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ABSTRACT  

We develop a new approach to finding corners in images that combines foveated edge detection and curvature 
calculation with saccadic placement of foveal fixations. Each saccade moves the fovea to a location of high curvature 
combined with high edge gradient. Edges are located using a foveated Canny edge detector with spatial constant that 
increases with eccentricity. Next, we calculate a measure of local corner strength, based on a product of curvature and 
gradient. An inhibition factor based on previous visits to a region of the image prevents the system from repeatedly 
returning to the same locale. A long saccade is move thes fovea to previously unexplored areas of the image. 
Subsequent short saccades improve the accuracy of the location of the corner approximated by the long saccade. The 
system is tested on two natural scenes and the results compared against subjects observing the same test images through 
an eyetracker. Results show that the algorithm is a good locator of corners. 
 
Keywords: Foveated Vision, corner detection, machine vision, feature detection,  
 

1. INTRODUCTION 

One of the most difficult and poorly designed problems in the field of image analysis is  visual search. Does visual 
search mean an algorithm for finding and identifying a specific object or class of objects in an image? The extensive 
literature on automated target recognition (ATR) exemplifies this philosophy1. Or, does visual search imply a general 
framework for finding information from visual data without object-specific guidance? There is only a small literature on 
generic automated visual search. Methods include search based on contrast2; image and depth gradients3; other edge 
factors4; proximity between objects 5; object similarity6, and combinations of randomized saliency and proximity 
factors7. While both strategies have merit, great benefit would result from the development of basic principles guiding 
the design of visual search algorithms , applicable to a diversity of applications, and which would address some of the 
factors that have limited the success of visual search. 
 
Primate and other animal visual systems  are foveated, with high resolution near the center of gaze that falls off as a 
power function of eccentricity, the angle away from the center of gaze.  In humans, the fovea is a circular region of 
tightly packed cones, roughly 1.5 mm in diameter8. This density decreases rapidly with eccentricity. In the central 
fovea, receptors are packed at a density of about 120/degree9,10. This corresponds to a resolution of .291 mm at a 
viewing distance of 100 cm. Foveated primate vision systems mechanically direct the fovea around a scene over time 
via very fast ballistic eye movements called saccades, resulting in series of static fixations11,12. Foveation is an effective 
compromise between the demand for high-resolution vision and the limited transmission and processing bandwidths of 
the optic nerve and subsequent brain regions. The amount of information flowing from retina to brain is far less than if 
the entire retina was sampled at foveal density. The brain uses peripheral, low-resolution information to decide on the 
next fixation point. This is accomplished quickly – the human eye typically makes more than 10,000 saccades per hour, 
ranging in distance from a few seconds of arc to up to over 70º 9,10,13,14. Certainly the computation of new fixations must 
be fast, automatic, and image-driven Such processing is efficient for accomplishing visual search with active, mobile 
cameras or eyes 3,15. 
 
Rather than processing a wide field of view (FOV) visual stream all at once, high-spatial-resolution search is conducted 
over a very small FOV (the image on the fovea) while wide-FOV search, rich with context but lacking detail, occurs 
over the peripheral field of view. Candidate discoveries in the periphery can be rapidly analyzed at high resolution via 
saccadic eye movements that redirect the candidate to the fovea; in the absence of candidates, eye movements may be 
sequentially deployed to enlarge the search space. 
 



Visual information gathering and visual search is greatly augmented by deploying the foveation-fixation-scanpath 
process. We believe that this solution can, and should, be adapted into computational systems for visual information 
acquisition and processing. Most practical image processing systems, however, do not operate with mobile cameras.  
The foveation is accomplished in software rather then by camera or eye movement. One example is foveated image 
compression15,16,17 which requires knowing where the spatial fixation on the image of the human observer is, and the 
distance of the observer from the image, so that the foveated fall-off can be matched to that of the observer’s eye. This 
can be accomplished by eyetracking, headtracking and other physical measurements17. 
 
In foveated visual search systems, there is also the interesting central problem of fovea placement during the search 
process. In such systems, the goal of the placement is not to match the position of gaze, but rather, to optimize the 
gathering of information relevant to the object(s) being searched. Subsequent fixations should be chosen based on the 
available foveated data. The amount of information available to the search algorithm regarding the object(s) of interest 
is then determined by the proximity of the object to the current fixation.  
 
Corners have long been recognized as rich bearers of visual information, and numerous algorithms have been proposed 
for detecting using them as features in basic visual tasks such as object recognition, stereo matching, shape analysis and 
optical flow computation18-23. In their early seminal work on computational vision, Marr and Hildrith8,24, regarded 
corners as being of high visual saliency, and designated them as being members of the discontinuity class in the theory 
of the full primal sketch. They viewed  corners as an important member of the class of image primitives that are used as 
building blocks for representing objects in image understanding systems, whether biological or computational. Other 
features exist, of course, such as edges. However, corners are more localized than edges, and as pointed out by Nobel18, 
are superior to edges for defining the shapes of objects, since edges detectors only provide location information in a 
single direction (normal to the edge). Certainly corners present advantages as a discrete image feature, since they are 
simultaneously information-rich, yet require minimal description. Accurate corner information is not easy to acquire; 
for example, Mehrotra et al.19 point out that edge detectors tend to perform poorly near corners, suggesting that corner 
detection by locating intersections between edges can lead to poor performance. 
 
In this paper, we cast the problem of corner detection as a search process. We apply principles of foveated visual search 
and automated fixation selection in accomplishing the corner search. Thus, we approach the search process from a low 
level, searching for objects without requiring building blocks to represent them, since the objects being searched for are 
the same as the features. In this way, we hope to contribute by supplying a case study of both foveated search, and 
foveated feature detection. The result is a new algorithm for finding corners (viewed from the perspective of foveated 
feature detection), but which may also be considered as a corner-based algorithm for aiming computed visual fixations 
(along with a computated fovea), with the eventual goal of extracting information that is useful for more sophisticated 
object recognition system. 
 
With this last interpretation in mind, as an interesting comparison study we also compare fixations generated by this 
algorithm with those of subjects viewing the same images, whose eye movements are being recorded by an eyetracker. 
The comparison is made using an information-theoretic measure. 
 

2. COMPUTING EDGE AND CORNER FEATURES IN FOVEATED IMAGES 
 
While foveation presents significant advantages for visual search via the efficient allocation of resources, it also 
presents new challenges for accomplishing low-resolution and spatially-varying object recognition, since each foveated 
view distorts the image away from fixation by reducing the resolution. Near the fixation point, fine features, such as 
edges and corners, are resolved well. Away from the fixation point, these fine details may be distorted or lost. 
 
The overall approach that we will take towards searching for corners will involve foveating the image, deciding a most 

likely location of a corner, moving the fixation to that vicinity, refining the corner location estimate, identifying the 

corner – then choosing a next likely corner location, and so on. The details of the overall search methodology will be 

given later. In the following sections we describe the method we use to create foveated images; the method of edge 

detection we use on foveated images, and the method of corner detection we use on the detected foveated edge maps. 

 

 



2.1 FOVEATION FILTERING 

There are several possible methods for creating foveated images, the most popular of are either based on spatial-domain 
foveation filtering or wavelet-domain foveation. Foveation filtering is the most straightforward method15,17,25 wherein a 
bank of low-pass filters is applied to the image on a pointwise basis, with bandwidths monotonically decreasing with 
eccentricity. The filters used are usually symmetric, unit-volume 2-D Gaussians of the form15,17,25 
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The other popular approach is to selectively subsample and quantize the image data in the wavelet domain, leading to 
decreased resolution away from the fovea. Such techniques have proven very effective for image and video 
compression16,17,25. We choose to use the simple and direct method of foveation filtering with Gaussian filters, owing to 
the simplicity of the method, and since the artifacts that naturally arise in accomplishing wavelet-domain quantization 
might lead to spurious corner responses.  
 
The cutoff frequencies of the Gaussian filters (1) can, in principle, be made to decrease continuously with eccentricity, 
to match the sampling grain of the image. It is also possible to more coarsely quantize the cutoff frequencies so that 
concentric rings of constant cutoff frequency are formed on the image surrounding the foveation point. This simplifies 
implementation while scarcely affecting the foveated image. The half magnitude cutoff frequency of the Gaussian (1) is  
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Hence one can implement foveation filtering by making σ an increasing function of eccentricity. Several 
approximations simplify implementation and improve performance. The support of a Gaussian is infinite but a good 
approximation can be made by centering it in an array of about 3σ pixels square. Instead of continuously varying  
σ  with eccentricity, the image is divided into a series of n bands,

i
B  that are concentric about the fixation point. The 

innermost ring is a circle with center the the fixation point, while the outermost ring extends to the borders of the image. 
 
We use a simple formula to determine the radius of each ring: 

1.6
0 0, ( 2) , 3,4, ... 1,i nr r i i n r= = + = − = ∞    (3) 

where the radius of the ith ring is ri (pixels). The innermost ring has a radius of 5.8 pixels, and the distances between the 
rings increases with eccentricity. This formula provides a reasonable tradeoff between execution time and continuity at 
the ring boundaries. The image between the ith and the (i-1)st ring is convolved with a Gaussian ),( yxG

iσ
, where s i 

increases monotonically with eccentricity. Since convolving Gaussians with small values of σ takes less processing time 
than with larger values, efficiency is achieved by implementing larger Gaussian convolutions via repeated convolutions 
of smaller Gaussians. Repeated convolutions with Gaussians of spatial parameters designated ki

i
,...,1, =σ  is equivalent 

to a single convolution with a Gaussian with spatial parameter 

∑
=

=
k

i

i

1

2σσ
.      (4) 

The foveation filtered image is created by the following process: The input image is first convolved with a Gaussian of 
spatial parameter 1σ  and the results stored. This blurred image is next convolved with a Gaussian of spatial parameter 

2σ  and the results stored. The process continues for the maximum possible number of bands. Later, when a fixation 
point is created, each band is filled from the appropriate stored image. Hence, the k th filtered image is  
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where I is the original input image. The values of iσ  used in the algorithm are set to approximate the spatial frequency 
response of the human vision system (HVS) based on the following widely used formula17,25,26:  
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Here CT(f,e) is the contrast threshold expressed as a function of spatial frequency f (cycles/degree) and eccentricity e 
(degrees). CT0 is the minimum contrast threshold, a a spatial frequency decay constant, and e2 is the eccentricity in 
degrees at which the contrast threshold drops to one half of maximum. The half-magnitude spatial cutoff frequency fc 
can be expressed a function of eccentricity by solving: 
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In arriving at this formula, Geisler and Perry 24 fit (6) to various sets of experimental data taken from the vision 
literature. They found good consistency with the following parameter selections: a = 0.106, e2 = 2.3, and 1/76 < CT0 < 
1/64. Substituting these values into (8) and using an average for the high and low values for CT0 yields a numeric 
relationship between cutoff spatial frequency and eccentricity: 

3.2

024.92

+
=

e
f c

.                (9) 
The spread parameters of the Gaussians may then be found from (2). 
 
2.3 FOVEATED EDGE DETECTION 

In our approach to corner search, edges recovered from the foveated images are used as features input to a corner 
detection apparatus. In the approach given here, we will utilize the relatively simple and straightforward Canny edge 
detector for several reasons27. First, the Canny operator provides excellent localization in the edge detection results; 
second it is simple and naturally defined; third, it gives good performance where the edge curvature is high, and lastly, it 
does not require any kind of iterative processing, unlike anisotripic schemes. Given the framework of corner-finding via 
sequential fixations that we are presenting here, direct, locally-computed approaches appear to be a more natural choice, 
because of the need for rapid, localized processing. We briefly describe the Canny operator in the context of foveated 
edge detection. Given an image I(x, y) in which corners are to be searched, the usual method is to form the Gaussian 
smoothed image 

( , ) ( , ) * ( , )S x y G x y I x yσ σ=          (10) 

from which an estimate of the gradient σS∇  is computed. Of course, in our application, the image I is not convolved 
by a single Gaussian, but is instead smoothed by a space-variant Gaussian. In the Canny formulation, the unit vector in 
the gradient direction σS∠∇ estimates the direction normal to the edge: 
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Putative edge locations are then marked by the zero crossings of the twice directional derivative in the direction of the 
normal (11): 
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It is easily shown27 that the zero crossings of (12) are conveniently the same as those of  

[ ]),(),(),(),( yxSyxSyxSyxD σσσ ∇⋅∇∇⋅∇= .         (13) 

Discrete implementation of (13) is accomplished using space-varying discrete directional Gaussian derivatives 

, ,( , ) / ( , ) /x xG x y G x y xσ σ= ∂ ∂  and , ,( , ) / ( , ) /y yG x y G x y yσ σ= ∂ ∂  to compute the discrete gradient 
expressions ( , )S i jσ∇  at each discrete image coordinate (i, j). 

 
2.4. Detection of Corners 

Corners are generally regarded as points of high curvature, or of curvature discontinuity, along the countours of detected 
boundaries, edges, or local image intensity profiles. Of course, different definitions of curvature exist. A popular 
measure that we will use was proposed by Kitchen and Rosenfeld28, who define curvature κ  as the derivative of 
tangent angle, with respect to arc length, of a parametric curve ( ), ( )x x t y y t= = :  
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where s is arc length, φ  is the tangent angle, and where 
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Shortening the notation and taking the derivative gives: 
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which substituted into (14) yields: 
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It can be easily shown from the definition that κ  equals the reciprocal of the radius of curvature. The curvature 
measure (17)  on a digitized curve is highly sensitive to noise because of the computed derivatives, so the curve is 
smoothed by fitting a low order polynomial is fit to it in a sliding window, and the derivatives of the polynomial are 
used in (17) to calculate κ  at the center of the window. A local maximum of the absolute value of κ  may indicate the 
presence of a sharp bend in the curve and hence a corner. 
 
Mehrotra et al.19 developed corner finders based on directional first and second derivatives of Gaussians, which can 
detect half-edges at any desired angle to each other. Flynn and Jain20 describe a series of corner detectors based on a 
variety of curve fitting methods. They also mention the necessity for smoothing the curves. The Moravec interest 
operator is based on the response of a small averaging window to an image. If the window straddles an edge, then 
moving it parallel to the edge direction creates a small change in response whereas moving it normal to the edge creates 
a large response. If the window straddles a corner, however, moving it in any direction will cause a large response. The 
Moravec29 detector declares a corner if the minimum change produced by a shift exceeds some threshold. 
 
The Plessey corner finder18,29 is based on a matrix M of products and squares of directional image derivatives. At points 
where two eigenvalues of M are large, small shifts of the window position in any direction will cause a large change in 
its average response, indicating that the point may be a corner. The SUSAN corner30 detector applies a moving circular 
template to an image and declares a corner at points where the value at the center of the template is approximately equal 
to a small portion of the entire template.  Mokhtarian and Suomela31 developed a variable scale corner detector based on 
Kitchen's formula shown in (4) and the Canny edge detector. They initially convolve the image with a wide Ga ussian, 
smoothing corners into broad curves. Locating the position of maximum curvature gives an estimate of the corner 
position, which they refine by narrowing the Gaussian, and by tracking the corner as it moves. While no definitive study 
conducted as yet indicates which corner detection algorithm is to be preferred, we chose  the Rosenfeld-Kitchen 
algorithm for three reasons: first, it is computationally simple, it uses a very natural definition, and it is highly local in 
computation; second, it is widely used; and third, the use of smoothing in our application reduces the sensitivity of the 
operator to noise, making noise-reduction corner detection unnecessary. 
 

3. SEQUENTIAL COMPUTATION OF FIXATION POINTS 
 
The strategy of seeking high-interest image features, such as corners, by searching the image using a mobile, foveated 
tesselation requires the development of efficient algorithms for deciding and placing fixation points, viz., allocating high 
resources to local image regions while maintaining reduced resources in the periphery. An early example of such an 
approach appears in Klarquist and Bovik3, who describe a foveated active stereo vision system which automatically 
decides its fixation points in a 3-D scene. The system uses multiple criteria, including the image gradient, proximity in 
both 2-D and in 3-D, and local suppression to discourage repeat visits. More recently, Wang and Bovik25 describe a 
foveated video compression system for video teleconferencing also incorporating automatic fixation selection.  Fixation 
points are placed where there is a high likelihood of a human face, using measures of skin tone or motion. 



In the approach taken here for searching for corners, the major control functions are the routines that locate each 
successive fixation point. The algorithm generates long and short saccades in succession, moving from fixation to 
fixation until a stopping point is reached. The search routine was designed under the following guidelines: 
(i) Analyze only the foveated edge maps and images without accessing the original image.  
(ii) Aim each fixation point at a potential corner, meaning a strong edge with high curvature. Since the data is foveated, 
corner locations are subject to blur ambiguity which increases with distance from current fixation. 
(iii) At each current fixation, generate a long distance saccade followed by one or more short saccades. The long 
saccade approximately locates a potential corner. The smaller saccades locate the corner more accurately.    
(iv) Inhibition controls the sequence of long and short saccades and prevents the fixation point from repeatedly visiting 
previously determined corner locations. 
 
Initially, fixation is set to the center of the image. While this might seem arbitrary, there is no reason to select another 
initial location and moreover, there is a tendency in human vision to bring the eye position towards the central axis in 
the absence of stimuli (according to Kowler9 “saccades often land in the center of the entire stimulus configuration”). A 
variable is set so that the initial saccade will be long. After calculating foveated edges from the image, edges smaller 
than 50 contiguous pixels are removed as being too small  to contribute meaningful information. 
 
A fixation selection measure mi,j is then computed over the entire edge map (as explained below), and the next fixation 
is placed at the pixel with the highest value of this measure. A new foveated edge map is created based on the new 
fixation position and the search algorithm is invoked to produce a short saccade, using a different calculation for the 
fixation selection measure than for a long saccade. A new foveated edge map is created and another short saccade 
generated. Short saccades are generated until a corner is deemed found, or until a corner is  not found, which is assumed 
when short saccades are continually generated. If seven short saccades are generated in succession, or if a corner 
strength measure is sufficiently large to positively identify a corner, then the search is deemed to have failed and a long 
saccade is generated, which moves the fovea to a different region of the image.   
 

We now describe the fixation selection algorithm in detail. At each fixation a foveated edge map is computed as 
described in Sections II-B and II-C. A curvature map is computed along the edge (zero-crossing) loci. In order to reduce 
the effects of noise on the derivative computations, a simple third-order polynomial is locally fit at each point on the 
zero-crossing contour. The Kitchen-Rosenfeld curvature (17) is then computed at each point (i, j) that lies on the 
smoothed zero-crossing contours. The curvature strength ,i j

κ  is one of the multiplier factors in the fixation selection 
measure mi,j. Figure 1 illustrates the calculation of a curvature map: Figure 1(a) depicts a contour with two points 
indicated: A and B. Figure 3(b) depicts a close-up of point (A) - a high curvature point – along with its local polynomial 
fit, while Fig. 3(c) shows the same for the low curvature point B. Finally, Fig. 3(d) shows the original contour in (a) 
with curvature coded by the intensity of the line (darker = higher curvature). 
 
We believe that curvature alone is not a suitable measure for placement of subsequent fixation points for two reasons. 
First, very high-curvature locations would be visited repeatedly. Our goal is to successfully search for as many corners 
that are in the image as possible. Secondly, noise or low-contrast curves may create zero-crossing loci having high 
curvatures, thus attracting the fovea to uninteresting regions or artifacts in the image. To address the first of these 
problems, an array of history information is maintained and used to define a second multiplier factor in the fixation 
selection measure. Let 
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where the coordinates of the kth fixation point are denoted
( , )fkfki j

. Whenever a fixation point is generated, a Gaussian, 2
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which is centered about the coordinates of the fixation, is added to the history array. The spatial parameter of this 
Gaussian is set to 15 to prevent long saccades from coming too close to locations already visited. The history array hi, j 
is a component of the fixation selection measure mi, j, as expla ined below. 
 
Two observations motivate the next term used in the corner strength measure. First, corners that are further from the 
current fixation point (if, jf) will be more severely blurred by foveation, and so the apparent curvature of distant corners 



will be reduced. Secondly, once a corner is found at (if, jf), a large-scale saccade is desired to cause the algorithm to scan 
the image more quickly. Hence the distance factor 

2 2
, ( ) ( )i j f fd i i j j= − + − .    (19) 

is also used in the fixation selection measure mi,j. This term compensates for the fact that corners away from the 
foveation point turn into broad curves by giving extra weight to curves far from the fovea. In addition, it forces the 
fixation point to move large distances between fixations, forcing it to scan the entire image more quickly. 
 
We have also chosen to include an edge strength factor in the fixation selection measure. Our viewpoint is that corners 
having large edge magnitudes are more likely to be associated with significant image structure. Such an assumption is, 
of course, not necessarily applicable to every scenario and this term could be eliminated. The edge strength factor is 
simply the squared gradient magnitude of the Gaussian-smoothed space-variant image: 

2
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(c)                                                              (d) 

Figure 1. Generation of curvature map on smoothed zero-crossing contour. (a) Zero-crossing contour; (b) Local polynomial fit near 
the high-curvature point A. The axis coordinates are relative to A. (c) Local polynomial fit near the low-curvature point B. The axis 

coordinates are relative to B. (d) Zero-crossing contour in (a) with curvature coded as intensity (darker = higher curvature). 

 
The use of this term introduces an additional problem. A high contrast edge of low curvature may attract the fovea to an 
uninteresting region of the image. To eliminate edges of low curvature, we apply a threshold t  to the curvature data: 



τ<= jiji kifk ,, ,0              (21) 

Regions of curvature less than the reciprocal of t  in pixels will be eliminated. The introduction of thresholding requires 
a logic change due to the fact that the process of foveation reduces the curvature of corners, an effect that increases with 
distance. Thus, the curvature of a corner far from the fovea may be beneath t  causing some corners of a large object to 
be ignored. Therefore, if no curvature exceeds t , t  is temporarily set to zero and a new long saccade generated. After 
this one saccade, meant to move to a previously unexplored region of the image, t  is reset to its initial value.   
 
The overall fixation selection measure is then given by 
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     (22) 

 
where C controls the length of the saccade. When C = 0, a long saccade is to be generated, and when C > 0 a short 
saccade is to be generated according to the formula in (22). C is initially given a value of zero, and is incremented by 
one with each saccade, until it is reset to zero. There are two conditions under which C is reset to zero: (i) The measured 
curvature ( )ff ji ,κ  at the current fixation point exceeds a threshold (0.9 in our algorithm) , indicating the presence of a 

corner. (ii) Seven short saccades have been generated: C > 7. 
 
Note that long saccades (C = 0)  are discouraged from approaching previous saccades owing to the history term (18) in 
(22), but this is excluded for short saccades (C > 0) which attempt to zero in on the strongest local corner. The global 
maximum of mi,j provides the coordinates for the next fixation point. The saccade length control variable C is 
incremented from 0, producing a sequence of one long saccade, intended to explore a new region of the image, followed 
by a few short one, which aim to pinpoint the corner accurately. The use of sigmoidal terms prevents any one term from 
overly raising mi,j   when the other terms are not particularly favorable.  
 
We now illustrate the steps of the algorithm by example. Figure 2(a) is the image lighthouse. In each image, the fixation 
point is designated by the symbol “X.” In this example, the current fixation point is presumed to be at the peak of the 
lighthouse, as indicated. Figure 2(b) shows a foveated version of lighthouse – although, of course, this image is not 
calculated by the algorithm, since (13) is discrete form is used to generate the zero crossings. Figure 2(c) depicts the 
foveated edge map calculated by the foveated Canny edge detector, and Figure 2(d) is the foveated Kitchen-Rosenfeld 
curvature map, with intensity made proportional to curvature.  
 
4. METHODOLOGY FOR COMPARING FIXATION POINTS. 
 
We handpicked a set of 85 vertices in the polygon image to test the algorithm. It seemed impractical to handpick 
vertices for the lighthouse image because of its complexity. In addition, we have compared the algorithm generated 
fixations with those of seven human subjects viewing each test image through an eyetracker. The experimental protocol 
is described in the appendix. 
 
The KLD is not a true distance function, since it is not symmetric and does not obey the triangle inequality. However, it 
is a convex function and 0)||( =qpD , if and only if p(x)=q(x). We use the symmetrical distance 
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to quantify the distance between our fixation predictions and the recorded eye fixations (now represented by the pseudo-
dense fixation map). 
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(a)                                                              (b) 
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(c)                                                              (d) 
Figure. 2. Example of calculation of subsequent fixations. (a) Original image lighthouse. (b) Foveated version by space-varying 
Gaussian filtering. (c Foveated edge map by foveated Canny edge detection. (d) Foveated curvature map by foveated Kitchen-

Rosenfeld curvature computation. 

 
  
In order to evaluate the algorithm, we needed a methodology for comparing different sets of fixation points, based upon 
the fact that perfect matches are rare. We chose a method loosely based on that of Rajashekar, Cormack, and Bovik4. 
The first step is to replace each fixation point by a symmetrical 2D Gaussian envelope. Overlapping distributions are 
summed using the formula, ( )( )qp −−− 111 , which represents the probability of either p or q taking place, assuming 

independence. This process is illustrated in figure (4a), which illustrates Gaussian envelopes centered about a set of 
fixation points, with overlapping envelopes summed. The variance of the Gaussian is chosen so that its full width at 
half-max (FWHM) reflects the diameter of the foveola, about 1º visual angle or 30 pixels . This approximation of a 
fixation point accounts for the uncertainty of its exact location. By spreading a fixation around, this approximation also 
encompasses any small errors in calibration, accuracy and/or precision of the eye movement measurement. Finally, 
replacing each fixation point by a 2D Gaussian envelope reflects the probability that a neighborhood region around the 
fixation could have been selected as a fixation point. Next, we compare pairs of probability density images using a 
modified Kullback Leibler distance (KLD) . The KLD is a measure of relative entropy between two functions 
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5. RESULTS 
 
Figure (3) shows lighthouse and polygon fixations for three subjects  with the threshold, t  is set to .2. The polygon 
results show 85 handpicked, 85 algorithmic and about 50 subject fixations. Lighthouse figures show 50 algorithmic 
fixations, and about 50 human subject fixations. 
 
Table I provides KLD values of algorithm vs. eyetracker generated fixations for each of seven subjects. It also has a 
KLD value for polyhedron handpicked vs algorithm generated fixations. The handpicked points were generated by one 
of the authors before the algorithm was completed and have not been edited since. Values were calculated using the 
symmetricrical KLD shown in (33).  
 
The KLD between 85 polygon algorithmic fixations and the handpicked was 3.621. 
 
Each subject ran about fifty fixa tions on the eyetracker so the algorithm was run for fifty fixations to give the results 
shown in Table I. The lowest distance is between the polyhedron handpicked and algorithmic, demonstrating that the 
algorithm performs its intended task of finding corners well. The polyhedron handpicked vs. eyetracker comparison is 
usually worse than the handpicked vs algorithm. The eyetracker vs. algorithm is worse still, demonstrating that corners 
are incomplete predictors of visual fixations. Naturally, corners may be one of many different classes of features that 
attract fixations. 
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Figure 3. Fixation points for three subjects. Polygon figures show 85 handpicked fixations, 85 algorithmic fixations, and about 50 
human subject fixations. Lighthouse figures show 50 algorithmic fixations, and about 50 human subject fixations. 

 
 



Comparison Subject

  AT BR HHC JSL SCP UR YL 

Polyhedron - Eyetracker vs. Hand Picked 10.225 7.894 7.420 8.569 9.411 10.339 7.170

Polyhedron - Eyetracker vs. Algorithm 11.069 8.903 7.496 9.513 9.753 9.621 5.903

Lighthouse - Eyetracker vs. Algorithm 10.180 12.356 16.551 10.137 13.081 15.506 15.017

 
Table I. KLD values for eyetracker vs. algorithm and eyetracker vs. handpicked 85 points. 

  
To test the accuracy of the algorithm for finding corners, we calculated, for the polyhedron image, the distance from 
each algorithmic fixation to the nearest handpicked one, and repeated the process for all eyetracker fixations.  If the 
minimum distance was less than or equal to a given tolerance, a “match” was declared. Figure (3b) show a comparison 
of matches as tolerance varies from zero to one degree.  At zero tolerance, neither method shows matches. As tolerance 
increases, the handpicked matches increase much faster than the eyetracker ones. This further demonstrates that the 
algorithm locates corners far more accurately than human subjects.   
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Figure (3). (a) Sample fixation points with Gaussian blur spots centered about them 

(b) A comparison of the accuracy of corner locations, algorithm vs. eyetracker. 

 

6. CONCLUSIONS 
 
We have presented a new search strategy for locating corners in natural images. The method combines multiscale edge 
detection and space-variant, multiscale curvature detection with a multifixating, foveated search strategy. Such 
approaches to low-level vision problems that efficiently allocate visual resources according to local visual saliency have 
great promise in active vision, robotics, and general visual search. 

 

APPENDIX. EXPERIMENTAL PROCEDURE 
 
Seven observers, none of them familiar with the corner finding algorithm or the objectives of this work, were used for 
the experiment. All observers either had normal or corrected-to-normal vision. The stimuli consisted of two images: the 
lighthouse on the seashore, and the view of a polyhedron illustrated in  Figure (1). The images were 1024 by 768 pixels 
and displayed on a 21 inch monitor pixels at a distance of 134 cm. from the observer. This set up corresponded to about 
60 pixels/degree of visual angle, so the images extend 20.67 by 12.8 degrees. Observers were presented with each 
image for 30 seconds and instructed to view the displayed image as though they were observing a painting in a gallery. 
About 50 fixations were recorded for each observer. Human eye movements were recorded using an SRI Generation V 
Dual Purkinje eye tracker. It has an accuracy of < 10' of arc, precision of ~ 1' of arc and a response time of under 1ms. 
A bite bar and forehead rest was used to restrict the observer’s head movements. The observer was first positioned in 
the eye tracker and a positive lock established onto the observer’s eye. A linear interpolation on a 3 by 3 calibration grid 
was then done to establish the linear transformation between the output voltages of the eye tracker and the position of 
the observer's gaze on the computer display. The output of the eye tracker (horizontal and vertical eye position signals) 
was sampled at 200Hz and stored for offline data analysis . 
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