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Abstract operators to measure the traffic matrixtraffic matrixrep-

resents the amount of traffic between origin and destination

A traffic matrix represents the amount of traffic betweenin a network. It is an essential input for a variety of IP net-
origin and destination in a network. It has tremendous po-work engineering applications, such as capacity planning,
tential utility for many IP network engineering applications, traffic engineering, and network survivability analysis. Due
such as network survivability analysis, traffic engineering,to the extreme importance of traffic matrices, there has been
and capacity planning. Recent advances in traffic matrix estremendous efforts and many recent advances in the area of
timation have enabled ISPs to measure traffic matrices contraffic matrix estimation [7, 12, 15, 16]. These techniques
tinuously. Yet a major challenge remains towards achievinghave enabled Internet service providers to accurately mea-
the full potential of traffic matrices. In practical network- sure the traffic matrix of their network in a continuous fash-
ing applications, it is often inconvenient (if not infeasible) ion (in the granularity of minutes to an hour).
to deal with hundreds or thousands of measured traffic ma- Having gladly left behind the days without a good traffic
trices. So it is highly desirable to be able to extract a smallmatrix, however, network operators and engineers are now
number of “critical” traffic matrices. Unfortunately, we are facing the new challenge of having to deal with hundreds
not aware of any good existing solutions to this problemor even thousands of traffic matrices, all from real measure-
(other than a fewad hocheuristics). This seriously limits ment at different time instances. Ideally, network engineers
the applicability of traffic matrices. would like to base their design and analysis on all traffic

To bridge the gap between the measurement and the adnatrices for a significant period of time.¢, a couple of
tual application of traffic matrices, we study the critical traf- months). These traffic matrices can capture the normal traf-
fic matrices selection (CritMat) problem in this paper. We fic variation from temporal-geographical patterasy( traf-
developed a mathematical problem formalization after idenfic from east-coast and west-coast reaches peak usage at dif-
tifying the key requirements and properties of CritMat in ferent hour of day) to traffic engineering activities,d, a
the context of network design and analysis. Our complexcustomer network shifts its traffic to a different egress point
ity analysis showed that CritMat is NP-hard. We then de-during maintenance). However, in practice, it is usually in-
veloped several clustering-based approximation algorithmgsonvenient or infeasible to use a large number of traffic ma-
to CritMat. We evaluated these algorithms using a largetrices. Itis inconvenient since many traffic analysis tasks re-
collection of real traffic matrices collected in AT&T’s North quire human interventiore(g, examine the scenario where
American backbone network. Our results demonstrated thagongestion has occurred). Dealing with a large number of
these algorithms are very effective and that a small numbetraffic matrices is very undesirable. It is infeasible since
(e.g., 12) of critical traffic matrices suffice to yield satisfac- many traffic engineering applications are very computation-

tory performance. ally expensive. For example, finding the optimal OSPF link
) weights that minimize link utilization for an IP network is
1 Introduction known to be NP-complete [8]. In [8, 9], Fortz and Thorup

Today's large operational IP networks often consist Ofha\{e developedqlocal search technique that is dem_onstrated
o9 find good solutions for real networks. However, this tech-

nique can only handle a relatively small number of traf-

traffic per day. How to effectively design, engineer, andf'c matrices, as the computational cost becomes prohibitive

manage such large networks is crucial to end-to-end networWhen t.h.e nu.mbe.r .Of input traffic matrices |s.Iarge. leen
performance and reliability. Until recently, a major obsta- such difficulties, it is natural to ask the following question:
cle to developing sound methods for network engineeringin ~ With hundreds or thousands of traffic matrices
operational IP networks has been the inability of network available, can we extract a small number of “crit-

hundreds of routers, thousands of links, tens of thousan
of routes, and may carry over one peta-bytel0'® bytes)



ical” ones and use only them for network design expenditure requires the network to operate in a most ef-
and analysis? ficient manner. Therefore, when choosing candidate traffic

The ab ion has b ked f v b matrices for network design and analysis, network engineers
e above question has been asked frequently by nety . ,tqp, looking for a small set afitical traffic matrices

work operators and engineers. Unfortunately, the SOIUtlon?hat can represent all worst-case scenarios without inflating

Qevgloped S0 far are 9ftenkqu|:m|hoc On? cofrpmon p.rac;] the traffic demand by too much. Our focus in this paper is
tice Is to generate a “peak-all-elements” traffic matrix thaty, o44ress the following problenhow to extract a small

has the peak demand for each origin-destination flow. An'number of such critical traffic matrices from a large collec-

ot.her approaqh IS to take thg trafhc. matrix at the networkq, (hundreds or thousands) of measured traffic matrices
wide busiest timei(e., the traffic matrix with the largest to- for network engineering purposes?

Eal voklurlrl1e)|. Howeyer, f?one of them are ?lansfactory —the g4 far, we have been vague about “worst-case” scenar-
peak-all-e e'.“eq}s tr? Ic matnx. are usur? y t0(|) cofr;_servzl';\-ios_ In the context of network engineering, worst-case often
tive since It significantly over-estimates the total traffic vo '{efers to the situation when some link in the network is con-

um de; whgrea; thehbud3|est—t|crjne t'rafﬂc mat:llfclruns the ;'Sk% ested or heavily loaded. As manifested to network users,
underestimating the demands since not all flows peak at t ongestion often means high packet loss and long link delay

netlworr]l_< peak. K to bridae th b h on all traffic that traverses through this link. Thus, it is nat-
n this paper, we seek to bridge the gap between the meay, 1, yse Jink utilization based metrigs.g, the network-

surement and the actual application of traffic matrices bX/vide maximum link utilization, to measure the level of “bad-

del\/elqplngce_ffl\e/lctlve sbc:Iutlorjrs t?] t?'t'calf traﬁ'lf malt”é( ness” of a traffic matrix. Two properties about traffic ma-
selection (. ritMatjoroblem. 0 the best of our knowledge, . o4 jink utilization become useful here — the monatonic
this is the first study on the critical traffic matrices selection

o o "~ property and the linear property. Theonotonic property
ggofkc))ll?(;cv'sour contributions in this paper can be summanze@ays that when a traffic matriX; has every flow smaller

than or equal to the corresponding flow in another traffic

e We have closely examined the critical traffic matrices matrix X,, i.e, X, dominatesX;, the link utilization for
selection problem in the context of network design anddemandx; should always be smaller than or equal to the
analysis, and identified the key requirements and defink utilization for demandX, under any routing configu-
sired properties. . ration. Thelinear property states that if under a routing

* We have developed a mathematical problem formula¢onfigyration, the link utilizations ar¥; andYs for traf-
tion, which addresses the need for a range of practicafic yemand matrixt, and X, respectively, then for demand

network applications. Xa = aX; 4 (1—a) X, the resulting i S

. . = — , g link utilizations should

* We have formally analyzed the complexity of this prob- bngg O alYl Sr i _) a)2Y2 under the same routing configura-
Iem;nd ShO\INnI th?t Itis lt\)IP-hgrd. we hawi then ?etyel'tion. Here,a is a scaler between 0 and 1, avid Y3, Y3 are
?opfhesper\(l)%rlzn:: ustening-based approximation Solutionyq ctors with size equal to the number of links in the network.

e We have evaluated our algorithms using a large collec- T~ it cal
tion of real traffic matrices. Our results have demon- C R o
strated that these algorithms are very effective and that S0
a small numberd.g, 12) of critical traffic matrices suf- / .
fice to yield satisfactory performance. traff ‘ngag‘;‘,;‘"gﬁf/h,, vl

The rest of the paper is organized as follows. Section 2
characterizes the requirements and properties of the critical
traffic matrices selection problem and provides a mathemat-
ical formalization and a complexity analysis of the problem. ~ Figure 1. Example for a 2-Dimensional TM Set
ig(l:ttlr(;rflﬁ?: ?r:a;tcr ir::beessstglz gtligocr)‘r.ltc\r/gs dtgir\?ll)eepcﬁrpgz?s ;Z: (;rr:t g .'.I'he monptomc gnd linear propertlgs allow us to focus on
evaluation methodology in Section 4 and present the perfor-rm(.:al traff_lc matrices that can do_mlnate al measurement
mance results of our algorithms in Section 5. We concludﬁ:[rancflc matrices by Ilnear_ comb_lnatlon. I_:|gure 1 llustrates
in Section 6 an example for a two dimensional trafﬂ_c matr!ces set.. In

' Figure 1, the dots represent the real traffic matrices obtained
2 Problem Description and Formalization from data measurement, and the two squares are the two
ritical traffic matrices desired. The concerns for “prepare-
or-worst-case” and “minimum-oversizing” by network en-

\. . :..:.:. . -.m;i

Network engineers are constantly facing the challeng

driven by two conflicting requirements — on one hand, there .

is a need to design and provision the network in a robusPineers become the requirements of 1) critical traffic matri-

way so that the network is prepared for any worst-case sceses dominating all measurement traffic matrices by linear

narios; on the other hand, constraint due to limited capitaf:ombm"’Ition and 2) the convex hull of the critical traffic ma-



trices having small volume (or area in the two-dimensional e the minimum oversizing in bandwidth mileage product
example). However, since traffic matrix usually has very .

high dimensions — a network d¥ nodes hasv? flows in |7, X]||=_ min d-(Ay—7%))

i 1 I i zeX, <47y

its traffic matrix, computing the volume of the polyhedron

formed by the critical traffic matrices is a difficult task by it-
self. Thus we further restrict ourselves to the solution space
where all critical traffic matrices are constrained to be close
to an original measured traffic matrix. This turns out to beNote that in the above functions, the notations, | - |» and
a reasonable requirement in practice. This is because fqr. |~ denote the standarg-norm,¢,-norm ands.-norm of
tasks such as capacity planning and weight optimization, ityector variables, respectively. More specifically,

is desirable to conduct analysis based on traffic matrices that
match real traffic patterns or scenarios.

where A is a routing matrix andl is the length (in
miles) of each link.

T
ai,ag,...,a = a;
2.1 Problem Formalization (@1, 02 o i:Zl‘ |
Having carefully examined the properties and require-
ments of the problem, we now provide a formal statement
of this optimization problem, namely theritical traffic (a1, az, ..., ar)|2 =
matrices selection(CritMat ) problem. We will repre-

sent each traffic matrix as A-dimensional vector where (a1, az, . ..,a,)|ec = max |a;]
K is a large number. Given a finite set of traffic matri- 1<igr
cesX = {7, 7,...,Z,} and an integer, the Crit- In our analysis and solution to ti@ritMat problem, we
Mat problem is to find a set of critical traffic matrices, will just deal with some instance of the distance function
Y = {#,%,...,Yn}, that minimizes distance function |7, X|| and treat the other forms of the distance function as
_ performance metrics.
ma |7, X| | |
ye 2.2 Complexity Analysis
subject to dominance constraint In this subsection, we will analyze the complexity of the
m m critical traffic matrices selection problem. The decision ver-
VZ € X,3ay,as,...,am, Z a; = 1and? <4 Z a; ;. sion of the optimization problem can be stated as follows.
=1 =1 ..
. B . T e PROBLEM INSTANCE: A finite set X =
Here,z <, ¥, i.e., ¥ being dominated by, is true if and {#,T5,...,%,}; a real numbers; an integer
only if Z is smaller thary/ in all K dimensions. numberm.
The distance functiofjy, X || can be defined in a number
of ways: e QUESTION: Is there a set of vectory” =
e the minimum distance to an input traffic matrix {41.92,...,ym} such that () [Y] = m, (i)
Vg e Y|y, X|| < 6 and (i) V¥ €
17, X|| = min |7 — 7] o om
rex Xazlalaa%"'vamvzai:]-andx <a Zazy1
e the maximum difference in each dimension from the i=1 i=1
closest input traffic matrix We now show that th€ritMat problem is NP-hard in
17, X|| = ggg 17 — T the case wherdy, X|| = min |¥ — Z|o and dimensionk
o the minimum traffic derﬁénd oversizin is unbounded. We show th&SAT is polynomial-time-
9 reducible toCritMat .
|7 X[l = _min _[g—Z) . .
o o EeXgsay o Proof: ~ Given an instance of a3-SAT problem,
e the minimum weighted traffic demand oversizing Cy A Cy A ... A Cy, where clauseC; is the disjunc-
~ : & (o = tion of 3 literals (a literal is a variable or a negated variable),
7. X] = _min @ (7-3) G v )
TEX,T<ay we construct LritMat problem as follows.

For each variable;; (1 < ¢ < N) in the 3-SAT problem,
we create two vectorsiy; and v;_1; which have value
0 in all dimensions except for thei-th and @i — 1)-th
dimension. #,;, corresponding tac;, has value3 in the
in |A(@Y—2)h 2i-th dimension and valué in the Qi — 1)-th dimension
= and @,;_1, corresponding te-z;, has value2 in the 2i-th
whereA is a routing matrix. dimension and valugin the 2: — 1)-th dimension. For each

wherew is the geographical distance.g, air mile)
between flow source and flow destination of each flow.
¢ the minimum link load oversizing

-
I7.X)I= _m



clauseC;, 1 < j < M, we create another vectgy, which
has valuel.75 in the three dimensions that corresponds to
its three literals and has valuein the other dimensions.
For example, the vector for clausgV —x; Vv x;, has value
1.75 in the 2i-th, the @; — 1)-th and the2k-th dimension,
and has valud in the other dimensions. We sé&f be
the collection ofvariable vectorsand clause vectorsi.e.,

X ={t,...,02n,C1,...,Cn } @nd letd bel andm be the
number of variablesy.

We now show that the&-SAT problem has a solution (a
truth assignment of variables that satisfies all clauses) if and
only if the constructecCritMat problem has a solution (a
set of vectors that satisfies the problem constraint).

= If the original 3-SAT problem has a solution, the set
Y = {gl7g2a~~
of the constructedCritMat problem. For each vari-
able, z;, we define a vectof;: #; has valuet in the
2i-th dimension, valug in the 2¢ — 1)-th dimension
and valuel in the other dimensions if; is T; 7; has
value3 in the 2i-th dimension, valud in the Qi — 1)-
th dimension and valug in the other dimensions if;
is F. It is straight forward to see that’| = N and
Yy € Y,37 € X|y,¥ < 1. Furthermore, it can
be verified that each pair of variable vectots; and

th dimension and value no greater theum the 2i-th

and 2k-th dimension, andj; has value3 in the 2k-

th dimension and value no greater tham the 2:-th

and @; — 1)-th dimension. If we focus on th2i-th,

(25 — 1)-th and2k-th dimension, in the best case where
s, §; andyj, take the upper bound valden the corre-
sponding dimensions, they can dominate a vector with
value no larger tha#*t1*L = 2 in all of these three
dimensions. Therefore, the corresponding clause vec-
tor, which hasl.75 in these three dimensions, cannot
be dominated by any linear combination of vectors in
Y — contradicting toY” being a solution. Thus, all
clauses are satisfied and the truth assignment is a solu-
tion to the3-SAT problem.

,yn} defined as follows is a solution Thig completes the proof.

Now we have established the NP-hard-nes€ofMat
when the objective distance function is represented by the
maximum difference (in all dimensions) to the closest in-
put traffic matrix. We conjecture that for other distance
functions, theCritMat problem remains NP-hard due to the
combinatorial nature of the solution space. In the next sec-
tion, we will look into approximation approaches to critical
traffic matrices selection.

i1, are dominated byj;, and each clause vector, 3 Algorithms

¢;, is dominated by a linear combination of the vec-
tors that corresponds to the variables in the claesg,
the clause vector fog; vV —z; V z;, is dominated by
10 + 34; + 34 if 2, = ; = T andz, = F. Thus,
Y is a solution to theCritMat problem.

< If the constructedCritMat problem has a solution;

Y = {glag27"'
the 2N dimensions, there exists at least ofiethat

In this section, we describe our approximation algorithms
for CritMat . By looking at the structure of the problem, we
find thatCritMat shares many similarities to the traditional
clustering problem for high-dimensional data set — both re-
quire finding a set of representatives that can represent the
whole data set and are individually close to some member in
,Un}, we know that 1) for each of the data set. Therefore, we will first look at some algorithms
in the context of high-dimensional data clustering. We will

has value no less thahin this dimension (otherwise briefly review two well-known techniques for data cluster-
the corresponding variable vector is not dominated); 2)ing [11, 5], K-meansand hierarchical agglomerationthe

eachy; can have value no less tharn at most two di-

latter of which has motivated our design of fBatical-ness

mensions: thej-th and ¢j —1)-th dimension for some  Aware Clusteringalgorithm.

j (otherwise||y;, X|| > 1). Combining 1) and 2), we
have that eacly; has value no less thahin exactly

K-means starts with a randomly chosernvectors as the
center of the clusters, wheneis the desired number of clus-

two dimensions that corresponds to a pair of variableters. Each vector computes its distance to each ofithkis-

vectors. We rearrangesuch thaty; dominatesi,; and
Ua;—1. Furthermore, sincgy;, X|| < 1, eachy; should
have values betweehand4 in the 2i-th and @i — 1)-
th dimension with at least one of them being exact
and have values betweénand1 in the other dimen-
sions. Thus, ify; has value greater thahin the 2i-th
dimension, we let; = T; otherwise we let; = F.

ters, and joins the one with the minimum distance. Once a
vector joins a cluster, the center of the cluster is recomputed.
This step repeats until no vector can find a smaller distance
to another cluster than the one that it belongs to.
Hierarchical agglomeration starts with(singleton) clus-
ters centered at each of thevectors to be clustered. At each
iteration, the pair of clusters with the minimum distance to

We claim that such a truth assignment is a solutioneach other are agglomerated into one cluster. Once agglom-
to the 3-SAT problem. This can be shown by contra- erated, the center of the cluster is recomputed. The process
diction. Without loss of generality, we assume clausestops after, — m iterations when there are clusters left.

x; V ~xj V xy is not satisfiedj.e, z; = F, z; =T,
x, = F, which implies thatj; has value3 in the 2i-th
dimension and value no greater thiaim the 25 — 1)-th
and2k-th dimension,y; has value3 in the @5 — 1)-

While the K-means and the hierarchical agglomeration
algorithms generatew-partitions of the vector set such that
the vectors within one partition are close to each together, in
the CritMat problem, we are seeking a set of vectors that



quiresO(K) computations (to obtain heady, C;)), where

1 initialization:

2 for eachz; K is the number of dimensions. Thus the runtime for line
3 create cluste€; = {z;} 6 to line 8 isO(n2K). In line 9, sortingn(n — 1)/2 cost

4 define cluster heald; = z; values require®(n?log(n)) computation. Thus the overall
5 letm; = volume ofz; // max volume inC; runtime for initialization isO(n?K + n?log(n)). For ag-

6 for eachC;, C; glomeration steps, each iteration requit¥s. i +n log(n))

7 compute cosi( j) = computation for calculating cost¢) and inserting the re-

8 volume(heath;, h;))-max(m;, m;) sult into sorted list (line 16 to 19). There ane— m iter-

©

sort costf, j) in ascending order

ations. Thus the overall runtime for agglomeration steps is
10 for step = ton — m g9 p

O(n(n — m)K + n(n — m)log(n)) and the total runtime

i; ;:e;gﬁégzgtjzze)@“ ¢’ with min costg, j): of CritAC is dominated by that of the initialization steps —
13 m; = max(m;, m;) O(n’K + n*log(n)). o )
14 remove cluste€; We should note that it is possible to use other forms of
15 for each remaining clustet), the cost function irCritAC . For example, we can associate
16 cost(, k) = costf, i) = a weight for each dimension in the traffic matrices that cap-
17 volume(heath;, h)) - max(m;, my) tures the distance between the corresponding flow’s origin
18 insert cost, k) in sorted list and destination (similar to the distance function in Section
19 return {h;} for the remainingn clusters 2.1). We have explored these variations of the algorithm.
However, for the data set that we evaluated in Section 5, we
Figure 2. Critical-ness Aware Clustering found little difference in their performance. Therefore, we

- . omit these variations of the algorithm and the corresponding
are close to the original vector set and are able to dom'natﬁerformance results for the interest of brevity

all vectors in the set by linear combination. One direct ap- _
proach is to utilize the result from clustering algorithm by 4 Evaluation Methodology

generating one “head” vector from each of the cluster such |, yhis section, we first discuss the performance metrics
that the head vector dominates the vectors within the cluste{hat we use for comparing different methods. Next, we

This can be achieved by setting the value of the head vectal,marize the baseline algorithms for comparing against
to the maximum value of all cluster members in each d'men'CritAC _We then describe the traffic matrices. network

sion, i.e., hea(#;}) = (max;z;,1, max; z;2,...) Where 4456154y and routing configuration used in our evaluation.
Z; = (%41, %2, ...). Since the cluster members are close to

each other, the head vector should also be close to the clustérl Performance Metrics
members, satisfying the requirement foritMat . We use We use two sets of metrics to compare the performance
the result from the above method as our baseline algorithmsf different methods. The first set of metrics are more di-
In the rest of the paper, we will refer to these algorithmsrect. They are simply the objective function GfitMat —
asK-means HeadandHierarchical Head respectively, de-  the distance functiofj, X || —in various forms as described
pending on which algorithm is used for clustering. in Section 2.1. The second set of performance metrics are
A potential problem with the above clustering-based al-more application specific. We take the set of critical traf-
gorithms is that clustering treats each vector in the origi-fic matrices produced by different algorithms and use them
nal data set equally whil€ritMat gives more importance as input for two specific network engineering applications,
to the vectors with high volume. To correct this effect, we namely OSPF route optimization and network survivability
propﬁseg aCdriticgl—nehss r?ware h(?|UIStefil’|19 (CritAC) al-h danalysis. We then evaluate the results of these applications.
gorithm by adapting the hierarchical agglomeration method. . .
The key idea is to define a dominating cluster head, as opA—"2 Baseline Algorithms

posed to a cluster center, and explicitly consider the oversiz{ Category | Methods \
ing cost function in every agglomeration st€ritAC starts Direct clustering K-means Head Hierarchical
with n clusters headed by each of the originatectors. At Head, Peak-all-elements

each iteration, the pair of clusters with the minimum “merg- | Total volume based TopN, TopConsecN Topl
ing cost” are agglomerated and the vector that has value i

every dimension equal to that of the maximum among vec-  Table 1. Baseline algorithms for evaluation.

tors from both clusters becomes the new cluster head. This

process stops after — m iterations when there are clus-

ters left. Figure 2 presents the pseudo-code of the algorith
The runtime ofCritAC can be evaluated as follows. The

most expensive computation in initialization is to calculate ¢ pirect clustering based methodshich apply standard
costg, j) for all n(n — 1)/2 pairs of clusters. Each pair re- clustering techniques to cluster the input traffic ma-

In our evaluation, we compal@ritAC with six alterna-
n;ives (as summarized in Table 1). These methods can be
classified into the following two categories:



trices and then return the head vectors of the resultethe router-level topology into a PoP-level topology by col-

clusters as the critical traffic matrice§-means Head lapsing all the router-level links between each PoP into a
andHierarchical Head, as described in Section 3, be- single PoP-level link. The capacity of the PoP-level link is

long to this class. Another method that belongs to thiscomputed as the sum of the capacities of all the underly-
class iPeak-all-elementswhich returns a critical traf-  ing router-level links. We also compute the geographical
fic matrix that has the peak demand for each individualdistance (in miles) for each PoP-level link using the lati-

origin-destination flow. Note thaPeak-all-elements tude/longitude information for its two end points.

can be viewed as a special casekefneans Head In order to translate traffic matrices into link loads or uti-
andHierarchical Head, with all input traffic matrices lization, we need to have the routing information. By de-
forming a single cluster. fault, Cisco routers [4] set the OSPF weight of each link to

e Total volume based methqdshich return a subset of be inversely proportional to its.capacity —Wwe refer to this
input traffic matrices as the critical ones based on theirsemr1g as _thmvCapwelght setting and use it as the default
volumes. Two methods that belong to this class areComclguratlon for our PoP-level topology.
TopN, which returnsV traffic matrices with the highest 5 Results
volumes, andlfopConsecN which returns a set av
consecutive traffic matrices with the highest total vol- di
ume (among all possible consecutive traffic matrices)ﬁ
We also consider a third alternatiiepl, which is a

special case ofopN andTopConsecNwith N = 1.

In this section, we present the results of our evaluation of
fferent methods for selecting critical traffic matrices. We
rst compare different clustering based methods based on a
set of direct performance metricse(, various forms of the
distance function|y, X|| as described in Section 2.1). We
then report on the performance of different methods in the
pontext of network survivability analysis and OSPF route
optimization.

Note that the traffic matrices returned by total volume
based methods are not exactly critical traffic matrices in tha
their linear combination may not dominate all input traffic
matrices. As a result, we cannot apply the direct metricss.1  Simple Metrics
mentioned above to evaluate these methods. So we willonly |, this section, we evalua@ritAC against direct clus-
evaluate them in the context of network survivability analy- tering based methods, using various form§@fX|| as our
sis, and OSPF route optimization. performance metrics. We cannot report the exact values of
4.3 Traffic Matrices [l7, X||, as they are considered proprietary. So instead we

. ' . only report on the normalized values. The normalized met-
Our evaluations are based on real traffic matrices col-

lected from a large operational IP network — AT&T’s North fics are sum.marlzed below: o )
American commercial backbone network. The network con- ® the traffic demand oversizing ratio

sists of tens of Point of Presence (PoPs), hundreds of routers, max min |§— |
thousands of links, and carries over one petabyte of traffic geY TeX ¥<qy
per day. max |2

reX

The traffic matrices are estimated from SNMP link load . . .
e the weighted demand oversizing ratio

measurements using th®mo-gravity method [15, 16],

which has been shown to yield accurate estimates especially max min - (7 — &)

for large traffic matrix elements. We use hourly traffic ma- JEY TEX,T<af

trices, as they are commonly used in network engineering prg%iw -z

applications. The data collection in our study contains more

than five months of hourly traffic matrices (from January 2, ~ Wherew is the geographical distancee(, air miles)

2004 to June 10, 2004), which provide us 3048 instances of ~ between the flow source and destination of each flow.
traffic matrices in total. The traffic matrices in our original ~  the link load oversizing ratio

dataset are at the router level. For simplicity, we aggregate max  min |A(F— &)1

them into PoP-level traffic matrices (so that we don't have FEY TEX,F<af
to deal with changes in the number of origin-destination max |AZ|;
=D ¢

flows due to router failures or newly added routers). Each
PoP-level traffic matrix contains over 400 origin-destination whereA is the routing matrix obtained using the default
flows at rates ranging from tens of Kbps to tens of Gbps. InvCapweight setting.

4.4 Network Topology and Routing o the weighted link load oversizing ratio

-

We use the PoP-level network topology on June 10, 2004 max &ni}i d-(A(y—2))
in our evaluations. We first obtain the router-level topology IS
using the methods by Feldmaehal.[7]. We then reduce Igggd AL




whereA is the routing matrix obtained using the default finding the true optimum. The quality of the final weight
InvCapweight setting, and is the length (in miles) of ~ setting is affected by random choices made through the iter-
each link. ations, causing some variance in the quality of the outcome.
To evaluate the performance of different methods in the
We compute the above oversizing ratios for the threecontext of OSPF route optimization, we have conducted a
clustering based methods using eithéd or 1000 consecu- number of experiments in both offline and online settings.
tive traffic matrices, which correspond to 22 days or 44 daydn the offline setting, we first obtain a set of critical traffic
of measurement, at different times during the 5-month pematrices from1000 input traffic matrices using one of our
riod of our data collection. For the interest of brevity, we algorithms; then we feed the obtained critical traffic matrices
only present the results for the firs000 traffic matrices. to the OSPF optimizer and compute for a set of OSPF link
The results for other periods of time are qualitatively simi- weights; we test the performance of these weights on the
lar. samel000 input traffic matrices. In the online setting, we
Figure 3 shows the four different kinds of oversizing ra- optimize routing using critical traffic matrices derived from
tio as a function of the number of critical traffic matrices de- the first500 traffic matrices and then test the performance
sired. We observe that different performance metrics havef the obtained routing configuration on the n&go traffic
given consistent result. If we look at the case at which thematrices.
number of critical traffic matrices i$, which corresponds As in [10], we pick max-utilization as the performance
to Peak-all-elements we find that the oversizing ratio is metric for route optimization in our evaluation. Théliza-
more than 100% in all graphs (the left most point in eachtion of a link is defined as the ratio of its load over its ca-
graph). This confirms our intuition th&teak-all-elements  pacity, and thenmax-utilizationis the maximum utilization
is an overly conservative method. of all links in the network. Other works have used more so-
ComparingCritAC with Hierarchical Heads and K- phisticated metrics, such as the total utilizatwost of all
means Heads we find thatCritAC achieves much lower links in the network €.g, [14, 8]). However they are dif-
oversizing ratio. WithCritAC , the oversizing ratio decays ficult to interpret and do not provide additional insights for
rapidly to below 20% with only 24 critical traffic matrices. our purpose, thus are not used. Furthermore, since the exact
In contrast, wittHierarchical HeadsandK-means Heads  value of link utilization is considered proprietary, we nor-
the oversize ratio undergoes a quick decay to about 40% anuialize the max-utilization by the maximum link utilization
then decays very slowly — even with 200 critical traffic ma- achieved by the default weight settingirvCap For ex-
trices, the oversizing ratio is still close to the oversizing ratioample, a normalized max-utilization 6f7 means that the
achieved by 24 critical traffic matrices produced@mytAC . corresponding weight setting perfori3@% (1 — 0.7) better
This demonstrates the advantage of being criticalness awarthaninvCap
S Figure 4(a) shows the results for the offline setting when
5.2 OSPF Route Optimization we take the firstt000 traffic matrices as input. We ob-
Open Shortest Path First (OSPF) [13] and Intermediateserve that when the number of critical traffic matrices al-
System-Intermediate System (IS-IS) [3] are the two moslowed is big enoughe.g, 12 or 24), CritAC significantly
commonly used intra-domain routing protocols today. InoutperformsHierarchical Head, TopN, andTopConsecN
these protocols, which are functionally identical, each linkin addition, compared to the default weight settintyCap),
is associated with a positive weight, and the length of a patiCritAC is able to reduce max-utilization by over 35%. In-
is defined as the sum of the weights of all links on that pathterestingly, K-means Head performs slightly better than
Traffic is routed along the shortest path(s). In case of tieritAC , although the difference is very small (below 2%).
where several outgoing links are on shortest paths to the deFhis small discrepancy rises because the OSPF optimizer
tination, the flow is split roughly evenly. [9] in our evaluation optimizes the average max-utilization
Over the years, many methods [8, 14, 10, 6, 2] have beefor the input traffic matrices, which usually produces good,
proposed to obtain a set of link weights that minimizes thehowever not necessarily the best maximum max-utilization
level of congestion in the resulting shortest-path-routed netever all traffic matrices.

work. We refer to such a method as &sPF optimizer Figure 4(b) shows the results for the online setting when
though the resulted weight setting is equally applicable tove take the firsb00 traffic matrices as input. Again, we
IS-IS routing. see thalCritAC consistently achieves good performance —

In our evaluation, we have used the approach in [8, 9]the results are either significantly better than or close to that
which is based on a so-called local search technique [1]. Thef alternative methods. Since the results are consistent with
method uses heuristics to iteratively improve the weight setthat of offline setting, it demonstrates that the critical traffic
ting, changing one or a few weights in each iteration. We rammatrices identified britAC are robust enough for on-line
each problem configuration for 5000 iterations — each takingnalysis in the context of route optimization.

a few minutes on average. Since the problem of finding an Overall, the results in this subsection have suggested that
optimal weight setting is NP-hard [8], we cannot guarantee
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Figure 3. Oversizing ratios for different clustering based methods.
it is sufficient to only use a small numbeg.g, 12) of criti-  The survivability analysis we perform consists of simulat-
cal traffic matrices for OSPF route optimization aDtAC ing all possible single link failures and computing the max-
can provide good input for this purpose. utilization under each failure scenario. Given a failure sce-

nario f, we use predictedMaxf) and trueMaxUtf) to
) denote the max-utilization computed using the critical traf-
A well engineered network should work well not only fic matrices and original traffic matrices, respectively. We
under normal conditions, but also under common failurésthen compute the empirical Cumulative Distribution Func-
.Network. surywabﬂny anaIyS|s. is the l_<ey network engineer-tion (CDF) for predictedMaxUtf)/ max s {trueMaxUt f)}
ing application that makes this possible. The basic task Ofagain because the exact value of predictedMaf\is con-
network survivability analysis is to simulate the network un- gjgered proprietary).
der all single or dual shared-risk-device-group failueg { The results are summarized in Figure 5. To avoid putting
link, router, or fiber span failures). For a large network, theyoo many curves into the same plot, we partition the compar-
possible failure scenarios can be very large. Thus it maybggn into two parts. The left column of Figure 5 compares
either infeasible or computationally very expensive to test allcritac against direct clustering based methoksmeans
failure scenarios on a large number of input traffic matricesyyead Hierarchical Head, andpeak-all-element the right
In this section, we examine the performance of using onlyeqjumn compare€ritAC against total volume based meth-
the critical traffic matrices for network survivability analy- ods: TopN, TopConsecN andTopl. We also vary the num-
sis. Our basic evaluation methodology is as follows. Weper of critical traffic matrices. In Figure 5, the two plots in
fic matrices from an input set of measured traffic matrices; grom Figure 5, it is evident that the total volume based
we then perform survivability analysis based on the outputnethods tend to underestimate the max-utilization for a
set of the critical traffic matrices and compare the predicte¢gnsiderable fraction of failure scenarios. Such under-
performance to the “true” performance when survivability estimation can be quite undesirable in network reliabil-

In our evaluation, we usevCapas the routing config- yndetected during the analysis process (and become evi-
uration, and the max-utilization as our performance metric.

5.3 Network Survivability Analysis
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Figure 4. Performance of route optimization.
dent later during actual operations). In contrast, the clus-

tering based methods are guaranteed to never underesti-
{11]

mate. Among the clustering based methd@@i$tAC clearly
performs the best in that it leads to the least amoun
of overestimation. Finally, compared with the real max-
utilization, we see that foCritAC with 12 or 24 critical
traffic matrices,max, predictedMaxUgf) is very close to
max ; trueMaxU{ f) — the difference is always below 3%.
These results suggest th@atitAC can be used to signifi-

cantly reduce the number of traffic matrices that need to beﬁ3]

tested for reliability analysis.

(14]

6 Conclusion

In this paper, we defined the critical traffic matrices se-[15]

lection CritMat ) problem. We identified its properties and
requirements in the context of network design and analy;
sis. Based on these properties, we developed a mathemali
cal formalization of the problem. We conducted complexity
analysis ofCritMat and showed that it is NP-hard. Fur-

(10]

(12]

data demonstrated that a small numteeg( 12) of critical
traffic matrices suffice to cover all the worst-case scenarios
without being overly conservative.
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