still available and it is used as
the configuration tool of other projects.

A couple of months after the discussions about the
CML2 had finished, the LKC was proposed aiming at ad-
dressing the shortcomings of both CLM1 and CML2. Ac-
cording to the author, the major advantages over CML2 are:
(a) it is written in C code (CML2 is written in Python which
makes a Python interpreter to be delivered with the kernel)
(b) a tool for the automatic converting of the CML1 config-
uration into the new one is included, (c) it is less complex
then CML2, it does not try to address problems like facili-
tating the kernel configuration for non-experts as the CML2
does.

As these three points were of great importance for the
linux developers, after around one year of testing and im-
provements, the LKC was accepted and merged in the ker-
nel 2.5.45.

2.2 The Linux Kernel Configurator

The LKC is basically comprised of a parser and a depen-

dency checker that are used as the back-end. To enable the
selection of configuration options (as defined in a configu-
ration database), different front-ends (graphical, text-mode,
command-line interactive, etc.) are provided.

A configuration database is the collection of configura-

tion options organized in a tree structure. Every entry has
its own dependencies that are used to determine its visibil-
ity, any child entry is visible only if its parent entry is also
visible. An entry either defines a configuration option or is
used to organize them[10].

The configuration file is a text file containing the en-
tries which must follow a strict syntax. The configuration
database is built as a set of entries which define configura-

tion options. Line 1 of Listing 1 shows2 an entry definition,
it starts with the keyword config and is followed by its
name. The next lines of an entry are used to define its at-
tributes, which can be the following:

2this listing is an excerpt of the GPL [6] feature model designed with
the LKC language

type define the type of an entry, they can be boolean,
tristate3, string, hex and integer. An
example is shown on line 2 of Listing 1

input prompt is the visual name of the configuration op-
tion that is displayed to the user during configuration.
On line 1 the actual configuration name is defined as
(GPL) which will be used in the generated configura-
tion file, however, the user will see during configura-
tion the name ROOT as shown on line 2.

default value is assigned to the configuration symbol if no
value was set by the user. An example is given on line
17.

dependencies define the requirements of the menu entry.
They can simply define the entry depending on a sin-
gle configuration option, as shown on line 6, or can be
in the form of logical expression using primitives like
&& (logical and), || (logical or), as shown on line 18.

reverse dependencies are used to force the lower limit of
the value of another symbol. As shown on line 3, if the
symbol GPL is selected, the symbol M1 will automati-
cally be selected as well.

numerical ranges limit the range of possible input values
for integer and hex symbols.

help text defines the configuration option help text to be
shown during configuration. Examples are shown on
line 21 and 31.

Listing 1. LKC language
1 c o n f i g GPL
2 boolean ”ROOT”
3 s e l e c t M1
4
5 c h o i c e

6 depends on GPL
7 prompt ” Graph Type ”
8
9 c o n f i g DIRECTED

10 boolean ” D i r e c t e d ”
11
12 c o n f i g UNDIRECTED
13 boolean ” U n d i r e c t e d ”
14 endchoice

15
16 c o n f i g NUMBER
17 d e f a u l t y i f GPL
18 r e q u i r e s (BFS | | DFS)
19 boolean ”Number ”
20 −−−help−−−
21 A s s i g n s a u n i q u e number t o each
22 v e r t e x as a r e s u l t o f a g raph

3the boolean type can be assigned to yes or no, the tristate type allows
an extra value (m) which means that the configuration option should be
included, however, as a separate module.

23 t r a v e r s a l .
24
25 c o n f i g CC
26 depends on GPL
27 r e q u i r e s (BFS | | DFS)
28 r e q u i r e s UNDIRECTED
29 boolean ” Connec ted Comp . ”
30 −−−help−−−
31 Computes t h e c o n n e c t e d components
32 of an u n d i r e c t e d graph , which a r e . . .

A configuration database, which defines the valid config-
urations that can be derived with the front-ends, is created
using the entries and the attributes as described above.

Moreover, in order to provide a better organization of the
entries in the configuration tree that is displayed to the user,
the following constructs are allowed:
menu Entries defined between the keywords menu and

endmenu are grouped together and displayed in a sep-
arate window. It may also have an attribute prompt
to name the groups of entries. An example is given
between lines 5 and 14.

choice Only one entry of those defined between the key-
words choice and endchoice can be selected if
its parent entry is also selected.

3. Feature Modeling with the LKC

The main contribution of this paper is to show how to de-
sign feature models using the LKC configuration language

described in the previous section. After the introduction of
feature models by Kang et. al.[3] many extensions were
proposed. In this work we will concentrate on the basic
syntax allowing mandatory features, optional features or

groups and alternative groups. Regarding extra feature con-
strains, we allow implies and excludes. This decision was
inspired by the work of Benavides et. al. [2], which de-
scribes the mapping from these feature model relations to
representations in the form of constraint satisfaction prob-

lem, boolean satisfiability problem and binary decision dia-

grams.
Table 3 summarizes the mappings from the LKC lan-

guage to feature model relations.
Most of the mappings were relatively easy to perform.

For the mandatory relation, the parent feature forces the
selection of the child by the use of a reverse dependency
(select). The optional relation is described by using
a dependency between the child and the parent feature
(depends on). The or group is designed by creating re-
verse dependencies between the children and the parent, this
was done inside a menu definition in order to group the
children together. The alternative group can be described
by including configuration options (the children) inside a

Figure 1. The LKC graphical interface

choice definition, which has the same semantic as of al-

ternative group in feature models.
Using this mapping we were able to design several fea-

ture models. So far we did not find any feature model con-
struction that could no be modeled with the LKC. Figure 3
depicts the screenshot of the LKC graphical front-end dis-
playing the feature model of the Graph Product Line (GPL)
[6] which was proposed as a standard problem for evaluat-
ing product lines. As we have4 an implementation of this
product line where the features are implemented by means
of conditional compilation, the output of the configurator
could be used (it is a set of pre-processor defines) in the
compilation process of the GPL product line.

4. Future Work

As described previously we aim at extending the LKC
front-end to present information about non-functional prop-
erties and use it as our feature modeling tool, these exten-
sions are currently being implemented. Moreover, the de-
sign of a very simple textual feature modeling language and
a tool to transform it in the LKC language format is cur-
rently under development.

5. Conclusion

In order to contribute to the understanding of how the
SPL community and the open source community can ben-
efit from each other, we presented the configuration tool of

4generated using the Colored Integrated Development Environment
(CIDE)[4]

M
A

N
D

A
T

O
R

Y

P

C

c o n f i g P
boolean ”P”
s e l e c t C

c o n f i g C
boolean ”C”

O
P

T
IO

N
A

L

P

C

c o n f i g P
boolean ”P”

c o n f i g C
depends on ”P”
boolean ”C”

O
R

P

C1 C2 C3

menu ”P”
c o n f i g P

boolean

c o n f i g C1
boolean ”C1”
s e l e c t P

c o n f i g C2
boolean ”C2”
s e l e c t P

c o n f i g C3
boolean ”C3”
s e l e c t P

endmenu

A
L

T
E

R
N

A
T

IV
E

P

C1 C2 C3

c h o i c e

prompt ”P”
c o n f i g C1

boolean ”C1”
c o n f i g C2

boolean ”C2”
c o n f i g C3

boolean ”C3”
endchoice

IM
P

L
IE

S

A

B

c o n f i g A
boolean ”A”
r e q u i r e s B

c o n f i g B
boolean ”B”

E
X

C
L

U
D

E
S

A

B

c o n f i g A
boolean ”A”
r e q u i r e s !B

c o n f i g B
boolean ”B”
r e q u i r e s !A

Table 1. Mapping: Feature relations to LKC
language

one of the most popular open source projects. We showed
how it is used to describe configuration databases, and we
have also explained how to describe the semantics of feature
models using its language. The feasibility of the approach
presented in this work, corroborates with the assumption of
similarities between the technical goals that these two com-
munities pursue.

References

[1] The linux 2.5 kernel summit.
http://lwn.net/2001/features/KernelSummit/, 2005.

[2] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Corts. A
first step towards a framework for the automated analysis of
feature models. In Managing Variability for Software Prod-

uct Lines: Working With Variability Mechanisms, 2006.
[3] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-

son. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical report, Carnegie Mellon University, Soft-
ware Engineering Institute, Pittsburgh, PA, Nov. 1990.

[4] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in soft-
ware product lines. In ICSE, pages 311–320, 2008.

[5] D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat. On
the configuration of non-functional properties in operating
system product lines. In Proceedings of the 4th AOSD Work-

shop on Aspects, Components, and Patterns for Infrastruc-

ture Software (AOSD-ACP4IS ’05), pages 19–25, Chicago,
IL, USA, Mar. 2005. Northeastern University, Boston (NU-
CCIS-05-03).

[6] R. E. Lopez-Herrejon and D. Batory. A standard problem
for evaluating product-line methodologies. Lecture Notes in

Computer Science, 2186:10–??, 2001.
[7] E. S. Raymond. The cml2 resources page.

http://www.catb.org/ esr/cml2/.
[8] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and

O. Spinczyk. Is The Linux Kernel a Software Product Line?
In F. van der Linden and B. Lundell, editors, Proceedings

of the International Workshop on Open Source Software and

Product Lines (SPLC-OSSPL 2007), Kyoto, Japan, 2007.
[9] J. Sincero, O. Spinczyk, and W. Schröder-Preikschat. On

the Configuration of Non-Functional Properties in Software
Product Lines. In Proceedings of the 11th Software Product

Line Conference, Doctoral Symposium (SPLC ’07), 2007.
[10] R. Zippel. The linux kernel configurator.

http://www.xs4all.nl/ zippel/lc/.

	Finding Contradictions in Feature Models
	Adithya Hemakumar Dept. Electrical and Computer Engineering University of Texas at Austin Austin,...
	Abstract
	1. Introduction
	A implies B; B implies not A; (1)
	(C and A) implies B; B implies not A; (2)

	2. A Run-Time Solution and Perspective
	3. Feature Models and the BCP Algorithm
	Figure 1 Feature Diagrams

	4. Spin (Simple Promela INtrepreter)
	Figure 2 State Machine of Feature Selection and Constraint Propagation
	Figure 3 Portion of a Promela File for Model M
	Figure 4 Different Feature Models Used In Our Experiments
	Figure 5 Execution Time of Spin for Different Feature Models

	5. Incremental Consistency Algorithm
	Figure 6 LookAhead Algorithm
	Figure 7 Contradiction Free Algorithm
	Figure 8 Incremental Consistency Algorithm
	Figure 9 Execution Time of ICA for Different Models
	Figure 10 Coverage of ICA

	6. Perspective and Related Work
	6.1. Related Work
	7. Conclusions
	8. References
	[1] AAAI Workshop on Configuration, 2003. www2.ilog.com/ijcai-03/
	[2] AAAI Workshop on Configuration, 2007. www.cs.ucc.ie/~osullb/aaai-config-ws-2007.
	[3] M. Antkiewicz and K. Czarnecki, “FeaturePlugIn: Feature Modeling Plug-In for Eclipse”, OOPSLA...
	[4] D. Batory. “Feature Models, Grammars, and Propositional Formulas”, SPLC 2005.
	[5] D. Batory, D. Benavides, and A. Ruiz-Cortes. “Automated Analyses of Feature Models: Challenge...
	[6] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. “Automated Reasoning on Feature Models”, Confe...
	[7] D. Beuche, “Composition and Construction of Embedded Software Families”, Ph.D. thesis, Otto-v...
	[8] Big Lever, GEARS tool, http://www.biglever.com/
	[9] K. Czarnecki and U. Eisenecker. Generative Programming Methods, Tools, and Applications. Addi...
	[10] ECAI 2006 Workshop on Configuration, fmv.jku.at/ ecai-config-ws-2006/
	[11] K.D. Forbus and J. de Kleer. Building Problem Solvers, MIT Press 1993.
	[12] K.D. Forbus. email correspondence, 2007.
	[13] E. U. Freuder. “Synthesizing Constraint Expressions”. CACM, Vol 31, Issue 11, 1978.
	[14] G.J. Holzmann. “The Model Checker Spin”, IEEE TSE May 1997.
	[15] G.J. Holzmann. “An Analysis of Bitstate Hashing”, Formal Methods in System Design, Vol 13, 3...
	[16] M. de Jong and J. Visser. “Grammars as Feature Diagrams”, 2002.
	[17] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. “Feature-Oriented Domain Analysis (FO...
	[18] C. Kaestner, S. Apel, D. Batory. “A Case Study Implementing Features Using AspectJ”, SPLC 2007.
	[19] V. Kumar. “Algorithms for Constraint Satisfaction Problems: A Survey”, AI Magazine, Vol 13, ...
	[20] R. E. Lopez-Herrejon and D. Batory. “A Standard Problem for Evaluating Product-Line Methodol...
	[21] M. Mannion. “Using first-order logic for product line model validation”. SPLC 2002.
	[22] G. Marinov, V. Alexiev, Y. Djonev. “Boolean Constraint Propagation Networks”, Aritificial In...
	[23] Pure-Systems. “Technical White Paper: Variant Management with pure::variants”, www.pure-syst...
	[24] T. Soininen, E. Gelle. “Dynamic Constraint Satisfaction in Configuration”. In Configuration ...
	[25] www.spinroot.com
	[26] D. Streitferdt, M. Riebisch, and I. Philippow. “Details of Formalized Relations in Feature M...
	[27] S. Subbarayan, R. M. Jensen, T. Hadzic, H. R. Anderson, H. Hulgaard, J. Mffiler. “Comparing ...
	[28] S. Subbarayan. “Integrating CSP Decomposition Techniques and BDDs for Compiling Configuratio...
	[29] P. Trinidad, D. Benavides, A. Duran, A. Ruiz-Cortes, and M. Toro. “Automated Error Analysis ...
	[30] E. R. van der Meer, H. R. Andersen. “BDD-based Recursive and Conditional Modular Interactive...
	[31] G. Verfaillie, T. Schiex. “Dynamic Backtracking for Dynamic Constraint Satisfaction Problems...

