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Materials and Methods 
We performed computer-modeling experiments to assess chances of identifying, in a DNA 
database, a biological relative of the owner of a given multiple locus STR profile. Model 
parameters considered were the nature of the genetic relationship, and the size of the database. In 
the final section we also evaluate impact of the incorporation of geographic information on the 
effectiveness of familial searching. 

 
Forensic Mathematics of Familial Searching 

We performed computer simulations using published data (S1) of U.S. Caucasians to predict the 
effect of the following situation: 

1. There is a computerized database of 2,500,000 DNA profiles {Di} representing the 
catalogued convicted offenders of the United States. 

2. Each DNA profile comes from one or another of 50 "states" of equal size, 50,000 
convicted offenders each. Sti is the state corresponding to offender Di. 

 A relative—son or brother—of someone with profile Dj in the offender databank (from 
state Stj) commits a crime in some state St, leaving his DNA profile C. We modeled the 
parentage and the sibling relationships as separate experiments, but of course in practice one 
would be quite satisfied to find either or any relative at all. In real life it will occasionally happen 
that uncle-nephew or even cousin relationships will chance into the sibling net if the genetic 
sharing between the pair is more than usual. 

 We considered, but have not modeled, the idea of looking for a pair of related two 
offenders who simultaneously resemble a crime stain profile. The confidence of a true, rather 
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than spurious, relationship would be much greater in such a circumstance, and indeed, this idea 
was used to good effect in screening for identifications of World Trade Center victims (S2, S3). 
In practice, genealogical information about offenders is not now available in a fashion that could 
be easily be integrated with the offender databases. There is, though, no cost and some possible 
benefit to noting coincidence of last names in the offender database. 

We consider several experiments with various assumptions about the relationship between St and 
Stj 

3. The profile C is compared with all the profiles Di using kinship analysis. Certainly, some 
Di who are not related to C will, nonetheless, appear related by chance. 

4. The individuals Di are examined in priority order according to a reasonable strategy. 

We asked how many leads would need to be examined before the actual family member was 
found. That is, how far down the list of examined Di will the proxy relative profile, Dj, be? 

For computerized Monte Carlo simulations (S4) to evaluate the foregoing, 

I. First simulate a database: 

1. A databank of 2,500,000 offender/arrestee DNA profiles, each of 13 "CODIS" loci, are 
generated by simulation, alleles being chosen according to frequencies from standard 
population data (S1). The simulation assumes random mating, a slight simplification that, 
in principle, biases toward making true relatives easier to find. The bias is small, 
however. 

2. The DNA profiles are divided into 50 "state" databases of 50,000 profiles each by 
randomly labeling 50,000 of them as from "Alabama," the next 50,000 as from "Alaska," 
etc. 

II. Then, repeatedly simulate a crime investigation strategy using family searching: 

1. A DNA profile, C, of a relative representing a novice (previously not catalogued) 
criminal—either sibling or child (depending on the experiment) of some offender 
databanked person Dj—is generated in accordance with Mendelian inheritance 
and population STR frequency data (S1). 

2. The “crime” is assigned to a state St, where St is more or less likely to be Stj, 
depending on the geographical component of the experiment. 

III. For each “crime,” we record the difficulty of finding the true relative using family 
searching: 

1. The “crime” scene DNA profile, C, is compared with that from every Di and the 
kinship likelihood ratios Li (parentage—evaluating father-son relationship) or Si 
(sibling), depending on the experiment—are calculated. One of these—the one 
with index j—represents a true relationship, which is typically a large number. 
The rest represent false relationships and so are mostly small, although some of 
them may also be large. Figure S1 compares the distributions and illustrates the 
idea that they overlap somewhat. 
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2. Further, a geographical likelihood ratio, Gi, is computed whose value depends on 
the relationship between Sti and St. 

3. An overall likelihood ratio for individual i is obtained as Li × Gi (or Si × Gi) and 
these are sorted by size, largest first. 

4. We record the position in the sorted list of individual j. This is the number, k, 
representing the number of leads pursued to find the true relative of the 
perpetrator. 

IV. The method described above for the Monte Carlo simulation requires the evaluation of 
millions of kinship likelihood ratios per crime, hence, trillions of computations in order to 
simulate millions of crimes. This was reduced to a more feasible computation, as follows: 

1. Generate 2,500,000 families. For each family, two parents are generated at 
random, and then two children are generated by selecting random alleles from 
each parent. 

2. Use the families generated above to compute four likelihood ratios (LRs) within 
each family f: 

a. Lf, the paternity index between true father and son (one parent and one child) 

b. Sf, the sibling index between the two true siblings 

c. NLf, the paternity index computed between the unrelated parents 

d. NSf, the sibling index computed between the unrelated parents 

The definition of the relationship LRs is as follows. Let E represent the statement 
that two given people have the respective genotypes of the two people mentioned 
in any one of points a-d above, let “relationship” mean that a parentage or sibling 
relationship, as the case may be, exists between two people. Then 

L = Prob(E | relationship) / Prob(E | no relationship) and the same for each of the 
LRs. 

Details of the calculation are below. 

The above four distributions are shown in Fig. S1. The only purpose of the families was 
to compute these LR distributions used as described below; these families then have no 
further purpose for the simulations. 

3. To simulate a crime by a son of a convicted offender, of the necessary 2,500,000 
kinship indices Li between C and Di, one—representing the true-relative index—
is chosen from among the set {Lf} and the rest are the NLi. These likelihood ratios 
are then rank ordered. The same process is followed to generate a set of likelihood 
ratios for a potential sibling relationship. 

Thus, the simulation is rather abstract. There are no longer any particular profiles 
that can be identified as C or as Di. Instead, we only model likelihood ratios. In 
particular the true-relative index arises by taking C as the child of some family f; 
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the false-relative indices are calculated from some altogether different pairs of 
people, not including C. 

As a check that this method is not biased, we calculated 100 k-values using the 
direct procedure described above in section III. Their distribution is 
indistinguishable from the distribution of several million k-values using the 
method described here. 

V. Computation of likelihood ratios 

1. A unified method for evaluating two-person kinship indices is given in (S3). We 
refine the method to account for mutation, which may be important in calculating 
the indices {NLi} as follows. 

2. To compute a kinship likelihood comparing C with D at a particular locus, denote 
the genotype of C as ab; that of D by cd. Define variables uh for the four “mating 
combinations” 1, ac; 2, ad; 3, bc; and 4, bd. If the two alleles in the i-th pair are 
the same type, then ui is the reciprocal of the frequency of that allele. If they are 
different, then ui is the probability that one would mutate to the other during 
meiosis between C and D. We incorporate a mutation rate of 1% for the 
simulations, a generously high figure for forensic STR loci. In real life, mutation 
must be included in the LR evaluation to avoid overlooking a few percent of real 
fathers, but the higher the mutation rate the more the false-parentage indices 
{NLi} are inflated, so the less conspicuous the true-parentage index L becomes. 
Hence, our mutation model is conservative, biased against finding the true parent 
or child. 

Let U be the average (u1 + u2 + u3 + u4)/4. U is the likelihood ratio by which the 
genotype information at the locus supports a father-son relationship between C 
and D. Multiplying across loci gives overall likelihood ratios Li or NLi as above. 

Also, let W be the average between-individual product (u1u4 + u2u3)/2. Then the 
likelihood ratio by which the genotypes at this locus support a sibling relationship 
between C and D is ¼ + ½U + ¼W. (The coefficients are the probabilities for 
siblings to share 0, 1, or 2 alleles identically by descent.) Multiplying these across 
loci gives Si or NSi as above. 

We evaluated the magnitude and the rank-order of each of these likelihood ratios, 
which are usually much higher for close relatives than for unrelated pairs. 
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Fig. S1.  Results of Monte Carlo simulations showing distributions of paternity and 
sibling likelihood ratios [paternity indices (PI) and sibling indices (SI), respectively] 
between related and unrelated pairs obtained by generating 2,500,000 pairs of each type. 
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VI. Geographical modeling experiments 

A crime is committed in state St; a databank person D comes under consideration as a 
possible proxy relative and D is from a possibly different state Su. For a person unrelated 
to the crime, the probability to come from Su is 1/50, since “states” in the model are all 
the same size. For a proxy relative however, the probability x to come from Su is larger 
for Su proximate to St. Thus, the geographical information about D supplies some 
information as to whether D is a true relative; in particular, the “geographical” supporting 
likelihood ratio is G=X/Y, where 

X = Prob(D is from Su | D is a true relative of the crime committed in St) = x; 

Y = Prob(D is from Su | D is unrelated to the crime committed in St) = 1/50. 

i.e., G = 50x. 

1. A preliminary experiment (“50k database”) assumes all crime is intrastate. The 
crime state St is chosen to be the same as Stj, the state of the true relative. 
Therefore Gi = 50 for each of the 50,000 offenders in St and Gi = 0 otherwise. 

2. At the other extreme (“2.5m database”), assume crime is geographically random. 
Then Gi ≡ 1 and the effect is to model a single very large state. On average there 
will be 50 times as many false leads impeding the search for the true relative as in 
the preceding case. 

3. Finally we introduce a realistic model for G, namely 

a) x = 85% that the true relative will be in the same state as the crime.  
G = 50 × 85% = 85/2. 

b) 12% that the true relative will be in one of the 4 neighboring states, hence 
x = 3% for each one. G = 3/2. 

c) 3% that the true relative will be in one of the 45 “remote” states, hence, 
 x = 1/15% for each one. G = 1/30. 

We considered several additional experiments, each evaluated using the realistic G: 

4. All simulated crimes occur in the state of the relative. It is still a bit harder to find 
the relative than in the first case because, although the G ratios depress the LR's 
of the out-of-state (false) leads, a few of them are still large enough to dilute the 
list of leads. 

5. All simulated crimes occur in a state neighboring the state of the relative. In this 
unrealistic and difficult situation, the LR for the true lead is always depressed by 
3%/85% compared with false leads from the crime state. 

6. The simulated crimes are distributed realistically according to the same model as 
that for G—85% in the state of the true relative, etc. Consequently, catching the 
perpetrators is not much harder than in experiment VI.1 or VI.4. Figure S2 shows 
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experiments VI.1 (50k database), VI.2 (2.5m database) and this experiment, VI.6 
(“national”). 

 

 

0

0.2

0.4

0.6

0.8

1

1 10 100 1000
k

p

parent-child 50k database
sibling 50k database
parent-child national database
sibling national database
parent-child 2.5m database
sibling 2.5m database

 
 
Fig. S2.  Probability of finding a true relative in the convicted offender database of the crime scene 
DNA profile, assuming such a relative exists, within the first k leads investigated. “Leads” are 
defined by computing likelihood ratios for a parentage or sibling relationship between crime stain 
and each convicted offender, possibly modified by a “geographic” factor. 
 
Three pairs of simulations are shown: one pair modeling a “state” database of 50,000 offenders; a 
pair of larger homogeneous databases of 2,500,000 offenders—comparable in size to the combined 
U.S. National DNA Index System (NDIS); and a realistic “national” model representing 2,500,000 
offenders comprised of 50 “states” and with LRs calculated according to modeling assumptions 
that criminals preferentially offend near the state in which their relatives reside. 
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VII. Prediction and practice 

In practice, a computerized family search of a crime scene DNA profile against a DNA 
database of convicted offenders will produce a collection of leads, each of which with an 
associated LR. We are not suggesting that investigators adopt a policy of following up on 
the first 10 leads or any other number of leads. Rather, the investigator will naturally 
make a judgment depending on the sizes of the LRs. We have discussed incorporating 
geographic information as well as genetic into the LRs, and the investigator may roughly 
adjust the LR further if any additional factors seem relevant. Then, probably through a 
rule of thumb that in effect implements Bayes’ Theorem, the LR is in effect interpreted as 
an approximate posterior probability. The underlying mathematical thinking is roughly as 
follows: 

1. There is some probability e (for relative exists) that the perpetrator of the crime, not 
himself in the offender database, has a close relative who is. As a starting point we might 
guess that this probability is related to the 40% or so chance that an offender has a 
relative in jail—perhaps it is much less than that, but we assume that it is substantial in 
the sense that a worthwhile fraction of the time kinship searching in the database will be 
effective. 

2. Any given offender in the database has some small prior probability to be the relevant 
relative; summed over the entire database these probabilities total e. Taking the simple 
approach of distributing the probability, e is distributed equally over N offenders, the 
prior probability is e/N for each one to be the relevant relative. 

3. On that basis, a likelihood ratio L supporting a particular offender as a relative of the 
crime stain corresponds to posterior odds Le/N—essentially this is Bayes’ Theorem stated 
in terms of odds. Probability = Odds/(Odds + 1), so odds of 1 corresponds to a 
probability of 50%, which surely indicates a worthwhile suspect. Whether odds of 1/10 or 
1/100—for such small numbers odds and probability are approximately equal—are 
worthy of interest depends on available resources, the cost of pursuing a lead, and the 
importance of the case. 

Large LRs—substantial compared with the size of the database—as a rule may serve to 
identify the most worthwhile suspects. Hence, in practice, the criterion for pursuing a 
lead would be closely related to the size of the LR. 
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