
This is a preprint of a paper intended for publication in a journal or 
proceedings. Since changes may be made before publication, this 
preprint should not be cited or reproduced without permission of the 
author. This document was prepared as an account of work 
sponsored by an agency of the United States Government. Neither 
the United States Government nor any agency thereof, or any of 
their employees, makes any warranty, expressed or implied, or 
assumes any legal liability or responsibility for any third party’s use, 
or the results of such use, of any information, apparatus, product or 
process disclosed in this report, or represents that its use by such 
third party would not infringe privately owned rights. The views 
expressed in this paper are not necessarily those of the United 
States Government or the sponsoring agency. 

INL/CON-08-14597
PREPRINT

Finding Cryptography in 
Object Code 

SECTOR 2008 

Jason L. Wright 

October 2008 



Finding Cryptography in Object Code

Jason L. Wright
Idaho National Laboratory

jason.wright@inl.gov

September 26, 2008

Abstract

Finding and identifying cryptography is a growing concern in the malware analysis community. In this paper, a

heuristic method for determining the likelihood that a given function contains a cryptographic algorithm is discussed

and the results of applying this method in various environments is shown. The algorithm is based on frequency analysis

of opcodes that make up each function within a binary.

1 Introduction

Finding and identifying cryptography is a growing con-

cern in the malware analysis community. The current state

of the art is to locate it manually and identify it based on

various constants used by specific algorithms. The ap-

proach outlined in this research is to examine the instruc-

tions that make up a function and make a determination

on how likely that function is to contain cryptography.

The properties of cryptographic functions from an opcode

point of view are examined and samples of findcrypto’s

use are discussed.

This work was inspired by two related pieces of

work. findcrypt[Gui06a]/findcrypt2[Gui06b] locate var-

ious constants used in the initialization of cryptographic

algorithms and further provides identification of the spe-

cific algorithm. findcrypto differs from this work mainly

because it looks at the instructions that make up the algo-

rithm and not the data it uses (for initialization or other-

wise).

The hack on the Mifare smartcards[NESP08] involved

reverse engineering the hardware by examining the distri-

bution of logic gates. Specifically, the authors looked for

XOR gates that were strongly interconnected, but where

the functional block itself was loosely connected to the

rest of the chip. In other words, the authors were looking

for the pipelining (strong interconnection) components of

the cryptographic algorithm, and its inputs and outputs

(loose coupling to the rest of the chip). This type of ex-

amination is looking for the properties of cryptographic

algorithms that make then stand out from normal func-

tionality.

The type of frequency analysis is similar in nature to

[Bil07]. The focus of findcrypto is on cryptographic al-

gorithm discovery versus malware prediction (i.e. given

a binary we want to know whether it contains crypto, not

whether it might be malware).

2 Method

The software developed for this project, findcrypto, at-

tempts to detect and locate cryptographic algorithms

within object code by examining the instructions that

make up each function within a target binary. The in-

structions are used to determine the likelihood that cryp-

tographic algorithms are present.

Each binary (library or executable), is disassembled to

its constituent instructions. When working with libraries,

the symbols are available and the starting and ending of

each function is known. Modern disassemblers, like IDA

Pro, will attempt to delineate function boundaries and will

assign names for each. The symbol name information (if

even available) is not used as an indicator of the type of

1



algorithm by findcrypto, except for verification during de-

velopment.

Instead, findcrypto loops over each function examining

the instructions that comprise it. A weight is assigned

for each instruction and the sum of all the instruction

weights for each function is stored. The result of sort-

ing the functions by total weight is a numerical indication

of the amount of cryptographic algorithm-like behavior

exhibited by the function. This weighting of functional

characteristics allows a relatively quick analysis of a bi-

nary to determine whether cryptographic algorithms are

present and pinpoints their locations for further analysis.

The primary method used in developing findcrypto has

been empirical trial and error. It is difficult to decide on a

representative binary for analysis, so work thus far has fo-

cused on the C library from OpenBSD and Linux (glibc).

The following sections discuss some of the unique prop-

erties of cryptographic algorithms as empirically deter-

mined.

2.1 Opcode: XOR
XOR, exclusive-or, is an opcode implemented on most

modern processors. It performs a bitwise exclusive-or op-

eration on two registers, a register and a memory location,

or a register and an immediate (constant). On i386, the

XOR instruction is used to get a zero value into a regis-

ter, e.g. xor %eax, %eax, which results in zeroing the

%eax register.

On Linux (i386, glibc 2.6.1, gcc 4.1.2), XOR occurs

5752 times and of those, 5345, 93% are zeroing XOR op-

erations (source and destination registers are identical).

Outside of cryptography, the XOR operation is not very

common. The remaining 407 XOR uses are distributed

among 135 different functions with 64 distributed in two

functions des crypt() and des encrypt() with 22 and 42,

respectively.

Similarly, for OpenBSD (i386, gcc 3.3.5), XOR occurs

3536 times, of which 2033 (57%) are zeroing XOR. The

remaining 1503 uses are distributed among 60 functions.

Of the 60 functions, 21 are cryptographic and account for

1393 uses of non-zeroing XOR. SHA1Transform() alone

accounts for 312 non-zeroing XOR operations.

Because of the high frequency of non-zeroing XOR

in cryptographic functions, it is given a high heuristic

weight.

2.2 Opcode: ROL
The Rotate Left operation, ROL, rotates the bits in a reg-

ister by some number of specified bits. The specification

can come from either a register or an immediate. As with

XOR, ROL does not often occur outside of cryptographic

algorithms. Unlike XOR, however, there is no C operator

that corresponds to ROL, so the only way that ROL can be

emitted is by inline assembly or compiler optimization.

On OpenBSD, ROL occurs 684 times, and of

those, 677 (99%) are in cryptographic functions.

RMD160Transform() alone accounts for 295 uses. On

Linux, there are only 18 occurrence of ROL, and none

of them occur in cryptographic functions. Because of the

high rate in OpenBSD, ROL is given a non-zero weight

for cryptography.

2.3 Opcode: ROR
Rotate Right (ROR) is the same as ROL except that it ro-

tates the specified number of bits right (towards the least

significant bit). This is another opcode found to occur fre-

quently in cryptographic algorithms.

On Linux, it occurs 67 times in the C library, 9 times

within cryptographic functions (8 in des encrypt(). On

OpenBSD, ROR occurs 55 times across 31 functions,

none of which are crypto. As a result, ROR is given a

low heuristic weight.

2.4 No Floating Point
In cryptography, bit for bit reliability between source and

destination must be guaranteed. The differing algorithms

and rounding practices used in floating point implemen-

tations precludes their use in cryptography. Instead, cryp-

tographic algorithms rely on relatively simple, bit-for-bit

operations.

2.5 Other Observations
When first implemented, the algorithm defined above

was combined with a density calculation. Essentially the

weight of the suspicious opcodes was divided by the to-

tal number of instructions in the function. This turned

out to be a bad approach because a number of functions,

e.g. fabs() (compute the absolute value of a floating point

2



number) have XOR operations in them, but are very small

(6 instructions in the case of fabs. This combination

means that short functions are given high density over

functions that really consist of cryptography. While these

outlying functions are very small, it increases the amount

of chaff to be examined versus using the unbiased weight.

The opcodes listed in previous section are not all inclu-

sive of those examined by findcrypto. Generally speaking

the number of unique opcodes required by cryptography

is fairly small and the combination of all of the opcodes

found within one function is the basis of this work. Each

instruction is examined to see if it provides a hint towards

or against the function having crypto.

3 Analysis
Being based on heuristics, it was important to test find-
crypto on various compilers, architectures and operating

systems. This section details the findings for each. For

each of the sections below, the architecture is Intel IA32

(aka i386).

3.1 Different Compiler Versions
To compare various compiler versions, the C library for

various releases of OpenBSD were examined. OpenBSD

was chosen because its C library contains several crypto-

graphic algorithms as well as normal C library routines

like printf(), fopen(), etc. The results are in Table 1

The various GCC versions reflect the times. Ver-

sion 2.8.1 was the last of the official 2.x series followed

by EGCS with then became the 3.x series. This com-

piler has changed optimization strategies several times

between each release, but for similar functions, e.g.

SHA1Transform, the score computed by findcrypto varies

by less than 15 percent. The relative order stays the same

in most cases, with notable exceptions being those func-

tions added to the C library during successive OpenBSD

releases, e.g. CAST-128.

3.2 Effect of Optimization
Table 2 details the top 15 results for different compiler

optimizations on the C library of OpenBSD 4.3. Be-

tween O0 (no optimization) and O2 (most optimizations

OpenBSD-2.5 OpenBSD-4.3
gcc 2.8.1 gcc 3.3.5

Score Function Score Function

4000 SHA1Transform 4230 SHA1Transform
2320 RMD160Transform 2755 RMD160Transform
2240 skipjack forwards 2240 skipjack forwards
2240 skipjack backwards 2240 skipjack backwards

896 Blowfish decipher 1440 MD5Transform
809 cast setkey 880 MD4Transform
801 MD5Final 811 cast setkey
750 cast encrypt-0x2000 532 Blowfish encipher
548 Blowfish encipher 532 Blowfish decipher
501 MD4Final 494 cast encrypt
462 cast encrypt 494 cast decrypt
462 cast decrypt 433 SHA512 Transform
300 xdr callmsg 266 SHA256 Transform
300 aout fdnlist 90 ntohs-0x3a
206 crypt-0xba0 90 ntohl-0x3a

Table 1: Comparing Compiler Versions

enabled), there is little difference. The relative order stays

mostly the same and the score changes by less than 20

percent.

On the other hand, between O2 (the highest supported

by the OpenBSD developers) and O3, several more func-

tions related to the BLOWFISH algorithm appear in the

list. The additional optimizations enabled by this level,

register renaming and inline functions, cause several func-

tions to be pulled inline, increasing the score of the func-

tion as a whole.

3.3 Different Operating Systems

For comparison, the C library on Linux (Gentoo with

glibc version 2.6.1, compiled with gcc version 4.1.2) was

compared with OpenBSD 4.3 (compiled with gcc version

3.3.5). On Linux (glibc), only one cryptographic func-

tion is normally found in the C library: des encrypt(),
which as its name implies, is an implementation of DES.

As shown earlier, OpenBSD contains arcfour, CAST-128,

BLOWFISH, MD5, SHA1, and more.

Given this base of comparison, the expected results

should be that des encrypt() occurs at the top of the list.

Table 3 confirms this and shows the rest of the top 15 from

Linux compared with the same list from OpenBSD 4.3.

In the Linux results, the numbers fall off quickly from

over 500 to less than 100. This is expected given the lack

of cryptographic functions in glibc.

3



OpenBSD 4.3/gcc 3.3.5

-O0 -O2 -O3
Score Function Score Function Score Function

4000 SHA1Transform 4230 SHA1Transform 4230 SHA1Transform
2240 skipjack forwards 2755 RMD160Transform 2755 RMD160Transform
2240 skipjack backwards 2240 skipjack forwards 2240 skipjack forwards
2080 RMD160Transform 2240 skipjack backwards 2240 skipjack backwards
1120 MD5Transform 1440 MD5Transform 1440 MD5Transform

878 cast setkey 880 MD4Transform 1120 Blowfish expandstate
640 MD4Transform 811 cast setkey 1108 blf cbc decrypt
596 Blowfish encipher 532 Blowfish encipher 1076 Blowfish expand0state
596 Blowfish decipher 532 Blowfish decipher 880 MD4Transform
510 cast encrypt 494 cast encrypt 811 cast setkey
510 cast decrypt 494 cast decrypt 554 blf cbc encrypt
436 SHA512 Transform 433 SHA512 Transform 544 blf ecb encrypt
269 SHA256 Transform 266 SHA256 Transform 544 blf ecb decrypt

96 des do des 90 ntohs-0x3a 532 blf enc
90 ntohs-0x3a 90 ntohl-0x3a 532 blf dec

Table 2: Compiler Optimizations

OpenBSD-4.3 Linux/glibc
Function (Score) Function (Score)

SHA1Transform (4230) des encrypt (502)
RMD160Transform (2755) des crypt (312)
skipjack forwards (2240) strchrnul (162)
skipjack backwards (2240) strchr (162)
MD5Transform (1440) strrchr (141)
MD4Transform (880) memchr (122)
cast setkey (811) strtold l internal (111)
Blowfish encipher (532) strtof l internal (111)
Blowfish decipher (532) strtod l internal (111)
cast encrypt (494) wcstold l internal (97)
cast decrypt (494) wcstof l internal (97)
SHA512 Transform (433) wcstod l internal (97)
SHA256 Transform (266) strcat (81)
ntohs (90) rawmemchr (81)
ntohl (90) IO vfwprintf (71)

Table 3: Comparing C Libraries/OS

3.4 Different Architectures

All of the analysis so far has been with the 32bit Intel ar-

chitecture. The same ideas apply when moving to a new

architecture, but some familiarity is required with the in-

struction set of the target architecture. In this case, find-
crypto was ported to run on SPARC (Scalable Processor

Architecture) version 9 (aka SPARC64), and Table 4 de-

tails the top 15 findings from running findcrypto on the C

library from i386 versus SPARC64. The compiler used on

both architectures is gcc version 3.3.5 on OpenBSD 4.3.

There is some movement of functions in the table be-

tween the two architectures, but generally all of the func-

tions are listed. SHA256 and SHA512 do not appear until

OpenBSD 4.3/gcc 3.3.5
i386 SPARC64
Function (Score) Function (Score)

SHA1Transform (4230) SHA1Transform (3120)
RMD160Transform (2755) skipjack forwards (2240)
skipjack forwards (2240) skipjack backwards (2240)
skipjack backwards (2240) RMD160Transform (1280)
MD5Transform (1440) MD5Transform (1120)
MD4Transform (880) cast setkey (760)
cast setkey (811) clnt broadcast (730)
Blowfish encipher (532) getanswer (670)
Blowfish decipher (532) MD4Transform (640)
cast encrypt (494) Blowfish encipher (500)
cast decrypt (494) Blowfish decipher (500)
SHA512 Transform (433) res init (430)
SHA256 Transform (266) cast encrypt (370)
ntohs-0x3a (90) cast decrypt (370)
ntohl-0x3a (90) tzload (240)

Table 4: Comparing Architectures

17th and 16th, respectively (not shown).

The port to SPARC64 is relatively new, and it is ex-

pected that further refinement will produce more consis-

tent results on this architecture. Lessons learned from this

port will be applicable to other processors as well. It is

further believed that findcrypto can be extended to work

with various virtual machine environments like .NET and

Java.

3.5 Positive and Negative Examples

The initial implementation of findcrypto was targeted at

processing objdump disassembly of binaries. It has also

4



Figure 1: Positive Example

been ported to work with the IDA Pro disassembler. It

produces a table that can be clicked on to jump to the lo-

cation of particular entries.

Figure 1 shows the disassembly of a binary linked

against a version of the OpenBSD C library. Symbols are

left in the binary to demonstrate that findcrypto gives a

high score to the cryptographic functions listed.

The second example, Figure 2, shows the disassembly

of CALC.EXE, a popular target for demonstration. This

binary should not contain cryptography, and findcrypto
gives a score of only 68 to the top scoring function. Sym-

bols are left in mangled form.

Figure 2: Negative Example

4 Conclusions
The findcrypto software is effective at locating various

block ciphers (DES, CAST-128, SKIPJACK, BLOW-

FISH, etc.) and hash functions (RMD160, SHA1, SHA2,

MD5, MD4, etc.). The block ciphers listed above are all

classified as product ciphers, which combine rounds of

simple operations like substitution (S-boxes), permutation

(P-boxes), and modular arithmetic. Permutation func-

tions commonly consist of operations like bit-wise rota-

tion (ROL and ROR discussed in Sections 2.2 and 2.3),

and XOR (Section 2.1) is often used in a modular arith-

metic block. Hash functions are built of similar blocks.

Stream ciphers like, RC4, are more difficult to locate

using this method. RC4 in particular scores very low with

findcrypto (100) compared with a score of over 4000 for

SHA1. This is due to the way the permutations and the

loop around the XOR operation are implemented. RC4

does not consist of a large number of rounds like the prod-

uct ciphers, instead its algorithm revolves around a pseudo

random number generator.

As mentioned earlier, [Gui06a] examines a binary look-

ing at the operands (data section or immediates within

instructions) to find the constants used in various algo-

rithms. By changing these constants or obscuring them,

this method can be defeated. For example, changing the

initial state constants for MD5 or AES would make these

5



algorithms more difficult to locate identify.

findcrypto is not immune to obfuscation techniques ei-

ther. Many methods for packing and obscuring binaries

are available in the malware community. Therefore, find-
crypto must be used in conjunction with unpacking tools

like [Dat05]. The technique in this work is can also fall

victim to other obfuscation methods like inserting “dead”

code, which produces results that are never used and do

not affect the function output. Also the insertion of entire

dead functions can add invalid entries to the score. Static

and dynamic analysis techniques, like those implemented

by [LR08], can help ease the impact of both techniques.

Notably missing from the discussion thus far are asym-

metric algorithms like RSA and Diffie-Hellman (DH) key

agreement. In both cases, the algorithms rely on rela-

tively simple mathematical operations on large numbers

(512 bits and greater). Because the size of the operands

will not fit into a normal integer type on modern CPUs,

a different data structure is used: bignum. The required

operations (modular multiplication and exponentiation)

are implemented as functions themselves, so the RSA

and DH implementations are simply macro operations on

bignums. It may be possible to detect the macro opera-

tions, though. In the current implementation, findcrypto
gives bn mul part recursive() a score of 21. This func-

tion forms the basis for modular multiplication, which is

in turn the basis for modular exponentiation.

5 Future Work

The current work has focused on the location of crypto-

graphic routines within object code. It is believed that

combining this work with a heuristic algorithm identifica-

tion method would be invaluable.

Also, the current method relies on relatively simplis-

tic opcode matching. With further analysis, blocks of in-

structions forming a functional block could be matched

and weighted. This functional block method may help the

location algorithm with different compilers and architec-

tures.

References
[Bil07] Daniel Bilar. Opcodes as predictor for mal-

ware. Int. J. Electron. Secur. Digit. Forensic,

1(2):156–168, 2007.

[Dat05] Datarescue. Using the Universal PE Un-
packer Plug-in included in IDA Pro 4.9 to un-
pack compressed executables, 2005.

[Gui06a] Ilfak Guilfanov. FindCrypt, January 2006.

http://hexblog.com/2006/01/
findcrypt.html.

[Gui06b] Ilfak Guilfanov. FindCrypt2, February

2006. http://hexblog.com/2006/
02/findcrypt2.html.

[LR08] Eric Laspe and Jason Raber. Deobfuscator:

An automated approach to the identification

and removal of code obfuscation. In REcon,

June 2008.

[NESP08] Karsten Nohl, David Evans, Starbug, and

Henryk Plötz. Reverse-engineering a crypto-

graphic RFID tag. In 17th USENIX Security
Symposium, July 2008.

6


