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Abstract 

 
This paper is an analytical study of Boolean networks. The motivation is our 

desire to understand the large, complicated, and interconnected pathways which comprise 
intracellular biochemical signal transduction networks. The simplest possible conceptual 
model that mimics signal transduction with sigmoidal kinetics is the n-node Boolean 
network each of whose elements or nodes has the value 0 (off) or 1 (on) at any given time 
T = 0, 1, 2, …. A Boolean network has 2n states all of which are either on periodic cycles 
(including fixed points) or transients leading to cycles. Thus one understands a Boolean 
network by determining the number and length of its cycles. The problem one must 
circumvent is the large number of states (2n) since the networks we are interested in have 
100 or more elements. Thus we concentrate on developing size n methods rather than the 
impossible task of enumerating all 2n states. This is done as follows: the dynamics of the 
network can be described by n polynomial equations which describe the logical function 
which determines the interaction at each node. Iterating the equations one step at a time 
finds all fixed points, period two cycles, period three cycles, etc. This is a general method 
that can be used to determine the fixed points and moderately large periodic cycles of any 
size network, but it is not useful in finding the largest cycles in a large network. 
However, we also show that the network equations can often be reduced to scalar form, 
which makes the cycle structure much more transparent. The scalar equations method is a 
true “size n” method and several examples (including non-trivial biochemical systems) 
are examined. 
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Introduction 
 
We are engaged in a long-term research project to describe and analyze the 

complicated and interconnected pathways that comprise intracellular biochemical signal 
transduction networks. These biochemical networks are the mechanism by which signals 
received via specific receptors on the outer membrane of an individual cell are transduced 
through the cytoplasm to the cell nucleus [Lodish et al., 1999]. Because signal 
transduction networks are made up of hundreds of interacting proteins in the membrane, 
cytoskeleton, cytoplasm, and nucleus, it is difficult to model them with differential 
equations since many non-linear terms would be required. Additionally, the differential 
equations approach to modeling requires the use of biochemical parameter information 
such as initial concentrations of reactants and kinetic parameters of enzymes that have 
been determined by in vitro experimentation. The relevance of parameters derived in 
vitro is not clear as there is much evidence that signaling systems are often restricted in 
the cell with respect to both location and accessibility [Bray, 1998], a condition that is not 
present in vitro. 
 We have attempted to avoid these problems by employing the simplest possible 
conceptual model that bears a resemblance to the networks we wish to study; namely a 
synchronous Boolean network. A Boolean network is a directed graph—a system of 
nodes that interact with each other in a specified manner. Interactions between nodes 
(including the direction of the interaction) are represented by the edges of the graph. In 
our case, the nodes represent individual signal transduction pathway proteins and the 
edges indicate which proteins have the potential to interact directly (e.g. 
phosphorylation). At each successive (discrete) time point, the nodes can exist in one of 
two different states; 0 (off) or 1 (on). Which of these two states the node will occupy at 
any given time point is determined by the logic function that is necessarily associated 
with each node. The logic function for a node is an instruction set for determining the 
state of a node based on the state(s) of the input node(s) at the previous time point. 
 Despite the fact of their conceptual simplicity, Boolean networks have 
applications in many areas including circuit theory and computer science [Dunne, 1988; 
Tocci & Widmer, 2001]. In molecular biological systems the concepts of Boolean 
networks have been applied in areas such as the modeling of gene regulation [Jacob, 
1961; Kauffman, 1969; Kauffman, 1993], but little has been done in terms of modeling 
protein-protein interaction. However, with the relatively recent breakthroughs in our 
understanding of the mechanisms of protein regulation (e.g. phosphorylation, 
methylation, etc.), it appears that protein activity might be realistically represented by 
Boolean logic [Volkman et al., 2001]. This is especially true for Michaelis-Menton and 
Hill kinetics where reaction rates are characterized by sigmoidal (or S-shaped) curves. 
Steep sigmoidal curves are well approximated by switch-like on-off interactions. 
 Although the simplifications inherent in them make Boolean networks very 
attractive for modeling complicated systems, a natural question arises as to how well a 
Boolean network can represent a real biochemical system given that it does transform the 
nature of the interactions. Glass [1985] and Glass and Kauffman [1972, 1973] 
investigated this question and determined that Boolean networks provide an accurate 
general description of biochemical networks with sigmoidal interactions provided a 
negative feedback loop (i.e. a feedback loop with an odd number of inhibitory 
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interactions) is present in the system. Their general principle can be stated as follows 
[Glass, 1985]: If the associated Boolean network has a cyclic attractor (i.e. a cycle), then 
one of the following holds: (1) the biochemical network has a stable limit cycle, or (2) the 
biochemical network has a stable equilibrium. A mathematical formulation and proof of 
this principle has been given by Glass and Pasternack [1978] for piece-wise linear 
systems. 
 More generally we can say that a biochemical network with a negative feedback 
loop may have periodic cycles if its associated Boolean model network does. If the 
Boolean model has only fixed points, then its associated biochemical network has no 
cycles but only stable equilibrium points. The Glass-Kauffman hypothesis is illustrated in 
detail in Sec. 4. It should be pointed out that there are many known examples of 
oscillations in biochemical systems, with both positive and negative feedback [Goldbeter, 
1996]. 
 Because the biochemical networks we wish to study have negative feedback loops 
and the Boolean models of those networks we have experimented with so far have the 
potential for periodic cycles, we are faced with the need to determine when Boolean 
networks do or do not have cycles. Our approach to a method for determining the 
existence of periodic cycles in Boolean networks involves two different analytical 
techniques, both well-known in the theory of dynamical systems and differential 
equations. The first is iteration of the Boolean logic functions. This technique is highly 
developed in the use of discrete dynamical systems or maps [Alligood et al., 1997]. It is 
the most general technique that can be useful for finding moderately size cycles in any 
network. The second technique, reduction to a scalar equation, is a time-honored method 
in differential equations (used recently by one of the authors [Zhang & Heidel, 1997; 
Heidel & Zhang, 1999]). It does not always yield results, but it is very powerful when it 
does. 
 
2. Analytical Analysis of Boolean Networks  
 A Boolean network is a set of n nodes, each of which is either in state 1 (on) or 
state 0 (off) at any given time T. Each node is then updated at time T+1 by inputs from 
any fixed set of k other nodes according to any desired logical rule. Since each of the n 
states can be sequentially either off or on there is a total of 2n different possible set of 
states for the entire network. 
 Since the total number of states is finite and the network changes states 
sequentially in discrete time steps, the network must necessarily return to a previously 
occupied state. With n nodes, the largest possible number of time points before re-
encountering a previous state is 2n. This means that all possible trajectories of the 
network consist of either cycles (loops) of any length from size one (a fixed point) to a 
maximum of 2n, or transient states leading to a cycle. 
 A complete description of a Boolean network consists of (i) the nodes with 
interconnecting arrows indicating which nodes affect each other (a directed graph), (ii) a 
logical table indicating the complete logic which controls each node, and (iii) a diagram 
showing the interconnections (i.e. cycles and transient states) between all 2n states. 
 Of course this is an ideal total description which can only be realized for small n 
since one would have to account for 2n states. That would be unfeasible even for an n = 
10 network since there would be 1024 possible states. 
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 Thus methods are desired that provide an adequate description of the network 
utilizing quantities of size n rather than size 2n without having to completely enumerate 
all states. A first step has been taken in this direction [Cull, 1971; Robert, 1986]. The 
logic describing the update for each node can be described by a polynomial function in n 
variables with coefficients of 0 and 1 using Boolean algebra. These n functions, one for 
each node, encode all of the information about the system. This is most easily understood 
by looking at some simple examples, such as the one shown in Fig. 1. The network 
shown in Panel A has three nodes, all of which are connected to each other. The logic of 
the connections is shown in Panel B, all of which are OR. The complete logical 
description and state space structures (23 = 8) are easily determined and shown in Panel 
D, while the map of the trajectories is shown in Panel C. 
 The complete system description shown in Fig. 1 can also be obtained with 
logical function analysis. It is easily verified that the logic for the three nodes is given by: 
 

fA =  B + C + BC      (1) 
fB =  A + C + AC      (2) 
fC =  A + B + AB      (3) 

 
Fixed points (cycles of length one) can then be determined by setting each logical 
function equal to the current state as follows: 
 

A = fA =  B + C + BC      (4) 
B = fB =  A + C + AC      (5) 
C = fC =  A + B + AB      (6) 

 
which can easily be solved to obtain A = B = C under the rules of Boolean algebra 
(standard arithmetic, mod 2 ). Thus the fixed points are (0,0,0) and (1,1,1). 
 In a similar manner, antecedents (states that lead immediately to the fixed points) 
can be determined by setting the logic functions equal to each fixed point: 
 

 0 = fA =  B + C + BC      (7) 
 0 = fB =  A + C + AC      (8) 
 0 = fC =  A + B + AB      (9) 

 
and 

 
 1 = fA =  B + C + BC      (10) 
 1 = fB =  A + C + AC      (11) 
 1 = fC =  A + B + AB      (12) 

 
The first system cannot be solved (if A = 1, then 0 = 1 + C + C = 1, a contradiction), so 
there are no antecedents to the fixed point (0,0,0), as is verified in Panel C of Fig. 1. The 
second system of equations is solvable and yields the points (0,1,1), (1,0,1), (1,1,0), and 
(1,1,1) as the antecedents of (1,1,1). The antecedents of the first three antecedents (found 
by the same method) are (1,0,0), (0,1,0), and (0,0,1), respectively. Thus, working with the 
three functions fA, fB, and fC (which, of course, are determined directly from the three 
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elementary logic tables) the complete state space structure is determined. 
 Another simple network is shown in Fig. 2. Unlike the first network, this network 
contains two periodic orbits and no fixed points. The logic functions for this network are: 

 
fA =  1 + C       (13) 
fB =  A        (14) 
fC =  B        (15) 

 
To determine the fixed points we set 
 

A = fA =  1 + C      (16) 
B = fB =  A       (17) 
C = fC =  B       (18) 

 
as before. This system is clearly not solvable, so there are no fixed points. Finding 
periodic points is achieved by iteration: 
 

A = fA
2

 =  1 + B      (19) 

B = fB
2 =  1 + C      (20) 

C = fC
2 =  A       (21) 

 
This system has the solutions (1,0,1) and (0,1,0) which is the period two cycle shown in 
Panel C of Fig. 2. 
 Iteration of the logic functions three and five times (to find period three and 
period five points, respectively) yields systems that are not solvable so it can be correctly 
concluded that there are no states of those types. The fourth iteration generates a system 
identical to the one solved for period two points above. Because period two points are 
also (trivially) period four points, this result means that there are no true period four 
points. Similarly, six iterations yields a system of equations 
 

A = fA
6

 =  A       (22) 

B = fB
6 =  B       (23) 

C = fC
6 =  1 + 1 + C = C     (24) 

 
which is true for every one of the eight points in the state space of this network. Since 
two of the points have been determined to be period two points (which are also trivially 
period six points), the remaining six points in the state space must comprise a true period 
six orbit, which is verified to be true in Fig. 2. 
 The above algebraic approach using the n node logic functions can be carried out 
on quite large systems when searching for moderately sized cycles. However, finding all 
cycles in a large system could involve an enormous number of iterative computations (if 
very long cycles are present) meaning that the largest cycles of a large system might not 
be found using this method. 
 
3. The Scalar Equation Method  
 The method of iteration for finding cycles, described in the last section, is 
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completely general which means that this method is impractical to use for finding all of 
the cycles in large systems. Even with the aid of a computer, the largest system for which 
it would be possible to determine all potential cycles would be approximately n = 25 
(which has the potential for a cycle of size 225 = 33,554,432). However, sometimes the 
number of equations necessary to describe the logic of a given system can be reduced to a 
smaller set of higher order equations, perhaps only a single equation. Such a scalar 
equation is more transparent to analyze for cycles. 
 Looking again at the network described in Fig. 2, it can be seen that the logic 
functions that were used previously can be converted to the following time-dependent 
logic equations 
 

AT+1 =  1 + CT       (25) 
BT+1 =  AT       (26) 
CT+1 =  BT       (27)

  
From these equations, it can be easily verified that AT+3 = 1 + AT (with similar equations 
for BT and CT). From this simple scalar equation it follows immediately that all elements 
of the 8-dimensional state space lie on an orbit of period six. It also follows immediately 
from this equation that there are no fixed points and no period three cycles. Thus the only 
possibility besides a full period six cycle is a period two cycle. We have already seen 
(and it is easily verified) that a period two cycle exists. Thus the entire state space 
consists of a period two cycle and a period six cycle. 
 The network in Fig. 2 is a simple case of an affine system (linear terms plus 
constant terms). Affine Boolean networks have been studied in great detail and their 
cyclic structure is completely understood in a general way [Wilson & Milligan, 1992; 
Milligan & Wilson, 1993]. However, since affine systems are a very restricted class of 
Boolean networks and will only rarely arise in applications, we do not make use of the 
highly developed theory of affine systems. Rather we use an occasional example of a 
linear system in illustrating our very general techniques. The network shown in Fig. 3 is 
one such example; it is an extension of the previous example as it contains six nodes and 
analogous logic (shown in Panel B). The logic for this system can be expressed by the 
following logic functions: 
 

AT+1 =  1 + FT       (28) 
BT+1 =  AT       (29) 
CT+1 =  BT        (30) 
DT+1 =  CT       (31) 
ET+1 =  DT       (32) 
FT+1 =  ET       (33) 

 

 Proceeding as above, we easily find that AT+6 = 1 + AT. This means that all states 
lie on cycles of period 12 and, furthermore, there are no cycles of period six. Thus there 
are no cycles of period one (fixed points), two, or three since these would also have 
period six. Thus all cycles have either period four or period 12. Since 26 = 64 = 5 12 + 
4, there are five distinct cycles of period 12 and one cycle of period four. 
 Clearly linear examples such as these can be extended to arbitrarily large size and 
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any single loop whose connections have simple off or on logic can be analyzed in a 
similar way. We now turn our attention to nonlinear logical functions for which there are 
few general procedures and show that the scalar approach continues to be very useful. 
 The network shown in Fig. 4 has the logical equation description: 
 

AT+1 =  BTDT       (34) 
BT+1 =  1 + AT       (35) 
CT+1 =  BT        (36) 
DT+1 =  CT.       (37) 

 
We readily compute that AT+4 = (1 + AT+2)(1 + AT). Thus the scalar equation separates 
into two parts where the state of A at T + 4 depends on the state of A at both T and T + 2. 
That means that the state of A at even time points is dependent only on the previous two 
even time points, while the state of A at odd time points is dependent on the two previous 
odd time points. Thus the state of A at the first two even and odd time points must be 
specified and then the system can move along the trajectory mandated by the logic. For 
example, consider the even time steps where the values at T = 0, 2 are specified and later 
values are determined from the scalar equation. The possible trajectories at each even 
time point is given by the following tables: 
 
T =  0  2   4  2  4   6  4  6   8  6  8   10 8  10   12 
 0  0   1  0  1   0  1  0   0  0  0    1 0   1     0 
 0  1   0  1  0   0  0  0   1  0  1    0 1   0     0 
 1  0   0  0  0   1  0  1   0  1  0    0 0   0     1 
 1  1   0  1  0   0  0  0   1  0  1    0 1   0     0 
 
Regardless of how the system starts, it moves to a period 3 orbit on the even time points. 
Using the same method, it can be shown that the system moves to the same period three 
orbit on the odd time points (not shown). When both even and odd times are considered 
together, there are only two different orbits that are obtained for node A; (0,0,1) or 
(0,0,0,0,1,1). That is, the value of node A is in either a period three or period six orbit. 
Relating BT+1, CT+1, and DT+1 to AT using the logic equations, we obtain either a period 
three cycle : 
 

(0,1,0,1)→(1,1,1,0)→(0,0,1,1,)→(0,1,0,1) 
 
or a period six cycle: 
 

(0,1,0,0)→(0,1,1,0)→(0,1,1,1)→(1,1,1,1)→(1,0,1,1)→(0,0,0,1)→(0,1,0,0) 
 
As is typical for nonlinear logics there are also seven (3 + 6 + 7 = 16 = 24)  transient 
states which lead to one or the other of the periodic cycles. 
 Another example of a nonlinear network is shown in Fig. 5. The logic functions 
for this network are: 
 

AT+1 =  BTCT       (38) 
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BT+1 =  1 + AT       (39) 
CT+1 =  BT        (40) 

 
This network would immediately appear to be simpler than the proceeding example and, 
in fact, it has only one cycle instead of two. Surprisingly, however, one aspect of the 
analysis is more complicated than for the previous four node system. Determining the 
scalar equations we find that 
 

AT+3 = (1+AT+1)(1+AT)     (41) 
 
with similar equations for BT and CT. In order to determine all of the sequential 
possibilities for the state of node A in this equation we have to specify the first three 
elements of the sequence, then use the first two to determine the third, the second two to 
determine the fourth, etc., as follows: 
 
T =  0  1  2   3 0  1   3  1  2   4  2  3    5 3   4     6 
 0  0  0  1 0  0   1  0  0   1  0  0    1 0   0     1 
 0  0  1  1 0  1   0  0  1   0  0  1    0 0   1     0 
 0  1  0  0 1  0   0  1  0   0  1  0    0 1   0     0 
 0  1  1  0 1  1   0  1  1   0  1  1    0 1   1     0 
 1  0  0   0 
 1  0  1   0 
 1  1  0   0 
 1  1  1   0 
 
Thus there is a single period five orbit (0,0,0,1,1) for node A and the period five cycle 
 

(0,0,0)→(0,1,0)→(0,1,1)→(1,1,1)→(1,0,1)→(0,0,0) 
 
for the full system with three transients (3 + 5 = 8 = 23). 
 The next example, shown in Fig. 6, is from Robert [1986]. This network has the 
logical functions: 
 

AT+1 =  BT + BTCT       (42) 
BT+1 =  AT + ATCT       (43) 
CT+1 =  1 + AT + BT + ATBT      (44) 

 
It is easily shown that AT+3 = AT+1 with similar equations for BT and CT. This equation 
again alternates between even and odd time intervals. For example, we have 

T =  0  2  2  4  4  6 
   0  0  0  0  0  0 
   1  1  1  1  1  1 
 
with an identical set of sequences for the odd time intervals. This clearly gives the fixed 
points (1,1,0), (0,0,1) and the period two orbit: 
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(0,1,0)→(1,0,0)→(0,1,0) 
 
with four transient states. 
 The next examples illustrate how Boolean networks can be used to model a 
molecular biological system. The first is the epigenetic model considered by Goodwin 
[1963] and is shown in Fig. 7. It is derived directly from idealized protein-nucleic acid 
interactions involved in gene regulation. The logic functions are easily seen to be: 
 

L1(T+1) = 1 + C1(T) + C2(T) + C1(T)C2(T)     (45) 
R1(T+1) = L1(T)        (46) 
C1(T+1) = R1(T)        (47) 

 
L2(T+1) = 1 + C1(T) + C2(T) + C1(T)C2(T)     (48) 
R2(T+1) = L2(T)        (49) 
C2(T+1) = R2(T)        (50) 

 
We see that L1(T+1) = L2(T+1) and it is easily derived that L1(T+3) = 1 + L1(T) + L2(T) + 
L1(T)L2(T). Thus L1(T+4) = 1 + L1(T+1). This equation tells us that any cycle has period six, 
but is not period three. Thus there are no fixed points but there could be a period two 
cycle. Performing the familiar iteration procedure described in Sec. 2 produces the period 
two cycle (1,0,1,1,0,1)→(0,1,0,0,1,0)→(1,0,1,1,0,1). Using the equation L1(T+4) = 1 + 
L1(T+1) produces a single period six cycle (1,1,1,1,1,1)→ … . Obviously this leaves 64 – 2 
– 6 = 56 transient states. 
 A more complicated epigenetic system is shown in Fig. 8 [Goodwin, 1963]. This 
system was created by expanding the original system by adding another unit of three 
components. The logic functions are given by: 
 

L1(T+1) = 1 + C1(T) + C2(T) + C1(T)C2(T)        (51) 
R1(T+1) = L1(T)           (52) 
C1(T+1) = R1(T)           (53) 
L2(T+1) = 1+C1(T)+ C2(T) + C3(T) + C1(T)C2(T) + C1(T)C3(T) + C2(T)C3(T) + C1(T)C2(T)C(3)T  (54) 
R2(T+1) = L2(T)           (55) 
C2(T+1) = R2(T)           (56) 
L3(T+1) = 1 + C2(T) + C3(T) + C2(T)C3(T)        (57) 
R3(T+1) = L3(T)           (58) 
C3(T+1) = R3(T)           (59) 

 
Proceeding as in the previous example we obtain the three equations: 
 

L1(T+3) = (1 + L1(T))(1 + L2(T))      (60) 
L2(T+3) = L1(T+3)L3(T+3)       (61) 
L3(T+3) = (1 + L2(T))(1 + L3(T))      (62) 

 
which means we can then write: 
 

L1(T+6) = (1 + L1(T+3))(1 + L1(T+3)L3(T+3))     (63) 
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= 1 + L1(T+3)L3(T+3) + L1(T+3) + L1(T+3)L3(T+3)    (64) 
= 1 + L1(T+3)        (65) 

 
Likewise L3(T+6) = 1 + L3(T+3), thus L1 and L3 both (independently) have period six cycles 
which are not period three cycles. Thus there are no fixed points, but checking for period 
two cycles by iteration, we find two cycles 
(1,0,1,1,0,1,1,0,1)→(0,1,0,0,1,0,0,1,0)→(1,0,1,1,0,1,1,0,1) and (1,0,1,0,0,0,0,1,0) → 
(0,1,0,1,1,1,1,0,1) → (1,0,1,0,0,0,0,1,0). 
 The period six cycle(s) for L1 (or L3) can be found from the table: 
 

T = 0  0 0 0 0 1 1 1 1 
T = 1  0 0 1 1 0 0 1 1 
T = 2  0 1 0 1 0 1 0 1 
T = 3  1 1 1 1 0 0 0 0 
T = 4  1 1 0 0 1 1 0 0 
T = 5  1 0 1 0 1 0 1 0 

 
Thus L1 and L3 each (separately) have just one period six cycle. But since they are 
independent there is then a total of six different period six cycles for the full nine node 
network. Clearly this triple chain can be extended to a chain of arbitrary length 
[Goodwin, 1963] and analyzed in a similar manner as above becoming more complicated 
at each step.  

Another idealized example, shown in Fig. 9, was considered by Gonze and 
Goldbetter [2000] as a model of phosphorylation/dephosphorylation cycles. Unlike the 
last example, this one is a model of protein-protein interactions; the type most related to 
signal transduction. From the logic tables were derived the following logic functions: 
 

AT+1 =  BT       (66) 
BT+1 =  CT       (67) 
CT+1 =  DT       (68) 
DT+1 =  AT       (69) 

 
 
that reduce to the scalar equations 
 

AT+4 = AT       (70) 
BT+4 = BT       (71) 
CT+4 = CT       (72) 
DT+4 = DT       (73) 

 
which means that there are three period four cycles, one period two cycle, and two fixed 
points in the system. 
  From the above examples it is clear that a wide variety of Boolean networks have 
periodic cycles in their dynamics. In fact networks that have any desired cycle structure 
can be readily conceived. However, we have found that very small single changes in 
logic or structure can have drastic effects on the existence of cycles in the state space of 
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the network. For example, simply changing the logic for node B in Fig. 5 from ON to 
OFF results in the system moving only to the fixed points (0,0,0) and (1,1,1). Similarly, 
when the logic for node B in Fig. 4 is changed from ON to OFF, there is only one fixed 
point; (0,0,0,0). Thus, adding a node or connection to a network with periodic cycles 
tends to eliminate the cycles. This observation may have significance for modeling 
biological mutations. 

Reducing the logical functions to a single scalar equation is clearly a simple and 
effective method of analyzing the trajectories of Boolean networks. More realistic 
applications of this technique to biochemical networks are give in a later section. 

 
4. The Glass-Kauffman Hypothesis. 
 Both the protein-nucleic acid model (Figs. 7 and 8) and the protein-protein model 
(Fig. 9) were originally analyzed with differential equations. In the case of Fig. 9 the 
differential equation model, with steep sigmoid kinetics, leads to a limit cycle. Similarly, 
our Boolean model demonstrates periodic cycles. This raises the question as to the 
meaning of cycles in a Boolean model—specifically, does the presence of cycles or fixed 
points in the Boolean model indicate limit cycles or equilibrium points in the differential 
equations model. As stated earlier, the Glass-Kauffman hypothesis indicates that in many 
cases Boolean cycle structure can give information regarding the analog dynamics. 
Assuming the system modeled has negative feedback (i.e., an odd number of negative 
interactions in a loop), the hypothesis can be summarized as having two main 
components; (i) when the Boolean model has no cycles and (ii) when the Boolean model 
has cycles. In the first case the hypothesis states that the differential equation model of 
the system will not have limit cycles, while in the second case the differential equation 
model may or may not have cycles. Thus, the Glass-Kauffman hypothesis answers the 
original question by saying that the cycle structure of a Boolean model can be used to 
rule in or out the possibility of cycles in a differential equation system. 

In formulating their hypothesis, Glass and Kauffman [1972, 1973] emphasize that 
it is an intuitive guide and especially that the analogy does not depend on the exact nature 
(i.e., steepness) of the sigmoidal kinetics. In fact it is only well-understood for piece-wise 
continuous (switching function) differential equations [Glass and Pasternack, 1978]. In 
these papers all of the examples given are for the single case where both the differential 
equation systems and their Boolean analogues have cycles. In this section we discuss 
three similar examples of sigmoidal kinetics which illustrate the three different 
possibilities of the Glass-Kauffman hypothesis. Note that in all three cases the requisite 
negative feedback is present. 

The first case to be considered is when the Boolean model does not have cycles. 
This is the strongest case since it suggests that the analog model will not have cycles. The 
system is represented with the differential equations 
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      (74) 
 
 
      (75) 
 

 
       (76) 
 
       (77) 
 
which is easily shown numerically to have the stable equilibrium A = B = C = 0, D = 1. 
The Boolean model of this system (which is identical to the model in Fig. 4, but with the 
negative logic moved to the C/D connection) has the logical equations 
 

AT+1 =  BTDT       (78) 
BT+1 =  AT       (79) 
CT+1 =  BT       (80) 
DT+1 =  1 + CT       (81) 

 
It is easily shown that the scalar equation is AT+4 =  AT+2(1 + AT) which leads only 

to the fixed point (0,0,0,1). Thus, this is an example of the hypothesis (extended to 
sigmoidal kinetics) that no cycles in the Boolean model implies no cycles in the 
differential equation model. 

The second case to be considered is when the Boolean model does exhibit cycles. 
We will first look at an example when the differential equations analogue does contain 
cycles. In that example, due to Glass and Pasternack [1978b], the four dimensional 
system 

 
 

        (82) 
 
 
        (82) 
 
 
 
        (83) 
 
 

         (84) 
 
 
has a limit cycle. The analogous Boolean network, shown in Fig. 10, has the logical 
equations 
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AT+1 =  1 + DT       (85) 
BT+1 =  AT       (86) 
CT+1 =  BT       (87) 
DT+1 =  CT       (88) 

 
Direct computation shows that AT+4 = 1 + AT with identical equations for nodes B, C, and 
D. Thus all cycles have period 8 and there are no fixed points, period two cycles, or 
period four cycles. In fact there are two period 8 cycles. Thus the system of differential 
equations and its Boolean analogue both have cycles. 
 The final example illustrates the second possibility when the Boolean model 
exhibits cycles—that the differential equations system may go only to equilibrium points. 
Such a system is described by the equations 
 
 
       (89) 
 
 
       (90) 
 
 
       (91) 
 
       (92) 
 
 
and it is easily shown numerically to have the single stable equilibrium (A = 0.02, B = 1, 
C = 0.5, D = 0.2). The Boolean analogue (already shown in Fig. 4) has periodic cycles 
(period 3 and 6). Thus the system of differential equations may fail to have a limit cycle 
while its Boolean analogue does have one or more cycles. 

The last possibility is the least desirable as the Boolean model does not mimic the 
analog behavior. Therefore, a major improvement in the Glass-Kauffman hypothesis 
would be a method to determine more completely what types of logical systems are 
associated with this case. In any event, the hypothesis is useful in its ability to rule out the 
possibility of cycles under certain conditions. 

 
5. Biochemical Networks 
 In this section we apply our techniques for finding cycles in Boolean networks to 
two examples in the literature. Rather than the purely illustrative examples of the 
previous sections, these examples are serious attempts to model real biological networks. 
In both cases, the cycle structure was solved by the scalar equation method. 
  The first example is coupled oscillations in the cell cycle. Research into the 
mechanism of cell cycle regulation makes it apparent that the onset of M (mitosis) and S 
(DNA replication) phases of the cell cycle are controlled by the periodic activation of 
cyclin-dependent kinases (cdk’s) [Stillman, 1996].  A differential equations model of the 
system was created [Romond, et al., 1999] from which we derived the logic and created 
the Boolean model shown in Fig. 11. This time the logic functions are: 
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C1(T+1) = 1 + X1(T) + M2(T) + X1(T)M2(T)     (93) 
M1(T+1) = C1(T)         (94) 
X1(T+1) = M1(T)         (95) 
C2(T+1) = 1 + X2(T) + M1(T) + X2(T)M1(T)     (96) 
M2(T+1) = C2(T)         (97) 
X2(T+1) = M2(T)         (98) 

 
From the structure of the logic functions it is natural to try to express the six dimensional 
system in terms of higher order equations involving just C1 and C2. This gives 
 

C1(T+3) = (1 + C1(T))(1 + C2(T+1))     (99) 
C2(T+3) = (1 + C2(T))(1 + C1(T+1))     (100) 

 
For this example it does not appear possible to find a single higher order equation in just 
one variable. Thus we must work with the two scalar equations at once. Since the values 
of C1 and C2 at time T = 3 are determined by their values at time T = 0 and T = 1, to 
determine all possible sequences of corresponding C1 and C2 values it is necessary to 
consider all possible combinations of specifying C1 at times T = 0, 1, 2 and likewise C2 at 
times T = 0, 1, 2. This means that for each of the possible sequences for C1(0), C1(1), and 
C1(2), there are eight possible sequences of C2(0), C2(1), and C2(2) for a total possible set of 
sequences 8 x 8 = 64 = 26. Each of these eight sets of eight sequences produces the same 
periodic orbits of period 2, 5, or 10 (there are no fixed points). Because of the complexity 
of this analysis we list one of these eight sets: 
 
      C1           C2    
  T = 0    0       0 0 0 0 1 1 1 1 
  T = 1    0       0 0 1 1 0 0 1 1 
  T = 2    0       0 1 0 1 0 1 0 1 
  T = 3 1 1 0 0 1 1 0 0   1 1 1 1 0 0 0 0 
  T = 4 1 0 1 0 1 0 1 0   1 1 0 0 1 1 0 0 
  T = 5 0 0 0 0 1 1 1 1   0 0 1 0 0 0 1 0 
  T = 6 0 0 1 1 0 0 1 1   0 0 0 0 0 1 0 1 
  T = 7 0 1 0 1 0 1 0 1   0 0 1 1 0 0 0 1 
  T = 8 1 1 1 1 0 0 0 0   1 1 0 0 1 1 0 0 
  T = 9 1 1 0 0 1 1 0 0   1 0 1 0 1 0 1 0 
  Period 5 10 2 10 10 2 10 5   5 10 2 10 10 2 10 5 
 
Combining this chart with the logic equations it is easy to compute that the period two 
orbit is given by: 

 
C1 M1 X1 C2 M2 X2 

   (1  0  1  0  1  0) 
   (0  1  0  1  0  1), 
 
the period five orbit by the five states: 
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C1 M1 X1 C2 M2 X2 

   (1  0  0  1  0  0) 
   (1  1  0  1  1  0) 
   (0  1  1  0  1  1) 
   (0  0  1  0  0  1) 
   (0  0  0  0  0  0), 
 
while the period ten orbit is comprised of the states: 
 

C1 M1 X1 C2 M2 X2 
   (1  0  0  1  1  0) 
   (0  1  0  1  1  1) 
   (0  0  1  0  1  1) 
   (0  0  0  0  0  1) 
   (1  0  0  0  0  0) 
   (1  1  0  1  0  0) 
   (1  1  1  0  1  0) 
   (0  1  1  0  0  1) 
   (0  0  1  0  0  0) 
   (0  0  0  1  0  0). 
 
 Analyzed with differential equations using sigmoidal kinetics, this system is 
chaotic for certain parameter ranges, an observation that is consistent with the more 
complicated scalar structure of the logic equation (a pair of equations is required instead 
of just one). Additionally, for all of the periodic cycles of the Boolean model of this 
system, each element of the system changes values with some periodicity. In other words, 
any cycle the system eventually settles into has no elements that are “frozen” in an on or 
off state. The existence of attractors that do not contain a frozen core of elements has 
been hypothesized to be another characteristic of Boolean systems with the potential for 
chaos [Kauffman, 1993]. Finally, when we determined numerically the basins of 
attraction for each cycle, we found the majority (32) of transients going to the period 10 
cycle. A skewing of the transient distribution to the periodic cycles (as opposed to the 
fixed points) is a characteristic we have noted when creating Boolean models of systems 
with the potential for chaos. 
 The second example is the cAMP receptor of D. discoideum, shown in Fig. 12 
[Goldbeter, 1996; Aubry & Firtel, 1999]. This time the logic functions are: 

 
 A(T+1) = 1 + C(T)       (101) 
 B(T+1) = 1 + A(T)       (102) 
 C(T+1) = H(T) + B(T)H(T)      (103) 
 D(T+1) = C(T)        (104) 
 E(T+1) = D(T)        (105) 
 F(T+1) = 1 + E(T)       (106) 
 G(T+1) = D(T) + E(T) + D(T)E(T)     (107) 
 H(T+1) = G(T) + F(T)G(T)      (108) 
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Noticing from the structural graph that node C (camp outside the cell) is the most 
centrally located in terms of its affect on other nodes, we look for a scalar equation for C 
and find that C(T+5) = C(T)(1 + C(T+2)). This means that the value of C at T = 5 is 
determined by its value at T = 0 and T = 2, at T = 6 by its value at T = 1 and T = 3, etc. 
Therefore to get a complete enumeration of the dynamics of C requires examining all 32 
different combinations of C at T = 0, 1, 2, 3, 4 as listed in the following table: 
 
   T = 0    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
    1    0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
    2    0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
    3    0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
    4    0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
   5    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 
   6    0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 
   7    0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 
   8    0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 
   9    0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 
   10   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 
   period:  1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  
 
The final conclusion is that there is a single fixed point (1,0,0,0,0,1,0,0), and two distinct 
period five cycles: 
 
(0,0,0,1,0,1,0,0) → (1,1,0,0,1,0,1,1) → (1,0,0,0,0,0,0,1) → (1,0,0,0,0,1,0,1) → 
(1,0,1,0,0,1,0,0) → (0,0,0,1,0,1,0,0) 
 

and 
 
(0,1,0,1,1,0,1,0) → (1,1,0,0,1,0,1,1) → (1,0,0,0,0,0,1,1) → (1,0,1,0,0,1,0,0) → 
(0,0,1,1,1,1,0,0) → (0,1,0,1,1,0,1,0). 
 
Note that in both cycles the element C, cAMP outside the cell, varies. The excretion of 
cAMP in pulses is a hallmark of this system, so the variation of element C was an 
expected result and indicates that the Boolean model is a reasonable representation of the 
real biochemical system. 

We determined numerically that the fixed point has few (21) transient states while 
each of the period five cycles has more than 100. Furthermore, like the previous example, 
neither of the periodic attractors have any frozen elements. Thus, this is a system that has 
negative feedback, periodic cycles with large basin of attraction, and no frozen elements 
in the periodic cycles. The marked similarity in the cycle and transient structures of the 
Boolean model of this system and the previous system suggests the possibility that this 
protein-protein interaction network might also exhibit either a limit cycle or chaos (or 
both) for different values of the system parameters. 
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6. Conclusions 
 We have shown in this paper that potentially large Boolean networks are 
amenable to exact analysis. The structure of a Boolean network is described in terms of 
its cycles and the transient states that lead to them. We have developed two different 
methods, iteration and scalar form, to determine cyclic structure. We have shown that the 
methods apply to a wide variety of different examples, many arising in biological and 
biochemical networks. 
 Reduction to scalar form has the advantage of simplicity when it is successful. 
Therefore, an obvious question is whether there are general conditions under which it will 
apply. It would also be very helpful if the cyclic structure could be determined from the 
form of the scalar equation, without the need to consider 2n initial conditions for an nth 
order scalar equation. Obviously for large systems this will be a practical necessity. We 
have seen that this is true for simple scalar equations such as A(T+6) = A(T), A(T+6) = 1 + 
A(T), and A(T+4) = A(T+2)A(T). We conjecture that this is true for more complicated scalar 
equations as well. It remains to be shown how general the form of scalar equations is for 
which this is true. 
 Our preliminary studies with these new analytical tools on a non-trivial 
biochemical network has given us a strong new hypothesis to test-- namely that the 
structure of a biochemical signal transduction network is such that there is the potential 
for chaos. Evidence for the productive use of chaos would provide a much needed 
understanding as to why biochemical signal transduction involves such a complex 
network of interacting components. The slime mold D. discoideum is studied because its 
signal transduction networks are very analogous (sharing many of the exact same 
components) to that of higher organisms. Thus the results and conjectures presented in 
this paper provide a new basis for the elucidation of the function of complexity in the 
living cell. 
 The development of size n analytical tools for understanding Boolean networks 
with n nodes (and subsequent computer implementation of these tools) is an important 
and challenging task which we continue to pursue in our efforts to model biological and 
biochemical systems. 
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Figure Legends 
 
Figure 1. A simple Boolean network with three nodes and all OR logic. This network has 
two fixed points and no periodic cycles. A, the directed graph; B, the logic of the 
network; C, a map of all possible trajectories; D, the logic of the entire system condensed 
to a single table. 
 
Figure 2. Another simple Boolean network. This network has two periodic cycles (of 
period 2 and 6) and no fixed points. A, the directed graph; B, the logic of the network; C, 
a map of all possible trajectories; D, the logic of the entire system condensed to a single 
table. 
 
Figure 3. An extension of the linear network show in Fig. 2. Analysis (in the text) shows 
it has five period 12 cycles, one period four cycle, and no fixed points. A, the directed 
graph; B the logic of the network. 
 
Figure 4. A nonlinear network with a period three and period six cycle. A, the directed 
graph; B the logic of the network. 
 
Figure 5. Another nonlinear network. Although this network appears to be simpler than 
the one in Fig. 4, the analysis is actually more complex since the state of the network for 
the first three time points must be specified. A, the directed graph; B the logic of the 
network. 
 
Figure 6. Another nonlinear network. This network has two fixed points and a single 
period 2 cycle. A, the directed graph; B the logic of the network. 
 
Figure 7. An epigenetic model. This is a model of gene regulation by protein-DNA 
interaction. . A, the directed graph; B the logic of the network. 
 
Figure 8. A more complicated epigenetic model. A, the directed graph; B the logic of the 
network. 
 
Figure 9. An idealized model of protein-protein interactions. A, the directed graph; B the 
logic of the network. 
 
Figure 10. A Boolean network described by Glass and Pasternack [1978b]. The Boolean 
model has periodic cycles and, when modeled with differential equations, the network 
produces a limit cycle. A, the directed graph; B the logic of the network. 
 
Figure 11. A model of coupled oscillations in the cell cycle. This system demonstrates 
chaos at certain parameter ranges. A, the directed graph; B the logic of the network. 
 
Figure 12. A Boolean model of cAMP signaling in Dictyostelium. This well-studied 
biochemical system is known for producing cyclic aggregation signals.  
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