
Finding Critical Traffic Matrices

Yin Zhang
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712, USA
yzhang@cs.utexas.edu

Zihui Ge
AT&T Labs – Research

180 Park Avenue
Florham Park, NJ 07932, USA

gezihui@research.att.com

Abstract

A traffic matrix represents the amount of traffic between
origin and destination in a network. It has tremendous po-
tential utility for many IP network engineering applications,
such as network survivability analysis, traffic engineering,
and capacity planning. Recent advances in traffic matrix es-
timation have enabled ISPs to measure traffic matrices con-
tinuously. Yet a major challenge remains towards achieving
the full potential of traffic matrices. In practical network-
ing applications, it is often inconvenient (if not infeasible)
to deal with hundreds or thousands of measured traffic ma-
trices. So it is highly desirable to be able to extract a small
number of “critical” traffic matrices. Unfortunately, we are
not aware of any good existing solutions to this problem
(other than a fewad hocheuristics). This seriously limits
the applicability of traffic matrices.

To bridge the gap between the measurement and the ac-
tual application of traffic matrices, we study the critical traf-
fic matrices selection (CritMat) problem in this paper. We
developed a mathematical problem formalization after iden-
tifying the key requirements and properties of CritMat in
the context of network design and analysis. Our complex-
ity analysis showed that CritMat is NP-hard. We then de-
veloped several clustering-based approximation algorithms
to CritMat. We evaluated these algorithms using a large
collection of real traffic matrices collected in AT&T’s North
American backbone network. Our results demonstrated that
these algorithms are very effective and that a small number
(e.g., 12) of critical traffic matrices suffice to yield satisfac-
tory performance.

1 Introduction

Today’s large operational IP networks often consist of
hundreds of routers, thousands of links, tens of thousands
of routes, and may carry over one peta-byte (= 1015 bytes)
traffic per day. How to effectively design, engineer, and
manage such large networks is crucial to end-to-end network
performance and reliability. Until recently, a major obsta-
cle to developing sound methods for network engineering in
operational IP networks has been the inability of network

operators to measure the traffic matrix. Atraffic matrixrep-
resents the amount of traffic between origin and destination
in a network. It is an essential input for a variety of IP net-
work engineering applications, such as capacity planning,
traffic engineering, and network survivability analysis. Due
to the extreme importance of traffic matrices, there has been
tremendous efforts and many recent advances in the area of
traffic matrix estimation [7, 12, 15, 16]. These techniques
have enabled Internet service providers to accurately mea-
sure the traffic matrix of their network in a continuous fash-
ion (in the granularity of minutes to an hour).

Having gladly left behind the days without a good traffic
matrix, however, network operators and engineers are now
facing the new challenge of having to deal with hundreds
or even thousands of traffic matrices, all from real measure-
ment at different time instances. Ideally, network engineers
would like to base their design and analysis on all traffic
matrices for a significant period of time (e.g., a couple of
months). These traffic matrices can capture the normal traf-
fic variation from temporal-geographical patterns (e.g., traf-
fic from east-coast and west-coast reaches peak usage at dif-
ferent hour of day) to traffic engineering activities, (e.g., a
customer network shifts its traffic to a different egress point
during maintenance). However, in practice, it is usually in-
convenient or infeasible to use a large number of traffic ma-
trices. It is inconvenient since many traffic analysis tasks re-
quire human intervention (e.g., examine the scenario where
congestion has occurred). Dealing with a large number of
traffic matrices is very undesirable. It is infeasible since
many traffic engineering applications are very computation-
ally expensive. For example, finding the optimal OSPF link
weights that minimize link utilization for an IP network is
known to be NP-complete [8]. In [8, 9], Fortz and Thorup
have developed a local search technique that is demonstrated
to find good solutions for real networks. However, this tech-
nique can only handle a relatively small number of traf-
fic matrices, as the computational cost becomes prohibitive
when the number of input traffic matrices is large. Given
such difficulties, it is natural to ask the following question:

With hundreds or thousands of traffic matrices
available, can we extract a small number of “crit-

ical” ones and use only them for network design
and analysis?

The above question has been asked frequently by net-
work operators and engineers. Unfortunately, the solutions
developed so far are often quitead hoc. One common prac-
tice is to generate a “peak-all-elements” traffic matrix that
has the peak demand for each origin-destination flow. An-
other approach is to take the traffic matrix at the network-
wide busiest time (i.e., the traffic matrix with the largest to-
tal volume). However, none of them are satisfactory – the
“peak-all-elements” traffic matrix are usually too conserva-
tive since it significantly over-estimates the total traffic vol-
ume; whereas the busiest-time traffic matrix runs the risk of
underestimating the demands since not all flows peak at the
network peak.

In this paper, we seek to bridge the gap between the mea-
surement and the actual application of traffic matrices by
developing effective solutions to thecritical traffic matrix
selection (CritMat)problem. To the best of our knowledge,
this is the first study on the critical traffic matrices selection
problem. Our contributions in this paper can be summarized
as follows.
• We have closely examined the critical traffic matrices

selection problem in the context of network design and
analysis, and identified the key requirements and de-
sired properties.

• We have developed a mathematical problem formula-
tion, which addresses the need for a range of practical
network applications.

• We have formally analyzed the complexity of this prob-
lem and shown that it is NP-hard. We have then devel-
oped several clustering-based approximation solutions
to the problem.

• We have evaluated our algorithms using a large collec-
tion of real traffic matrices. Our results have demon-
strated that these algorithms are very effective and that
a small number (e.g., 12) of critical traffic matrices suf-
fice to yield satisfactory performance.

The rest of the paper is organized as follows. Section 2
characterizes the requirements and properties of the critical
traffic matrices selection problem and provides a mathemat-
ical formalization and a complexity analysis of the problem.
Section 3 describes the algorithms that we proposed for crit-
ical traffic matrices selection. We describe our data set and
evaluation methodology in Section 4 and present the perfor-
mance results of our algorithms in Section 5. We conclude
in Section 6.

2 Problem Description and Formalization
Network engineers are constantly facing the challenge

driven by two conflicting requirements – on one hand, there
is a need to design and provision the network in a robust
way so that the network is prepared for any worst-case sce-
narios; on the other hand, constraint due to limited capital

expenditure requires the network to operate in a most ef-
ficient manner. Therefore, when choosing candidate traffic
matrices for network design and analysis, network engineers
are often looking for a small set ofcritical traffic matrices
that can represent all worst-case scenarios without inflating
the traffic demand by too much. Our focus in this paper is
to address the following problem:how to extract a small
number of such critical traffic matrices from a large collec-
tion (hundreds or thousands) of measured traffic matrices
for network engineering purposes?

So far, we have been vague about “worst-case” scenar-
ios. In the context of network engineering, worst-case often
refers to the situation when some link in the network is con-
gested or heavily loaded. As manifested to network users,
congestion often means high packet loss and long link delay
on all traffic that traverses through this link. Thus, it is nat-
ural to use link utilization based metrics,e.g., the network-
wide maximum link utilization, to measure the level of “bad-
ness” of a traffic matrix. Two properties about traffic ma-
trix and link utilization become useful here – the monotonic
property and the linear property. Themonotonic property
says that when a traffic matrixX1 has every flow smaller
than or equal to the corresponding flow in another traffic
matrix X2, i.e., X2 dominatesX1, the link utilization for
demandX1 should always be smaller than or equal to the
link utilization for demandX2 under any routing configu-
ration. Thelinear property states that if under a routing
configuration, the link utilizations areY1 and Y2 for traf-
fic demand matrixX1 andX2 respectively, then for demand
X3 = aX1+(1−a)X2, the resulting link utilizations should
beY3 = aY1 + (1− a)Y2 under the same routing configura-
tion. Here,a is a scaler between 0 and 1, andY1, Y2, Y3 are
vectors with size equal to the number of links in the network.

critical
traffic
matrices

traffic matrices
from measurement

Figure 1. Example for a 2-Dimensional TM Set

The monotonic and linear properties allow us to focus on
critical traffic matrices that can dominate all measurement
traffic matrices by linear combination. Figure 1 illustrates
an example for a two dimensional traffic matrices set. In
Figure 1, the dots represent the real traffic matrices obtained
from data measurement, and the two squares are the two
critical traffic matrices desired. The concerns for “prepare-
for-worst-case” and “minimum-oversizing” by network en-
gineers become the requirements of 1) critical traffic matri-
ces dominating all measurement traffic matrices by linear
combination and 2) the convex hull of the critical traffic ma-

trices having small volume (or area in the two-dimensional
example). However, since traffic matrix usually has very
high dimensions – a network ofN nodes hasN2 flows in
its traffic matrix, computing the volume of the polyhedron
formed by the critical traffic matrices is a difficult task by it-
self. Thus we further restrict ourselves to the solution space
where all critical traffic matrices are constrained to be close
to an original measured traffic matrix. This turns out to be
a reasonable requirement in practice. This is because for
tasks such as capacity planning and weight optimization, it
is desirable to conduct analysis based on traffic matrices that
match real traffic patterns or scenarios.

2.1 Problem Formalization

Having carefully examined the properties and require-
ments of the problem, we now provide a formal statement
of this optimization problem, namely thecritical traffic
matrices selection (CritMat) problem. We will repre-
sent each traffic matrix as aK-dimensional vector where
K is a large number. Given a finite set of traffic matri-
ces X = {~x1, ~x2, . . . , ~xn} and an integerm, the Crit-
Mat problem is to find a set of critical traffic matrices,
Y = {~y1, ~y2, . . . , ~ym}, that minimizes distance function

max
~y∈Y

||~y, X||

subject to dominance constraint

∀~x ∈ X, ∃a1, a2, . . . , am,

m∑

i=1

ai = 1 and~x ≤d

m∑

i=1

ai~yi.

Here,~x ≤d ~y, i.e., ~x being dominated by~y, is true if and
only if ~x is smaller than~y in all K dimensions.

The distance function||~y,X|| can be defined in a number
of ways:
• the minimum distance to an input traffic matrix

||~y, X|| = min
~x∈X

|~y − ~x|2
• the maximum difference in each dimension from the

closest input traffic matrix

||~y,X|| = min
~x∈X

|~y − ~x|∞
• the minimum traffic demand oversizing

||~y,X|| = min
~x∈X,~x≤d~y

|~y − ~x|1
• the minimum weighted traffic demand oversizing

||~y,X|| = min
~x∈X,~x≤d~y

~w · (~y − ~x)

where ~w is the geographical distance (e.g., air mile)
between flow source and flow destination of each flow.

• the minimum link load oversizing

||~y,X|| = min
~x∈X,~x≤d~y

|A(~y − ~x)|1

whereA is a routing matrix.

• the minimum oversizing in bandwidth mileage product

||~y,X|| = min
~x∈X,~x≤d~y

~d · (A(~y − ~x))

whereA is a routing matrix and~d is the length (in
miles) of each link.

Note that in the above functions, the notations| · |1, | · |2 and
| · |∞ denote the standard̀1-norm,`2-norm and̀ ∞-norm of
vector variables, respectively. More specifically,

|(a1, a2, . . . , ar)|1 =
r∑

i=1

|ai|

|(a1, a2, . . . , ar)|2 =

√√√√
r∑

i=1

a2
i

|(a1, a2, . . . , ar)|∞ = max
1≤i≤r

|ai|

In our analysis and solution to theCritMat problem, we
will just deal with some instance of the distance function
||~y,X|| and treat the other forms of the distance function as
performance metrics.

2.2 Complexity Analysis

In this subsection, we will analyze the complexity of the
critical traffic matrices selection problem. The decision ver-
sion of the optimization problem can be stated as follows.

• PROBLEM INSTANCE: A finite set X =
{~x1, ~x2, . . . , ~xn}; a real number δ; an integer
numberm.

• QUESTION: Is there a set of vectorsY =
{~y1, ~y2, . . . , ~ym} such that (i) |Y | = m, (ii)
∀~y ∈ Y, ||~y, X|| ≤ δ and (iii) ∀~x ∈
X, ∃a1, a2, . . . , am,

m∑
i=1

ai = 1 and~x ≤d

m∑
i=1

ai~yi

We now show that theCritMat problem is NP-hard in
the case where||~y,X|| = min

~x∈X
|~y − ~x|∞ and dimensionK

is unbounded. We show that3-SAT is polynomial-time-
reducible toCritMat .

Proof: Given an instance of a3-SAT problem,
C1 ∧ C2 ∧ . . . ∧ CM , where clauseCi is the disjunc-
tion of 3 literals (a literal is a variable or a negated variable),
we construct aCritMat problem as follows.
For each variablexi (1 ≤ i ≤ N) in the 3-SAT problem,
we create two vectors:~v2i and ~v2i−1 which have value
0 in all dimensions except for the2i-th and (2i − 1)-th
dimension. ~v2i, corresponding toxi, has value3 in the
2i-th dimension and value2 in the (2i − 1)-th dimension
and~v2i−1, corresponding to¬xi, has value2 in the 2i-th
dimension and value3 in the (2i−1)-th dimension. For each

clauseCi, 1 ≤ j ≤ M , we create another vector~cj , which
has value1.75 in the three dimensions that corresponds to
its three literals and has value0 in the other dimensions.
For example, the vector for clausexi ∨ ¬xj ∨ xk has value
1.75 in the 2i-th, the (2j − 1)-th and the2k-th dimension,
and has value0 in the other dimensions. We setX be
the collection ofvariable vectorsand clause vectors, i.e.,
X = {~v1, . . . , ~v2N ,~c1, . . . ,~cM} and letδ be1 andm be the
number of variables,N .
We now show that the3-SAT problem has a solution (a
truth assignment of variables that satisfies all clauses) if and
only if the constructedCritMat problem has a solution (a
set of vectors that satisfies the problem constraint).

⇒ If the original 3-SAT problem has a solution, the set
Y = {~y1, ~y2, . . . , ~yN} defined as follows is a solution
of the constructedCritMat problem. For each vari-
able,xi, we define a vector~yi: ~yi has value4 in the
2i-th dimension, value3 in the (2i − 1)-th dimension
and value1 in the other dimensions ifxi is T; ~yi has
value3 in the2i-th dimension, value4 in the (2i − 1)-
th dimension and value1 in the other dimensions ifxi

is F. It is straight forward to see that|Y | = N and
∀~y ∈ Y, ∃~x ∈ X|~y, ~x|∞ ≤ 1. Furthermore, it can
be verified that each pair of variable vectors,~v2i and
~v2i−1, are dominated by~yi, and each clause vector,
~ci, is dominated by a linear combination of the vec-
tors that corresponds to the variables in the clause,e.g.,
the clause vector forxi ∨ ¬xj ∨ xk is dominated by
1
4~yi + 3

8~yj + 3
8~yk if xi = xj = T andxk = F. Thus,

Y is a solution to theCritMat problem.

⇐ If the constructedCritMat problem has a solution:
Y = {~y1, ~y2, . . . , ~yN}, we know that 1) for each of
the 2N dimensions, there exists at least one~yi that
has value no less than3 in this dimension (otherwise
the corresponding variable vector is not dominated); 2)
each~yi can have value no less than3 in at most two di-
mensions: the2j-th and (2j−1)-th dimension for some
j (otherwise||~yi, X|| > 1). Combining 1) and 2), we
have that each~yi has value no less than3 in exactly
two dimensions that corresponds to a pair of variable
vectors. We rearrangei such that~yi dominates~v2i and
~v2i−1. Furthermore, since||~yi, X|| ≤ 1, each~yi should
have values between3 and4 in the2i-th and (2i − 1)-
th dimension with at least one of them being exact3,
and have values between0 and1 in the other dimen-
sions. Thus, if~yi has value greater than3 in the2i-th
dimension, we letxi = T; otherwise we letxi = F.
We claim that such a truth assignment is a solution
to the3-SAT problem. This can be shown by contra-
diction. Without loss of generality, we assume clause
xi ∨ ¬xj ∨ xk is not satisfied,i.e., xi = F, xj = T,
xk = F, which implies that~yi has value3 in the2i-th
dimension and value no greater than1 in the (2j−1)-th
and2k-th dimension,~yj has value3 in the (2j − 1)-

th dimension and value no greater than1 in the 2i-th
and 2k-th dimension, and~yj has value3 in the 2k-
th dimension and value no greater than1 in the 2i-th
and (2j − 1)-th dimension. If we focus on the2i-th,
(2j−1)-th and2k-th dimension, in the best case where
~yi, ~yj and~yk take the upper bound value1 in the corre-
sponding dimensions, they can dominate a vector with
value no larger than3+1+1

3 = 5
3 in all of these three

dimensions. Therefore, the corresponding clause vec-
tor, which has1.75 in these three dimensions, cannot
be dominated by any linear combination of vectors in
Y — contradicting toY being a solution. Thus, all
clauses are satisfied and the truth assignment is a solu-
tion to the3-SAT problem.

This completes the proof.
Now we have established the NP-hard-ness ofCritMat

when the objective distance function is represented by the
maximum difference (in all dimensions) to the closest in-
put traffic matrix. We conjecture that for other distance
functions, theCritMat problem remains NP-hard due to the
combinatorial nature of the solution space. In the next sec-
tion, we will look into approximation approaches to critical
traffic matrices selection.

3 Algorithms
In this section, we describe our approximation algorithms

for CritMat . By looking at the structure of the problem, we
find thatCritMat shares many similarities to the traditional
clustering problem for high-dimensional data set – both re-
quire finding a set of representatives that can represent the
whole data set and are individually close to some member in
the data set. Therefore, we will first look at some algorithms
in the context of high-dimensional data clustering. We will
briefly review two well-known techniques for data cluster-
ing [11, 5], K-meansand hierarchical agglomeration, the
latter of which has motivated our design of theCritical-ness
Aware Clusteringalgorithm.

K-means starts with a randomly chosenm vectors as the
center of the clusters, wherem is the desired number of clus-
ters. Each vector computes its distance to each of them clus-
ters, and joins the one with the minimum distance. Once a
vector joins a cluster, the center of the cluster is recomputed.
This step repeats until no vector can find a smaller distance
to another cluster than the one that it belongs to.

Hierarchical agglomeration starts withn (singleton) clus-
ters centered at each of then vectors to be clustered. At each
iteration, the pair of clusters with the minimum distance to
each other are agglomerated into one cluster. Once agglom-
erated, the center of the cluster is recomputed. The process
stops aftern−m iterations when there arem clusters left.

While the K-means and the hierarchical agglomeration
algorithms generatem-partitions of the vector set such that
the vectors within one partition are close to each together, in
the CritMat problem, we are seeking a set of vectors that

1 initialization:
2 for eachxi

3 create clusterCi = {xi}
4 define cluster headhi = xi

5 letmi = volume ofxi // max volume inCi

6 for eachCi, Cj

7 compute cost(i, j) =
8 volume(head(hi, hj))-max(mi, mj)
9 sort cost(i, j) in ascending order

10 for step = 1to n−m
11 merge the clustersCi, Cj with min cost(i, j):
12 hi = head(hi, hj)
13 mi = max(mi, mj)
14 remove clusterCj

15 for each remaining clusterCk

16 cost(i, k) = cost(k, i) =
17 volume(head(hi, hk)) - max(mi, mk)
18 insert cost(i, k) in sorted list
19 return {hi} for the remainingm clusters

Figure 2. Critical-ness Aware Clustering

are close to the original vector set and are able to dominate
all vectors in the set by linear combination. One direct ap-
proach is to utilize the result from clustering algorithm by
generating one “head” vector from each of the cluster such
that the head vector dominates the vectors within the cluster.
This can be achieved by setting the value of the head vector
to the maximum value of all cluster members in each dimen-
sion, i.e., head({~xi}) = (maxi xi,1, maxi xi,2, . . .) where
~xi = (xi,1, xi,2, . . .). Since the cluster members are close to
each other, the head vector should also be close to the cluster
members, satisfying the requirement forCritMat . We use
the result from the above method as our baseline algorithms.
In the rest of the paper, we will refer to these algorithms
asK-means HeadandHierarchical Head respectively, de-
pending on which algorithm is used for clustering.

A potential problem with the above clustering-based al-
gorithms is that clustering treats each vector in the origi-
nal data set equally whileCritMat gives more importance
to the vectors with high volume. To correct this effect, we
proposed aCritical-ness Aware Clustering (CritAC) al-
gorithm by adapting the hierarchical agglomeration method.
The key idea is to define a dominating cluster head, as op-
posed to a cluster center, and explicitly consider the oversiz-
ing cost function in every agglomeration step.CritAC starts
with n clusters headed by each of the originaln vectors. At
each iteration, the pair of clusters with the minimum “merg-
ing cost” are agglomerated and the vector that has value in
every dimension equal to that of the maximum among vec-
tors from both clusters becomes the new cluster head. This
process stops aftern−m iterations when there arem clus-
ters left. Figure 2 presents the pseudo-code of the algorithm.

The runtime ofCritAC can be evaluated as follows. The
most expensive computation in initialization is to calculate
cost(i, j) for all n(n − 1)/2 pairs of clusters. Each pair re-

quiresO(K) computations (to obtain head(Ci, Cj)), where
K is the number of dimensions. Thus the runtime for line
6 to line 8 isO(n2K). In line 9, sortingn(n − 1)/2 cost
values requiresO(n2 log(n)) computation. Thus the overall
runtime for initialization isO(n2K + n2 log(n)). For ag-
glomeration steps, each iteration requiresO(nK+n log(n))
computation for calculating cost(i, k) and inserting the re-
sult into sorted list (line 16 to 19). There aren − m iter-
ations. Thus the overall runtime for agglomeration steps is
O(n(n − m)K + n(n − m) log(n)) and the total runtime
of CritAC is dominated by that of the initialization steps –
O(n2K + n2 log(n)).

We should note that it is possible to use other forms of
the cost function inCritAC . For example, we can associate
a weight for each dimension in the traffic matrices that cap-
tures the distance between the corresponding flow’s origin
and destination (similar to the distance function in Section
2.1). We have explored these variations of the algorithm.
However, for the data set that we evaluated in Section 5, we
found little difference in their performance. Therefore, we
omit these variations of the algorithm and the corresponding
performance results for the interest of brevity.

4 Evaluation Methodology
In this section, we first discuss the performance metrics

that we use for comparing different methods. Next, we
summarize the baseline algorithms for comparing against
CritAC . We then describe the traffic matrices, network
topology, and routing configuration used in our evaluation.

4.1 Performance Metrics

We use two sets of metrics to compare the performance
of different methods. The first set of metrics are more di-
rect. They are simply the objective function ofCritMat –
the distance function||~y, X|| – in various forms as described
in Section 2.1. The second set of performance metrics are
more application specific. We take the set of critical traf-
fic matrices produced by different algorithms and use them
as input for two specific network engineering applications,
namely OSPF route optimization and network survivability
analysis. We then evaluate the results of these applications.

4.2 Baseline Algorithms

Category Methods

Direct clustering K-means Head, Hierarchical
Head, Peak-all-elements

Total volume based TopN, TopConsecN, Top1

Table 1. Baseline algorithms for evaluation.

In our evaluation, we compareCritAC with six alterna-
tives (as summarized in Table 1). These methods can be
classified into the following two categories:

• Direct clustering based methods, which apply standard
clustering techniques to cluster the input traffic ma-

trices and then return the head vectors of the resulted
clusters as the critical traffic matrices.K-means Head
andHierarchical Head, as described in Section 3, be-
long to this class. Another method that belongs to this
class isPeak-all-elements, which returns a critical traf-
fic matrix that has the peak demand for each individual
origin-destination flow. Note thatPeak-all-elements
can be viewed as a special case ofK-means Head
andHierarchical Head, with all input traffic matrices
forming a single cluster.

• Total volume based methods, which return a subset of
input traffic matrices as the critical ones based on their
volumes. Two methods that belong to this class are
TopN, which returnsN traffic matrices with the highest
volumes, andTopConsecN, which returns a set ofN
consecutive traffic matrices with the highest total vol-
ume (among all possible consecutive traffic matrices).
We also consider a third alternativeTop1, which is a
special case ofTopN andTopConsecNwith N = 1.

Note that the traffic matrices returned by total volume
based methods are not exactly critical traffic matrices in that
their linear combination may not dominate all input traffic
matrices. As a result, we cannot apply the direct metrics
mentioned above to evaluate these methods. So we will only
evaluate them in the context of network survivability analy-
sis, and OSPF route optimization.

4.3 Traffic Matrices

Our evaluations are based on real traffic matrices col-
lected from a large operational IP network – AT&T’s North
American commercial backbone network. The network con-
sists of tens of Point of Presence (PoPs), hundreds of routers,
thousands of links, and carries over one petabyte of traffic
per day.

The traffic matrices are estimated from SNMP link load
measurements using thetomo-gravity method [15, 16],
which has been shown to yield accurate estimates especially
for large traffic matrix elements. We use hourly traffic ma-
trices, as they are commonly used in network engineering
applications. The data collection in our study contains more
than five months of hourly traffic matrices (from January 2,
2004 to June 10, 2004), which provide us 3048 instances of
traffic matrices in total. The traffic matrices in our original
dataset are at the router level. For simplicity, we aggregate
them into PoP-level traffic matrices (so that we don’t have
to deal with changes in the number of origin-destination
flows due to router failures or newly added routers). Each
PoP-level traffic matrix contains over 400 origin-destination
flows at rates ranging from tens of Kbps to tens of Gbps.

4.4 Network Topology and Routing

We use the PoP-level network topology on June 10, 2004
in our evaluations. We first obtain the router-level topology
using the methods by Feldmannet al. [7]. We then reduce

the router-level topology into a PoP-level topology by col-
lapsing all the router-level links between each PoP into a
single PoP-level link. The capacity of the PoP-level link is
computed as the sum of the capacities of all the underly-
ing router-level links. We also compute the geographical
distance (in miles) for each PoP-level link using the lati-
tude/longitude information for its two end points.

In order to translate traffic matrices into link loads or uti-
lization, we need to have the routing information. By de-
fault, Cisco routers [4] set the OSPF weight of each link to
be inversely proportional to its capacity — we refer to this
setting as theInvCapweight setting and use it as the default
configuration for our PoP-level topology.

5 Results
In this section, we present the results of our evaluation of

different methods for selecting critical traffic matrices. We
first compare different clustering based methods based on a
set of direct performance metrics (i.e., various forms of the
distance function||~y,X|| as described in Section 2.1). We
then report on the performance of different methods in the
context of network survivability analysis and OSPF route
optimization.

5.1 Simple Metrics

In this section, we evaluateCritAC against direct clus-
tering based methods, using various forms of||~y, X|| as our
performance metrics. We cannot report the exact values of
||~y,X||, as they are considered proprietary. So instead we
only report on the normalized values. The normalized met-
rics are summarized below:

• the traffic demand oversizing ratio

max
~y∈Y

min
~x∈X,~x≤d~y

|~y − ~x|1
max
~x∈X

|~x|1
• the weighted demand oversizing ratio

max
~y∈Y

min
~x∈X,~x≤d~y

~w · (~y − ~x)

max
~x∈X

~w · ~x

where ~w is the geographical distance (i.e., air miles)
between the flow source and destination of each flow.

• the link load oversizing ratio

max
~y∈Y

min
~x∈X,~x≤d~y

|A(~y − ~x)|1
max
~x∈X

|A~x|1

whereA is the routing matrix obtained using the default
InvCapweight setting.

• the weighted link load oversizing ratio

max
~y∈Y

min
~x∈X,~x≤d~y

~d · (A(~y − ~x))

max
x∈X

~d ·A~x

whereA is the routing matrix obtained using the default
InvCapweight setting, and~d is the length (in miles) of
each link.

We compute the above oversizing ratios for the three
clustering based methods using either500 or 1000 consecu-
tive traffic matrices, which correspond to 22 days or 44 days
of measurement, at different times during the 5-month pe-
riod of our data collection. For the interest of brevity, we
only present the results for the first1000 traffic matrices.
The results for other periods of time are qualitatively simi-
lar.

Figure 3 shows the four different kinds of oversizing ra-
tio as a function of the number of critical traffic matrices de-
sired. We observe that different performance metrics have
given consistent result. If we look at the case at which the
number of critical traffic matrices is1, which corresponds
to Peak-all-elements, we find that the oversizing ratio is
more than 100% in all graphs (the left most point in each
graph). This confirms our intuition thatPeak-all-elements
is an overly conservative method.

ComparingCritAC with Hierarchical Heads and K-
means Heads, we find thatCritAC achieves much lower
oversizing ratio. WithCritAC , the oversizing ratio decays
rapidly to below 20% with only 24 critical traffic matrices.
In contrast, withHierarchical HeadsandK-means Heads,
the oversize ratio undergoes a quick decay to about 40% and
then decays very slowly – even with 200 critical traffic ma-
trices, the oversizing ratio is still close to the oversizing ratio
achieved by 24 critical traffic matrices produced byCritAC .
This demonstrates the advantage of being criticalness aware.

5.2 OSPF Route Optimization

Open Shortest Path First (OSPF) [13] and Intermediate
System-Intermediate System (IS-IS) [3] are the two most
commonly used intra-domain routing protocols today. In
these protocols, which are functionally identical, each link
is associated with a positive weight, and the length of a path
is defined as the sum of the weights of all links on that path.
Traffic is routed along the shortest path(s). In case of ties
where several outgoing links are on shortest paths to the des-
tination, the flow is split roughly evenly.

Over the years, many methods [8, 14, 10, 6, 2] have been
proposed to obtain a set of link weights that minimizes the
level of congestion in the resulting shortest-path-routed net-
work. We refer to such a method as anOSPF optimizer,
though the resulted weight setting is equally applicable to
IS-IS routing.

In our evaluation, we have used the approach in [8, 9],
which is based on a so-called local search technique [1]. The
method uses heuristics to iteratively improve the weight set-
ting, changing one or a few weights in each iteration. We ran
each problem configuration for 5000 iterations – each taking
a few minutes on average. Since the problem of finding an
optimal weight setting is NP-hard [8], we cannot guarantee

finding the true optimum. The quality of the final weight
setting is affected by random choices made through the iter-
ations, causing some variance in the quality of the outcome.

To evaluate the performance of different methods in the
context of OSPF route optimization, we have conducted a
number of experiments in both offline and online settings.
In the offline setting, we first obtain a set of critical traffic
matrices from1000 input traffic matrices using one of our
algorithms; then we feed the obtained critical traffic matrices
to the OSPF optimizer and compute for a set of OSPF link
weights; we test the performance of these weights on the
same1000 input traffic matrices. In the online setting, we
optimize routing using critical traffic matrices derived from
the first500 traffic matrices and then test the performance
of the obtained routing configuration on the next500 traffic
matrices.

As in [10], we pick max-utilization as the performance
metric for route optimization in our evaluation. Theutiliza-
tion of a link is defined as the ratio of its load over its ca-
pacity, and themax-utilizationis the maximum utilization
of all links in the network. Other works have used more so-
phisticated metrics, such as the total utilizationcostof all
links in the network (e.g., [14, 8]). However they are dif-
ficult to interpret and do not provide additional insights for
our purpose, thus are not used. Furthermore, since the exact
value of link utilization is considered proprietary, we nor-
malize the max-utilization by the maximum link utilization
achieved by the default weight setting –InvCap. For ex-
ample, a normalized max-utilization of0.7 means that the
corresponding weight setting performs30% (1− 0.7) better
thanInvCap.

Figure 4(a) shows the results for the offline setting when
we take the first1000 traffic matrices as input. We ob-
serve that when the number of critical traffic matrices al-
lowed is big enough (e.g., 12 or 24), CritAC significantly
outperformsHierarchical Head, TopN, andTopConsecN.
In addition, compared to the default weight setting (InvCap),
CritAC is able to reduce max-utilization by over 35%. In-
terestingly, K-means Head performs slightly better than
CritAC , although the difference is very small (below 2%).
This small discrepancy rises because the OSPF optimizer
[9] in our evaluation optimizes the average max-utilization
for the input traffic matrices, which usually produces good,
however not necessarily the best maximum max-utilization
over all traffic matrices.

Figure 4(b) shows the results for the online setting when
we take the first500 traffic matrices as input. Again, we
see thatCritAC consistently achieves good performance –
the results are either significantly better than or close to that
of alternative methods. Since the results are consistent with
that of offline setting, it demonstrates that the critical traffic
matrices identified byCritAC are robust enough for on-line
analysis in the context of route optimization.

Overall, the results in this subsection have suggested that

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 20 40 60 80 100 120 140 160 180 200

O
ve

r
S

iz
in

g
R

at
io

Number of Critical TMs

Hier. Head
K-means Head

CritAC

(a) Traffic demand oversizing ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100 120 140 160 180 200

O
ve

r
S

iz
in

g
R

at
io

Number of Critical TMs

Hier. Head
K-means Head

CritAC

(b) Weighted traffic demand oversizing ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100 120 140 160 180 200

O
ve

r
S

iz
in

g
R

at
io

Number of Critical TMs

Hier. Head
K-means Head

CritAC

(c) Link load oversizing ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100 120 140 160 180 200

O
ve

r
S

iz
in

g
R

at
io

Number of Critical TMs

Hier. Head
K-means Head

CritAC

(d) Weighted link load oversizing ratio

Figure 3. Oversizing ratios for different clustering based methods.

it is sufficient to only use a small number (e.g., 12) of criti-
cal traffic matrices for OSPF route optimization andCritAC
can provide good input for this purpose.

5.3 Network Survivability Analysis

A well engineered network should work well not only
under normal conditions, but also under common failures.
Network survivability analysis is the key network engineer-
ing application that makes this possible. The basic task of
network survivability analysis is to simulate the network un-
der all single or dual shared-risk-device-group failures (e.g.,
link, router, or fiber span failures). For a large network, the
possible failure scenarios can be very large. Thus it maybe
either infeasible or computationally very expensive to test all
failure scenarios on a large number of input traffic matrices.

In this section, we examine the performance of using only
the critical traffic matrices for network survivability analy-
sis. Our basic evaluation methodology is as follows. We
first use one of our algorithms to obtain a set of critical traf-
fic matrices from an input set of measured traffic matrices;
we then perform survivability analysis based on the output
set of the critical traffic matrices and compare the predicted
performance to the “true” performance when survivability
analysis is based on all measured traffic matrices.

In our evaluation, we useInvCapas the routing config-
uration, and the max-utilization as our performance metric.

The survivability analysis we perform consists of simulat-
ing all possible single link failures and computing the max-
utilization under each failure scenario. Given a failure sce-
nario f , we use predictedMaxUt(f) and trueMaxUt(f) to
denote the max-utilization computed using the critical traf-
fic matrices and original traffic matrices, respectively. We
then compute the empirical Cumulative Distribution Func-
tion (CDF) for predictedMaxUt(f)/ maxf{trueMaxUt(f)}
(again because the exact value of predictedMaxUt(f) is con-
sidered proprietary).

The results are summarized in Figure 5. To avoid putting
too many curves into the same plot, we partition the compar-
ison into two parts. The left column of Figure 5 compares
CritAC against direct clustering based methods:K-means
Head, Hierarchical Head, andpeak-all-element; the right
column comparesCritAC against total volume based meth-
ods:TopN, TopConsecN, andTop1. We also vary the num-
ber of critical traffic matrices. In Figure 5, the two plots in
each row shares the same number of critical traffic matrices.

From Figure 5, it is evident that the total volume based
methods tend to underestimate the max-utilization for a
considerable fraction of failure scenarios. Such under-
estimation can be quite undesirable in network reliabil-
ity analysis in that it may cause serious problems to go
undetected during the analysis process (and become evi-

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

TopConsNTopNCritACK-meansHier.

M
ax

U
t /

 M
ax

U
t(

In
vC

ap
)

Method

6 critical TMs
12 critical TMs
24 critical TMs

(a) offline performance

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

TopConsNTopNCritACK-meansHier.

M
ax

U
t /

 M
ax

U
t(

In
vC

ap
)

Method

6 critical TMs
12 critical TMs
24 critical TMs

(b) online performance

Figure 4. Performance of route optimization.

dent later during actual operations). In contrast, the clus-
tering based methods are guaranteed to never underesti-
mate. Among the clustering based methods,CritAC clearly
performs the best in that it leads to the least amount
of overestimation. Finally, compared with the real max-
utilization, we see that forCritAC with 12 or 24 critical
traffic matrices,maxf predictedMaxUt(f) is very close to
maxf trueMaxUt(f) – the difference is always below 3%.
These results suggest thatCritAC can be used to signifi-
cantly reduce the number of traffic matrices that need to be
tested for reliability analysis.

6 Conclusion

In this paper, we defined the critical traffic matrices se-
lection (CritMat) problem. We identified its properties and
requirements in the context of network design and analy-
sis. Based on these properties, we developed a mathemati-
cal formalization of the problem. We conducted complexity
analysis ofCritMat and showed that it is NP-hard. Fur-
thermore, we proposed several clustering-based approxima-
tion algorithms to solve the problem and evaluated and com-
pared their performance using application independent met-
rics. Finally, we applied our techniques to two network en-
gineering applications – OSPF route optimization and net-
work survivability analysis. Our results using real network

data demonstrated that a small number (e.g., 12) of critical
traffic matrices suffice to cover all the worst-case scenarios
without being overly conservative.
References
[1] E. H. Aarts and J. K. Lenstra.Local Search in Combinatorial

Optimization. John Wiley & Sons, Inc., 1997.
[2] L. S. Buriol, M. G. C. Resende, C. C. Ribeiro, and M. Thorup.

A memetic algorithms for OSPF routing. InProceedings of
6th INFORMS Telecom, pages 187–188, 2002.

[3] R. Callon. Use of OSI IS-IS for routing in TCP/IP and
dual environments. IETF RFC 1195, Dec. 1990.http:
//search.ietf.org/rfc/rfc1195.txt .

[4] Cisco. Configuring OSPF, 2001. Documentation at
http://www.cisco.com/univercd/cc/td/doc/
product/software/ios121/121cgcr/ip_c/
ipcprt2/1cdospf.htm .

[5] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classifica-
tion. John Wiley & Sons, Inc., 2000.

[6] M. Ericsson, M. Resende, and P. Pardalos. A genetic algo-
rithm for the weight setting problem in OSPF routing.J.
Combinatorial Optimization, 6(3):299–333, 2002.

[7] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rex-
ford, and F. True. Deriving traffic demands for operational IP
networks: Methodology and experience.IEEE/ACM Trans-
actions on Networking, 9(3):265–279, 2001.

[8] B. Fortz and M. Thorup. Internet traffic engineering by opti-
mizing OSPF weights. InProceedings of IEEE INFOCOM,
pages 519–528, 2000.

[9] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS weights in a
changing world.IEEE Journal on Selected Areas in Commu-
nications (Special Issue on Recent Advances on Fundamen-
tals of Network Management), 20(4):756–767, 2002.

[10] F. Lin and J. Wang. Minimax open shortest path first rout-
ing algorithms in networks supporting the SMDS services. In
Proceedings of IEEE International Conference on Communi-
cations (ICC), volume 2, pages 666–670, 1993.

[11] J. MacQueen. Some methods for classification and analy-
sis of multivariate observations. InProceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Proba-
bility, volume 1, pages 281–297, 1967.

[12] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and
C. Diot. Traffic matrix estimation: Existing techniques and
new directions. InProceedings of ACM SIGCOMM, Aug.
2002.

[13] J. T. Moy. OSPF version 2. IETF RFC 2328, Apr. 1998.
http://search.ietf.org/rfc/rfc2328.txt .

[14] K. Ramakrishnan and M. Rodriguez. Optimal routing in
shortest-path data networks.Lucent Bell Labs Technical Jour-
nal, 6(1), 1994.

[15] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast
accurate computation of large-scale IP traffic matrices from
link loads. InProceedings of ACM SIGMETRICS, 2003.

[16] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An
information-theoretic approach to traffic matrix estimation.
In Proceedings of ACM SIGCOMM, 2003.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

pe
rc

en
ta

ge
 o

f f
ai

lu
re

 s
ce

na
rio

s
(%

)

predictedMaxUt(f) / maxf { trueMaxUt(f) }

True
CritAC

Hier. Head
K-means Head

Peak-all-elements

(a)CritAC vs. direct clustering (6 critical TMs)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

pe
rc

en
ta

ge
 o

f f
ai

lu
re

 s
ce

na
rio

s
(%

)

predictedMaxUt(f) / maxf { trueMaxUt(f) }

True
CritAC
TopN

TopConsecN
Top1

(b) CritAC vs. using high-volume TMs (6 critical TMs)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

pe
rc

en
ta

ge
 o

f f
ai

lu
re

 s
ce

na
rio

s
(%

)

predictedMaxUt(f) / maxf { trueMaxUt(f) }

True
CritAC

Hier. Head
K-means Head

Peak-all-elements

(c) CritAC vs. direct clustering (12 critical TMs)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

pe
rc

en
ta

ge
 o

f f
ai

lu
re

 s
ce

na
rio

s
(%

)

predictedMaxUt(f) / maxf { trueMaxUt(f) }

True
CritAC
TopN

TopConsecN
Top1

(d) CritAC vs. using high-volume TMs (12 critical TMs)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

pe
rc

en
ta

ge
 o

f f
ai

lu
re

 s
ce

na
rio

s
(%

)

predictedMaxUt(f) / maxf { trueMaxUt(f) }

True
CritAC

Hier. Head
K-means Head

Peak-all-elements

(e)CritAC vs. direct clustering (24 critical TMs)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

pe
rc

en
ta

ge
 o

f f
ai

lu
re

 s
ce

na
rio

s
(%

)

predictedMaxUt(f) / maxf { trueMaxUt(f) }

True
CritAC
TopN

TopConsecN
Top1

(f) CritAC vs. using high-volume TMs (24 critical TMs)

Figure 5. Performance comparison between CritAC and alternative methods in network survivability
analysis.

