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Abstract

Bacteria and archaea are locked in a near-constant battle with their viral pathogens. Despite previous mechanistic

characterization of numerous prokaryotic defense strategies, the underlying ecological drivers of different strategies remain

largely unknown and predicting which species will take which strategies remains a challenge. Here, we focus on the CRISPR

immune strategy and develop a phylogenetically-corrected machine learning approach to build a predictive model of

CRISPR incidence using data on over 100 traits across over 2600 species. We discover a strong but hitherto-unknown

negative interaction between CRISPR and aerobicity, which we hypothesize may result from interference between CRISPR-

associated proteins and non-homologous end-joining DNA repair due to oxidative stress. Our predictive model also

quantitatively confirms previous observations of an association between CRISPR and temperature. Finally, we contrast the

environmental associations of different CRISPR system types (I, II, III) and restriction modification systems, all of which act

as intracellular immune systems.

Introduction

In the world of prokaryotes, infection by viruses poses a

constant threat to continued existence (e.g. [1]). In order to

evade viral predation, bacteria and archaea employ a range

of defense mechanisms that interfere with one or more

stages of the viral life-cycle. Modifications to the host’s cell

surface can prevent viral entry in the first place. Alter-

natively, if a virus is able to enter the host cell, then intra-

cellular immune systems, such as the clustered regularly

inter-spaced short palindromic repeat (CRISPR) adaptive

immune system or restriction-modification (RM) innate

immune systems, may degrade viral genetic material and

thus prevent replication [2–7]. Despite our increasingly in-

depth understanding of the mechanisms behind each of

these defenses, we lack a comprehensive understanding of

the factors that cause selection to favor one defense strategy

over another.

Here we focus on the CRISPR adaptive immune system,

which is a particularly interesting case study due to its

uneven distribution across prokaryotic taxa and environ-

ments. Previous analyses have shown that bacterial ther-

mophiles and archaea (both mesophilic and thermophilic)

frequently have CRISPR systems (~90%), whereas less than

half of mesophilic bacteria have CRISPR (~40%; [8–12]).

Environmental samples have revealed that many uncultured

bacterial lineages have few or no representatives with

CRISPR systems, and that the apparent lack of CRISPR in

these lineages may be linked to an obligately symbiotic

lifestyle and/or a highly reduced genome [13]. Nevertheless,

no systematic exploration of the ecological conditions that

favor the evolution and maintenance of CRISPR immunity

has been made. Additionally, though these previous results

appear broadly to be true [14], no explicit accounting has

been made for the potentially confounding effects of phy-

logeny in linking CRISPR incidence to particular traits.

What mechanisms might shape the distribution of

CRISPR systems across microbes? Some researchers have

emphasized the role of the local viral community, sug-

gesting that when viral diversity and abundance is high

CRISPR will fail, and thus be selected against [11, 12, 15].

Others have focused on the tradeoff between constitutively
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expressed defenses like membrane modification and indu-

cible defenses such as CRISPR [15]. Yet others have noted

that hot, and possibly other extreme environments can

constrain membrane evolution, necessitating the evolution

of intracellular defenses like CRISPR or RM systems

[16–18]. Many have observed that since CRISPR prevents

horizontal gene transfer, it may be selected against when

such transfers are beneficial (e.g. [19, 20]). More recently it

has been shown that at least one CRISPR-associated (Cas)

protein can suppress non-homologous end-joining (NHEJ)

DNA repair, which may lead to selection against having

CRISPR in some taxa [21]. In order to determine the rela-

tive importances of these different mechanisms, we must

first identify the habitats and microbial lifestyles associated

with CRISPR immunity.

Here we aim to expand on previous analyses of CRISPR

incidence in three ways: (1) by drastically expanding the

number of environmental and lifestyle traits considered as

predictors using the combination of a large prokaryotic trait

database and machine learning approaches, (2) by incor-

porating appropriate statistical corrections for non-

independence among taxa due to shared evolutionary his-

tory, which has not always been done, and (3) by simulta-

neously looking for patterns in RM systems, which will

help us untangle the difference between environments that

specifically favor CRISPR adaptive immunity versus DNA-

degrading intracellular immune systems in general (RM and

CRISPR).

Methods

Data

For a schematic outlining the entire data compilation pro-

cess Fig. S15. For a list of all visualizations, predictive

models, and statistical tests see Text S7.

Trait data

We downloaded the ProTraits microbial traits database [22],

which describes 424 traits in 3046 microbial species. These

traits include metabolic phenotypes, preferred habitats, and

specific behaviors like motility, among many others. Pro-

Traits was built using a semi-supervised text mining

approach, drawing from several online databases and the

literature. All traits are binary, with categorical traits split up

into dummy variables (e.g. oxygen requirement listed as

“aerobic”, “anaerobic”, and “facultative”). For each trait in

each species, two “confidence scores” in the range [0, 1],

are given, corresponding to the confidence of the text

mining approach that a particular species does (c+) or does

not (c
−
) have a particular trait.

We derived a single score (p) that captured the con-

fidences both that a species does and does not have a par-

ticular trait. Assuming we want our score to lay in the

interval [0,1], such a score should be zero when we are

completely confident that a species does not have a trait,

one when we are completely confident that a species has a

trait, and 0.5 when we are completely uncertain whether or

not a species has a trait (i.e., equally confident that it does

and does not have the trait). In the following formula, cþ
cþþc�

captures the relative confidence that a species does rather

than does not have a trait, which we then scale by the

overall maximal confidence (so that as overall confidence

decreases the score shrinks toward 0.5)

p ¼
1

2
þ

cþ

cþ þ c�
�
1

2

� �

�maxðcþ; c�Þ: ð1Þ

Many of the scores are missing for particular species-trait

combinations (18%), indicating situations in which the text

mining approach was unable to make a trait prediction. Our

downstream analyses do not tolerate missing data, and so

we imputed missing values using a random forest approach

(R package missForest; [23]). There is a set of summary

traits in the ProTraits dataset that were created de-novo

using a machine learning approach, as well as a number of

traits describing the growth substrates a particular species

can use. We removed both summary and substrate traits

from the dataset for increased interpretability (post-impu-

tation; 174 traits remaining).

We note that the authors of ProTraits also used genomic

data to help them infer trait scores, though we found that the

exclusion of this data does not affect our overall outcome

(Text S6 and Fig. S9).

Genomic data and immune systems

For each species listed in the ProTraits dataset we down-

loaded a single genome from NCBI’s RefSeq database, with

a preference for completely assembled reference or repre-

sentative genomes. See Text S2 and Fig. S21 for a con-

firmation that our results are robust to the resampling of

genomes. A number of species (333) had no genomes

available in RefSeq, or only had genomes that had been

suppressed since submission, and we discarded these spe-

cies from the ProTraits dataset.

CRISPR incidence in each genome was determined

using CRISPRDetect [24]. Additionally, data on the number

of CRISPR arrays found among all available RefSeq gen-

omes from a species were taken from Weissman et al. [25])

We downloaded the REBASE Gold database of experi-

mentally verified RM proteins and performed blastx sear-

ches of our genomes against this database [26, 27]. The

distribution of E-values we observed was bimodal, pro-

viding a natural cutoff (E < 10−19).

2590 J. L. Weissman et al.



To assess the ability of a microbe to perform non-

homologous end-joining (NHEJ) DNA repair we used

hmmsearch to search the HMM profile of the Ku protein

implicated in NHEJ against all RefSeq genomes (E-value

cutoff of 10−2/# genomes; Pfam PF02735; [28–30]). We

also used the annotated number of 16S rRNA genes in each

downloaded RefSeq genome as a proxy for growth rate and

the annotated cas3, cas9, and cas10 genes as indicators of

system type [31]. Where available as meta-data from NCBI,

we also downloaded the oxygen (1949 records) and tem-

perature requirements (1094 records) for the biosample

record associated with each RefSeq genome. The NCBI trait

data was used exclusively for building Fig. 4 and the ana-

lyses implicating Ku in the CRISPR versus oxygen

association.

Phylogeny

We used PhyloSift to locate and align a large set of marker

genes (738) found broadly across microbes, generally as a

single copy [32, 33]. Of these marker genes, 67 were found

in at least 500 of our genomes, and we limited our analysis

to just this set. Additionally, eight genomes had few (<20)

representatives of any marker genes and were excluded

from further analysis. We concatenated the alignments for

these 67 marker genes and used FastTree (general-time

reversible and CAT options [34]); to build a phylogeny

(Fig. S16). In order to analyze the effect of tree uncertainty

on our phylogenetic regressions, we bootstrapped our

dataset using seqboot and built a new tree from each

replicate.

Visualizing CRISPR/RM incidence

The size of the ProTraits dataset, both in terms of number of

species and number of traits, and the probable complicated

interactions between variables necessitate techniques that

can handle complex, large scale data. To visualize the

structure of microbial trait space and the distribution of

immune strategies within that space we made use of

two unsupervised machine learning techniques, principal

component analysis (PCA, prcomp() function in R) and

t-distributed stochastic neighbor embedding (t-SNE, per-

plexity= 50 and 5000 iterations using Rtsne() function in

Rtsne R package, otherwise default parameters, perplexity

varied in Fig. S17; [35, 36]).

PCA is a well-used technique in ecology that allows us to

reduce the dimensionality of a dataset for effective visua-

lization in two-dimensional space. Essentially, we collapse

our trait dataset into two or three composite traits and

observe whether species with a particular immune strategy

tend to vary systematically in terms of where they fall in this

“trait space”. A newer variant of this approach, t-SNE,

performs a similar process, but unlike PCA allows for non-

linear transformations of trait space. Therefore, local

structure and non-linear interactions between traits in high-

dimensional space are preserved by t-SNE but often not

captured by PCA [35]. On the other hand, t-SNE axes are

less easily interpreted precisely because they represent non-

linear rather than linear combinations of variables.

CRISPR/RM prediction from ProTraits

In order to predict the distribution of CRISPR and RM

systems, we applied a number of supervised machine

learning approaches to our dataset (see Fig. S18 for a flow-

chart describing the logic behind our model choices). In

order to obtain accurate estimates of model performance, we

initially set aside a portion of the data as a test set to be used

exclusively in model assessment after all models were

constructed (no fitting to this set). Because of the underlying

evolutionary relationships in the data, we chose a test set

that is phylogenetically independent of our training set.

Alternatively, if we were to draw a test set at random from

the microbial species we would risk underestimating our

prediction errors due to non-independence of the training

and test sets [37]. We chose the Proteobacteria as a test set

because they are well-represented in the dataset (1139 spe-

cies), ecologically diverse, and highly heterogeneous in

terms of CRISPR incidence (Fig. S19). The remaining

phyla were used to train our models.

First we built a series of linear models to classify species

by immune strategy (CRISPR present or absent) using

logistic regression. We had a large number of predictor

variables (100+), which necessitated a model-selection

approach in order to build a reasonably (and optimally)

sized model. We used a forward selection algorithm to

select the optimal set of predictors for each model size, with

mean squared error under cross validation (CV) as our

optimality criterion. We then selected model size by com-

paring BIC among these optimal models (i.e., selecting the

model with the lowest score).

Similar to choosing a test set, care must be taken when

performing CV on phylogenetically-structured data. CV

assumes that when the data is partitioned into folds, each of

these folds is independent of the others. If we draw species

at random from a phylogeny, this assumption is violated,

since the same hierarchical tree-structure will underlay each

fold. Therefore, it is better to perform “blocked” CV than

random CV [37], wherein folds are chosen based on

divergent groups on the tree (e.g. phyla). If each group has

diverged far enough in the past from the others, we can

consider these folds to be essentially evolutionarily inde-

pendent in terms of trait evolution (Fig. S20 for a con-

ceptual example). Therefore blocked CV is essentially a

non-parametric method (i.e., no explicit evolutionary

Visualization and prediction of CRISPR incidence in microbial trait-space to identify drivers of. . . 2591



model) to account for the non-independence arising from

the shared evolutionary history between species. We use

both random and blocked CV to build models. We clustered

the data into blocked folds using the pairwise distances

between tips on our tree (partitioning around mediods,

pam() function in R package cluster, five folds so that k= 5;

[38, 39]). A key assumption we make here is that our folds

can be taken as independent from one another (i.e. no effect

of shared evolutionary history). Since these clusters corre-

spond roughly to Phylum-level splits, and since CRISPR

and other prokaryotic immune systems are rapidly gained

and lost over evolutionary time [40], we are comfortable

making this assumption. We also repeated this analysis

using phylogenetic logistic regression to more formally

correct for phylogeny (R package phylolm; [41, 42]).

Phylogenetic logistic regression is a more powerful method

since it fits an explicit model of trait evolution, although it

relies on the assumption that traits evolve according to the

chosen model and can give misleading results otherwise.

Stepwise methods for variable selection, such as those

used above (i.e., forward subset selection), are simple,

computationally feasible, and easy to implement and inter-

pret, but perform poorly when variables in the dataset

covary with one another (i.e. multicollinearity; [43, 44]). As

it so happens, the trait data used here exhibit strong multi-

collinearity (R package mctest; [45, 46]). Therefore, we

sought out methods that deal well with this type of data,

specifically partial least squares regression (PLS; [43]).

Briefly, PLS combines features of PCA and linear regres-

sion to find the linear combination of predictors that max-

imizes the variance of the data in the space of outcome

variables. We use a variant of PLS, sparse partial least

squares discriminant analysis (sPLS-DA), where the

“sparse” refers to a built-in variable selection process in the

model-fitting algorithm and “discriminant analysis” refers to

the fact that we are focused on a classification problem (i.e.,

presence vs. absence of a particular immune strategy; we

used tune.splsda() perform five-fold cross validation, repe-

ated 50 times, to select the optimal number of components n

to include and splsda() to perform variable selection and

model selection simultaneously given n as an input; func-

tions in R package mixOmics; [47, 48]).

We also attempt to ameliorate the effects of shared

evolutionary history on our PLS model by using a philo-

sophically similar approach to our blocked CV method

above. Multivariate integrative (MINT) sPLS-DA is a var-

iant of PLS that can account for systematic variation

between groups of data when those groupings are known

(e.g., our phylogenetically blocked folds from above). It

was originally developed for use in situations where mul-

tiple experiments testing the same hypothesis could show

systematic biases from one another. In our case, the history

of prokaryotic evolution is our experiment, and deep

branching lineages are our replicates. We apply MINT

sPLS-DA to the data, using the same blocked folds we used

for CV (we used tune.mint.splsda() to perform five-fold

blocked cross validation to select the optimal number of

components n to include and mint.splsda() to perform

variable selection and model selection simultaneously given

n as an input; functions in R package mixOmics [48, 49]).

While regression provides easily interpretable trait

weights and is computational efficient, in order to capture

higher-order relationships between microbial traits we

needed more powerful methods. Random forests (RF) are

an attractive choice for our aims since they produce a

readily-interpretable output and can incorporate nonlinear

relationships between predictor variables [50]. We built an

RF classifier on our training data from 5000 trees (otherwise

default settings in R package randomForest so that the

number of variables tried at each split is the square root of

the total number of predictors [51]). To prevent fitting to

phylogeny, we took an ensemble approach which was

similar in philosophy to our blocked CV and MINT sPLS-

DA approaches above. Using the phylogenetically blocked

folds defined above we fit five individual forests, each

leaving out one of the five folds. We then weighted these

forests by their relative predictive ability on the respective

fold excluded during the fitting process (measured as

Cohen’s κ, [52]). We predicted using our ensemble of for-

ests by choosing the predicted outcome with the greatest

total weight.

Results

Below, we associate specific microbial immune strategies

with a diverse list of microbial traits. The traits span a range

of scales including aspects of habitat (e.g. “aquatic”),

morphology (e.g., “coccus”), and physiology (e.g., “het-

erotroph”) [22]. While this variety of scales poses a mod-

eling challenge to traditional approaches including linear

regression, machine learning algorithms provide an elegant

means of integrating such multi-scale traits in a statistically

rigorous predictive framework. In particular, we apply

algorithms that excel at identifying both linear and non-

linear combinations of traits with high predictive ability. For

a systematic comparison of the output of our predictive

models, discussed individually below, please see Fig. S1.

Visualizing CRISPR incidence in trait space

We visualized CRISPR incidence in microbial trait space

using two unsupervised algorithms to collapse high-

dimensional data (174 binary traits assessed in 2679 spe-

cies; see Methods) into fewer dimensions. Both methods

revealed clear differences between the placement of

2592 J. L. Weissman et al.



Table 1 Top 10 variable loadings on the first three principal components of the PCA performed on the microbial traits dataset, shown in Fig. 1 and

S2

PC1 Weight PC2 Weight PC3 Weight

ecosystemcategory_human −0.16 temperaturerange_mesophilic 0.19 growth_in_groups −0.24

specificecosystem_sediment 0.16 temperaturerange_thermophilic −0.19 gram_stain_positive −0.24

ecosystem_environmental 0.16 oxygenreq_strictanaero −0.19 cellarrangement_singles 0.21

knownhabitats_host −0.15 temperaturerange_hyperthermophilic −0.18 cellarrangement_filaments −0.20

ecosystemsubtype_intertidalzone 0.15 knownhabitats_hotspring −0.17 sporulation −0.20

ecosystem_hostassociated −0.15 exosystemtype_rhizoplane 0.17 energysource_chemoorganotroph −0.19

habitat_hostassociated −0.15 habitat_specialized −0.16 cellarrangement_clusters −0.18

habitat_freeliving 0.15 metabolism_methanogen −0.16 shape_tailed −0.18

ecosystemtype_digestivesystem −0.14 ecosystemcategory_plants 0.15 habitat_terrestrial −0.18

specificecosystem_fecal 0.14 ecosystemtype_thermalsprings −0.15 motility 0.17

These three components explain 17%, 10%, and 7% of the total variance, respectively
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Fig. 1 Organisms with CRISPR
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components from a PCA of the

microbial traits dataset are

shown, where each point is a

single species. CRISPR

incidence is indicated by color

(green with, orange without), but

was not included when

constructing the PCA. Notice

the separation of organisms with

and without CRISPR along both

components. Marginal densities

along each component are

shown to facilitate

interpretation. See Fig. S2 for

the first component
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CRISPR-encoding and CRISPR-lacking organisms in trait

space, despite the fact that no explicit information about

CRISPR was included.

First, principal components analysis (PCA) of the trait

data reveals several previously recognized patterns of

microbial lifestyle choice and CRISPR incidence. The first

principal component (17% variance explained) corresponds

broadly to an axis running from host-associated to free-

living microbes (Table 1), as observed by others [53, 54].

CRISPR-encoding and CRISPR-lacking microbes are not

differentiated along this axis (Fig. S2). We see CRISPR-

encoding and CRISPR-lacking organisms beginning to

separate along the second (10% variance explained) and

third (7% variance explained) principal components

(Fig. 1). The second component roughly represents a split

between extremophilic species typically living in low-

productivity environments and mesophilic, plant-associated

species (Table 1). Optimal growth temperature appears to be

an important predictor of CRISPR incidence, as previously

noted by others [11, 12]. The third component is not as easy

to interpret, but appears to indicate a spectrum from group-

living microbes (e.g. biofilms) to microbes that tend to live

as lone, motile cells (Table 1). That CRISPR is possibly

favored in group-living microbes is not entirely surprising,

considering the increased risk of viral outbreak at high

population density, and that some species up-regulate

CRISPR during biofilm formation [55].

Second, we visualized the trait data using t-distributed

stochastic neighbor embedding (t-SNE), which is a non-

linear method that can often detect more subtle relationships

in a dataset (Fig. 2[35]). This method reveals a clustering of

CRISPR-encoding microbes in trait space, further empha-

sizing that microbial immune strategy is influenced by

ecological conditions. Because the axes of t-SNE plots are

not easily interpretable, we mapped the top weighted traits

from the PCA above (Table 1) onto the t-SNE reduced data

(Fig. S3). Surprisingly, the most clearly aligned trait with

CRISPR-incidence is having an obligately anaerobic

metabolism.

Predicting CRISPR incidence

The above unsupervised approaches (i.e. uninformed about

the outcome variable, CRISPR) revealed that CRISPR

incidence appears to be impacted by other microbial traits.

In order to more formally characterize these patterns, and

exploit them for their predictive ability, we applied several

supervised prediction methods (i.e. trained with information

about CRISPR incidence) methods to the complete trait

dataset.

Unlike traditional statistical techniques focused on

assigning p-values to particular input variables, with our

machine learning approach we assessed model performance

in terms of predictive ability. For unbiased error estimates,

we chose an independent “test” set to withhold during the

model fitting process and to be used only during model

assessment. We consider effective prediction of CRISPR

incidence in this independent dataset as support that our

model encodes real information about how different

microbial traits influence the ecological advantages of the

CRISPR system. We then examined the structure of these

models, and which variables play an outsize role in their

Table 2 Predictive ability of

models of CRISPR incidence on

the Proteobacteria test set

Phylogenetic correction Performance

Model type Non-

parametric

Parametric Model size Accuracy (%) κ TPR

Log. Reg. No No 18 66.1 0.152 0.233

Log. Reg. Yes No 9 67.5 0.168 0.209

Log. Reg. No Yes 10 67.7 0.188 0.246

Log. Reg. Yes Yes 6 67.4 0.160 0.294

sPLS-DA No No [7, 159, 4, 169, 50]

(5 comp.)

68.4 0.190 0.219

MINT sPLS-DA Yes No 32 (1 comp.) 60.5 0.173 0.538

RF No No – 68.8 0.241 0.327

RF Ensemble Yes No – 68.6 0.240 0.332

Model size refers to number of variables chosen overall, or per-component in the case of the partial least

squares models. Accuracy is measured as the total number of correct predictions over the total attempted and

κ is Cohen’s κ, which corrects for uneven class counts that can inflate accuracy even if discriminative ability

is low. Roughly, κ expresses how much better the model predicts the data than one that simply knows the

frequency of different classes (κ= 0 being no better, κ > 0 indicating improved predictive ability). The true

positive rate (TPR) is the number of correctly identified genomes having CRISPR divided by the total

number of genomes having CRISPR in the test set. The non-parametric correction for phylogeny refers to

our phylogenetically blocked folds, whereas the parametric correction refers to our use of phylogenetic

logistic regression [41]. Observe that the RF model appears to perform best at prediction in general
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performance, in order to select candidate traits associated

with CRISPR incidence. Importantly, we chose the Pro-

teobacteria as our test set because they represent a phylo-

genetically independent group from our training set (see

Methods).

All models we implemented showed improved predictive

ability over a null model only accounting for the relative

frequency of CRISPR among species (Cohen’s κ > 0;

Table 2), indicating that there is some ecological signal in

CRISPR incidence, though overall predictive performance

was not overwhelming. Of these models the random forest

(RF) model ranked highest, and did reasonably well (κ=

0.241). The percent incidences of CRISPR in the training

(56%) and test sets (36%) are considerably different, which

may have been difficult for these models to overcome. It is

also possible that the Proteobacteria vary systematically

from other phyla in terms of ecology and immune strategy,

making them a particularly difficult (and thus conservative)

test set. Nevertheless, the trait data clearly held some

information about CRISPR incidence. We will primarily

focus here on the RF model since it performed best, but see

Text S1 for further discussion of the performance of our

other models.

While each of our models revealed a distinct set of top

predictors of CRISPR incidence, there was broad agreement

overall (Table S1, Fig. 3, S4 and S5). Keywords indicating

a thermophilic lifestyle (e.g. thermophilic, hot springs,

hyperthermophilic, thermal springs) appeared across all

models as either the most important or second most

important predictor of CRISPR incidence. Keywords

relating to oxygen requirement (e.g. anaerobic, aerobic) also

appeared across nearly all models as top predictors,

excluding only the two worst performing models

(Table S1). In the case of the RF and sPLS-DA models,

oxygen requirement was always one of the top three pre-

dictors, and often the top predictor of CRISPR incidence

(Fig. 3, S4, S5 and S6). Other predictors that frequently

appeared across model types included termite hosts (hos-

t_insectstermites), the degradation of polycyclic aromatic

hydrocarbons (PAH; metabolism_pahdegrading), fresh-

water habitat (knownhabitats_freshwater), and growth as

filaments (shape_filamentous). In general, the sPLS-DA,

MINT sPLS-DA, RF, and RF ensemble models agreed with

each other rather closely. Finally, we built an RF model

using only traits related to temperature range, oxygen

requirement, and thermophilic lifestyle (hot springs, thermal

springs, hydrothermal vents). This temperature- and

oxygen-only RF model outperformed all non-RF models (κ

= 0.191). These traits alone appear to hold the majority of

information about CRISPR incidence in the dataset.

As an additional check that these candidate traits versus

CRISPR associations are real and not due to some irregu-

larity in our dataset, we downloaded meta-data available

from NCBI. We were able to reproduce the result that

thermophiles strongly prefer CRISPR (92% with CRISPR

as opposed to 49% in mesophiles, Fig. 4a [11, 12]). Though

we have too few genomes categorized as psychrotolerant

(35) or psychrophilic (14) to make any strong claims, these

genomes seem to lack CRISPR most of the time, suggesting

that CRISPR incidence decreases continuously as

knownhabitats_hydrothermalvent

oxygenreq_strictaero

knownhabitats_freshwater

temperaturerange_hyperthermophilic

temperaturerange_mesophilic

ecosystemtype_thermalsprings

temperaturerange_thermophilic

knownhabitats_hotspring

host_insectstermites

oxygenreq_strictanaero
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Mean Decrease in Gini Impurity Index

metabolism_pahdegrading
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oxygenreq_strictanaero

0 10 20 30 40

Mean Decrease in Accuracy

Fig. 3 Importance of top ten predictors in the RF model of CRISPR

incidence using the ProTraits predictors. The mean decrease in accu-

racy measures the reduction in model accuracy when a variable is

randomly permuted in the dataset. The Gini impurity index is a

common score used to measure the performance of decision-tree based

models (e.g. RF models). Briefly, when a decision tree is built the Gini

impurity index measures how well separated the different classes of

outcome variable are at the terminal nodes of the tree (i.e., how “pure”

each of the nodes is). The mean decrease in Gini impurity measures the

estimated reduction in impurity (increase in purity) when a given

variable is added to the model. These importance scores are useful to

rank variables as candidates for further study, but in themselves should

not be taken as statistical support or effect sizes similar to those seen in

linear regression. RF models may include non-linear combinations of

variables, and therefore the contribution of any one variable is not as

easily interpreted as with a linear model, a drawback of this approach.

See Fig. S7 for all predictor importances
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environmental temperatures decrease [10]. We were also

able to confirm that, in agreement with our visualizations

and predictive modeling, aerobes disfavor CRISPR immu-

nity (34% with CRISPR) while anaerobes favor CRISPR

immunity (67% with CRISPR, Fig. 4b). This is true inde-

pendent of growth temperature, with mesophiles showing a

similarly strong oxygen-CRISPR link (Fig. S8). Overall,

both oxygen (χ2= 254.04, p < 2.2 × 10−16, categories with

<10 observations excluded) and temperature (χ2= 98.86, p

< 2.2 × 10−16, categories with <10 observations excluded)

had significant effects on incidence (for breakdown see

Fig. 4).

Following previous suggestions that CRISPR incidence

might be negatively associated with host population density

and growth rate [11, 12, 15], and that this could be driving

the link between CRISPR incidence and optimal tempera-

ture range, we sought to determine if growth rate was a

major determinant of CRISPR incidence. The number of

16S rRNA genes in a genome is an oft used, if imperfect,

proxy for microbial growth rates and an indicator of

copiotrophic lifestyle in general [56–58]. While CRISPR-

encoding genomes had slightly more 16S genes than

CRISPR-lacking ones (3.1 and 2.9 on average, respec-

tively), the 16S rRNA gene count in a genome was not a

significant predictor of CRISPR incidence (logistic regres-

sion, p= 0.05248), although when correcting for phylogeny

16S gene count does seem to be significantly positively

associated with CRISPR incidence (phylogenetic logistic

regression, m= 0.06277, p = 6.651 × 10−5), the opposite of

what we would expect if growth rate were driving the

CRISPR-temperature relationship (though the effect was

not consistent across bootstrapped trees; Table S2).

As a secondary confirmation of the link between oxygen

and CRISPR, we examined metagenomic data from the
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Fig. 4 Temperature range and oxygen requirement are strong pre-

dictors of CRISPR incidence. Trait data taken from NCBI. a Ther-

mophiles strongly favor CRISPR immunity, while mesophiles appear

ambivalent. b Anaerobes favor CRISPR immunity, while aerobes tend

to lack CRISPR and facultative species fall somewhere in between. c

CRISPR and the Ku protein are negatively associated in aerobes but

not anaerobes. Error bars are 99% binomial confidence intervals (non-

overlapping intervals can be taken as evidence for a statistically sig-

nificant difference at the p < 0.01 level). Total number of genomes in

each trait category shown at the bottom of each bar. Categories

represented by fewer than 10 genomes were omitted
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Tara Oceans Project [59], and found that across a large set

of ocean metagenome samples CRISPR prevalence was

inversely related to environmental oxygen concentration

(Text S3 and Fig. S22).

We also attempted to predict the number of CRISPR

arrays in a genome given that that genome had at least one

array, though this attempt was entirely unsuccessful

(Text S4).

Predicting CRISPR type

Each CRISPR system type is associated with a signature cas

targeting gene unique to that type (cas3, cas9, and cas10 for

type I, II, and III systems, respectively). There are many

species in the dataset with cas3 (605), but relatively few

with cas9 (160) and cas10 (222), suggesting that the traits

correlated with CRISPR incidence probably correspond

primarily to type I systems (the dominance of type I systems

has been noted previously [60]). We mapped the incidence

of each of these genes onto the PCA we constructed earlier

(see Fig. S2 and Table 1), and found that cas9 separates

from cas3 and cas10 along the first component (Fig. 5a).

Broadly, this indicates that type II systems are more com-

monly found in host-associated than free-living microbes,

the opposite of the other two system types.

We built an RF model of cas9 incidence, with the Pro-

teobacteria as the test set. Because our training set had so

few cases of cas9 incidence (10% of set), we performed

stratified sampling during the RF construction process to

ensure representative samples of organisms with and with-

out cas9. Surprisingly, despite the extremely small number

of organisms with cas9 in the training and test sets (160 and

58, respectively), this model was accurately able to predict

type II CRISPR incidence and had some discriminative

ability (Accuracy= 93.0%, κ= 0.164), though it missed

many of the positive cases (TPR= 0.172). This model also

suggested that a host-associated lifestyle seems to be a

major factor influencing the incidence of type II systems,
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Fig. 5 Type II CRISPR systems

appear to be more prevalent in

host-associated microbes. a The

cas targeting genes associated

with type I, type II, and type III

systems (cas3, cas9, and cas10,

respectively) mapped onto the

PCA in Fig. S2. Organisms

without any targeting genes

were omitted from the plot for

readability. Recall from Table 1

that PC1 roughly corresponds to

a spectrum running from host-

associated to free-living

microbes. b A variable

importance plot from an RF

model of cas9 incidence.

Observe that keywords related to

a host-associated lifestyle appear

many times
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with many of the top-ranking variables in terms of impor-

tance corresponding to keywords having to do with the split

between host-associated and free-living organisms

(Fig. 5b).

NHEJ, CRISPR, and oxygen

Recently, Bernheim et al. [21] demonstrated that the type II-

A CRISPR system interferes with the NHEJ DNA repair

pathway, leading to an inverse relationship between the

presence of type II-A systems and the NHEJ pathway in

microbial genomes. We hypothesized that this negative

relationship between CRISPR and NHEJ might be more

widespread across system types. We also hypothesized that

this could explain the negative relationship between

CRISPR and aerobicity we observe, since reactive oxygen

species produced during aerobic respiration can induce

double-strand breaks, thus selecting for the presence of

NHEJ repair in aerobic organisms [61, 62]. We use the

presence of Ku protein as a proxy for the NHEJ pathway,

since this protein is central to the pathway.

There was a clear interaction between the presence of Ku

and aerobicity on the incidence of CRISPR (Fig. 4c, using

aerobicity meta-data from NCBI for this and below ana-

lyses). Using our full set of RefSeq genomes, we found a

weak negative association between CRISPR and Ku inci-

dence overall (Pearson’s correlation, ρ=−0.012; χ
2
=

15.015, p= 1.067 × 10−4), but restricting only to aerobes

the negative association between Ku and CRISPR was

much stronger (Pearson’s correlation, ρ=−0.250, p=

9.109 × 10−16), whereas in anaerobes it was nonexistent (ρ

=−0.023, p= 0.704). This pattern was consistent when

correcting for phylogeny (Text S5 and Table S4), and was

true for both type I and III systems individually, though was

not significant for type II systems of which there were fewer

in the dataset Fig. S12.

Similar to our CRISPR analysis, we used PCA and an RF

model to find if and where Ku-possessing organisms clus-

tered in trait space. We found that the NHEJ pathway

clusters strongly in trait space (Fig. S10), and is favored in

soil-dwelling, spore-forming, aerobic microbes, consistent

with expectations of where NHEJ will be most important

[61, 62] (Fig. S11).

Predicting RM incidence

So far, our analyses have not distinguished if temperature

and oxygen predict whether a microbe has an intracellular

immune system that degrades DNA in general, or whether

these traits are specific to CRISPR adaptive immunity. We

tested these two possibilities by building an RF model of

restriction enzyme incidence using the same stratified

sampling approach that we used for CRISPR system type.

This model showed decent predictive ability (κ= 0.317).

However, the correlation between variable importance

scores for the CRISPR and restriction enzyme RF models

was low (Fig. 3 vs Fig. S14; Pearson’s correlation, ρ=

0.169 for mean decrease in Gini Impurity Index, ρ=

−0.0487 for mean decrease in accuracy; also Fig. S1). This

result implies that RM systems have different traits deter-

mining their incidence than do CRISPR systems (also note

PCA plot, Fig. S13). When we directly tested for an asso-

ciation with temperature and oxygen we also found that the

number of restriction enzymes was, unlike CRISPR inci-

dence, negatively associated with an anaerobic lifestyle

(m=−4.53877, p= 2 × 10−16, phylogenetic linear regres-

sion), and only marginally significantly associated with a

thermophilic lifestyle (m= 1.51063, p= 0.03779, phylo-

genetic linear regression). These results were consistent

across bootstrapped trees (Table S3).

Discussion

We detected a clear association between microbial traits and

the incidence of the CRISPR immune system across spe-

cies. We found that two predictors were especially impor-

tant for predicting CRISPR incidence, thermophilicity and

aerobicity. The links between these two traits and CRISPR

were confirmed with annotations from NCBI, and in the

case of aerobicity with metagenomic data from the Tara

Oceans Project (Text S3 [59]). The relationship between

temperature and CRISPR is well known [8–10], but we lend

further support here by formally correcting for shared

evolutionary history in our statistical analyses using both

parametric and non-parametric approaches.

Previous theoretical models predict that CRISPR will be

selected against in environments with dense and diverse

viral communities [11, 12], since hosts are less likely to

repeatedly encounter the same virus in such environments.

These models in turn predict that in high-density host

communities CRISPR will not be adaptive, since high host

density leads to high viral diversity [11, 12], and that this

might explain why potentially slow-growing thermophiles

favor CRISPR immunity (as opposed to copiotrophic

mesophiles). Our results show a marginal positive associa-

tion between growth rate and CRISPR incidence, and that

group-living microbes seem to favor CRISPR immunity,

calling these prior viral diversity and density based expla-

nations into question. Additionally, our analysis suggests

that psychrophilic and psychrotolerant species disfavor

CRISPR more strongly than mesophiles, which is not

clearly explained or predicted by hypotheses based on host

density.

We suspect that another factor could be affecting the

degree of viral diversity that a host encounters, so that viral
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diversity is high in colder environments and low in hotter

ones. Differences in dispersal limitation among viruses

could lead to lower immigration rates in hot environments,

as viral decay rates may be low at lower temperatures and

high at higher temperatures [63], though this is highly

speculative. We note that host dispersal rates are unlikely to

affect the viral diversity seen by a host on average unless

most of the host population is dispersing, an unrealistic

expectation.

Surprisingly, we find that oxygen requirement appears to

be just as important of a predictor of CRISPR incidence as

temperature, and that this pattern is independent of any

effect of temperature. Possibly, this association can be

explained by inhibitory effects of CRISPR on NHEJ DNA

repair. Type II-A CRISPR systems have been shown to

directly interfere with the action of the NHEJ DNA repair

pathway in prokaryotes [21]. Reactive oxygen species are

produced during aerobic metabolism and can cause DNA

damage [61], making NHEJ potentially particularly impor-

tant in aerobes. Thus, if CRISPR interferes with the NHEJ

repair pathway, and this pathway is important in aerobes,

we would expect CRISPR incidence to be inversely related

to the presence of oxygen. Our data showed a clear inter-

action between aerobicity and the NHEJ machinery in

determining CRISPR incidence that suggests that the link

between CRISPR and aerobicity may be mediated by the

presence of the NHEJ pathway (Fig. 4c). The Cas proteins

share many structural similarities with proteins implicated

in DNA repair, and in some cases prefer to associate with

DSBs, and it is perhaps unsurprising that they appear to

broadly inhibit the NHEJ pathway whose proteins may be

competing for substrate [64]. Nevertheless, the evidence

supporting this hypothesis is only preliminary. The negative

interaction between CRISPR and Ku should be experi-

mentally confirmed in type I and type III systems. Addi-

tionally, our repair versus immunity tradeoff hypothesis

could be tested using an experimental evolution setup in

which organisms with CRISPR are exposed to DNA

damage.

The link that we propose between aerobic metabolism

and NHEJ repair is somewhat tenuous. Reactive oxygen

species are thought to directly produce single strand breaks

which are most often converted to double-strand breaks

during cell growth, the precise time when repair may be

possible via homologous recombination due to the presence

of multiple genome copies. That being said, reactive oxygen

species can lead to double-strand breaks during stationary

phase when damage is spatially clustered on the genome

[65, 66], when cells experience specific types of starvation

that lead to vulnerable single-stranded DNA gaps [67, 68],

or when ROS occurs in conjunction with other damaging

agents including cyanide [69] and irradiation [70–72].

Furthermore, while NHEJ certainly will be important during

stationary phase, its relevance during growth is unknown.

The pathway itself does appear to be more prevalent in

environments with oxygen (Figs. S10 and S11). Never-

theless, we have no ability to assess causality presently, and

the strong interaction between Ku and aerobicity on

CRISPR incidence we observed could be the result of some

other, as yet unrevealed driver. For example, NHEJ is

thought to be important for desiccation resistance [73, 74],

and many organisms facing this specific threat are likely to

be aerobic.

As an alternative to our NHEJ hypothesis, could patterns

in viral diversity explain the relationship between aerobicity

and CRISPR incidence? The viral-decay hypothesis we

proposed to explain the enrichment of thermophiles with

CRISPR does not make sense in this context, since we

might expect viruses to decay more readily in the presence

of oxygen rather than under anoxic conditions. It is unclear

to us why the viruses of anaerobes would be more dispersal

limited. Nevertheless, if the viral communities infecting

anaerobes were shown to be less diverse than those

infecting aerobes this could also explain the increased

incidence of CRISPR among these organisms.

We found no strong link between the incidence or

number of RM systems on a genome and a thermophilic or

anaerobic lifestyle, suggesting that the major drivers of

CRISPR incidence are indeed CRISPR specific, consistent

with our viral diversity and NHEJ-inhibition hypotheses.

We were also able to show that CRISPR types vary in in

terms of the environments they are found in, with type II

systems appearing primarily in host-associated microbes.

This phenomenon could be due in part to phylogenetic

biases in the dataset, but our use of a phylogenetically

independent test set lends credence to the overall trend. We

have no clear mechanistic understanding of why cas9

containing microbes tend to favor a host-associated life-

style. Nevertheless this result may have practical implica-

tions for CRISPR genome editing, since it has recently been

found that humans frequently have a preexisting adaptive

immune response to variants of the Cas9 protein [75]. We

note that type I and III systems do not appear to have a

strong link to host-associated lifestyles.

While our dataset spanned a broad phylogenetic range

(with some notable exceptions such as the Candidate Phyla

Radiation [76]), we had a limited number of microbial traits,

which may have obscured some important CRISPR-trait

associations. With the number of microbial genomes in

public databases constantly expanding, so too should efforts

to provide metadata about each of the organisms repre-

sented by those genomes. At least part of the problem lies in

the lack of a universally accepted controlled vocabulary for

microbial traits (similar to that provided by the Gene

Ontology Consortium [77]), although some admirable

attempts have been made [78, 79]. This would both
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facilitate the construction of more expansive trait databases,

and would help deal with the issue of comparing traits that

span many different scales.

The ecological drivers of microbial immune strategy are

likely as diverse as the ever-increasing number of known

prokaryotic defense systems [80, 81]. The exploratory,

database-centered approach we take here can be com-

plemented by targeted studies examining shifts in immune

strategy across environmental gradients (e.g., Text S3) to

provide a more fine-grained understanding of how micro-

bial populations adapt to their local pathogenic and abiotic

environments. Ultimately, experimental manipulations will

provide the power to fully validate proposed mechanisms

behind ecological patterns in immune strategy.
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