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Abstract. A novel deformable template is presented which detects and
localizes shapes in grayscale images. The template is formulated as a
Bayesian graphical model of a two-dimensional shape contour, and it is
matched to the image using a variant of the belief propagation (BP) algo-
rithm used for inference on graphical models. The algorithm can localize
a target shape contour in a cluttered image and can accommodate arbi-
trary global translation and rotation of the target as well as significant
shape deformations, without requiring the template to be initialized in
any special way (e.g. near the target).

The use of BP removes a serious restriction imposed in related earlier
work, in which the matching is performed by dynamic programming and
thus requires the graphical model to be tree-shaped (i.e. without loops).
Although BP is not guaranteed to converge when applied to inference on
non-tree-shaped graphs, we find empirically that it does converge even
for deformable template models with one or more loops. To speed up the
BP algorithm, we augment it by a pruning procedure and a novel tech-
nique, inspired by the 20 Questions (divide-and-conquer) search strategy,
called ”focused message updating.” These modifications boost the speed
of convergence by over an order of magnitude, resulting in an algorithm
that detects and localizes shapes in grayscale images in as little as several
seconds on an 850 MHz AMD processor.

1 Introduction

A promising approach to the detection and recognition of flexible objects involves
representing them by deformable template models, for example, [7,15,17]. These
models specify the shape and intensity properties of the objects. They are defined
probabilistically so as to take into account the variability of the shapes and their
intensity properties.

The flexibility of such models means that we have a formidable computational
problem to determine if the object is present in the image and to find where it is
located. In simple images, standard edge detection techniques may be sufficient
to segment the objects from the background, though we are still faced with the
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difficult task of determining how edge segments should be grouped to form an
object. In more realistic images, however, large segments of object boundaries
will not be detected by standard edge detectors. It often seems impossible to
do segmentation without using high level models like deformable templates [7];
an important challenge that remains is to find efficient algorithms to match
deformable templates to images.

We have devised a Bayesian deformable template for finding shapes in clut-
tered grayscale images, and we propose an efficient procedure for matching the
template to an image based on the belief propagation (BP) algorithm [11] used
for inference on graphical models. The template is formulated as a Bayesian
graphical model of a two-dimensional shape contour that is invariant to global
translations and rotations, and which is designed to accommodate significant
shape deformations.

BP can be applied directly to our deformable template model, yielding an
iterative procedure for matching each part of the deformable template to a lo-
cation in the image. Like the dynamic programming algorithm used in earlier
related work [3], BP is guaranteed to converge to the optimal solution if the
graphical model is tree-shaped (i.e. without loops). However, an important ad-
vantage of BP over dynamic programming is that it may also be applied to
graphical models with one or more loops, which arise naturally in deformable
template models. Although convergence is no longer guaranteed when loops are
present, researchers have found empirically that BP does converge for a vari-
ety of graphical models with loops [10], and our experiments with deformable
templates corroborate these findings.

Although BP can be applied straightforwardly to the deformable template
model, an important additional contribution of our work is to augment BP by two
procedures which speed it up by over an order of magnitude. The first procedure,
called belief pruning, removes matching hypotheses that are deemed extremely
unlikely from further consideration by BP. (This is very similar to the “beam
search” technique used to prune states in hidden Markov models (HMM’s) in
speech recognition [9].) The speed-up of belief pruning is enhanced greatly by the
second procedure, called ”focused message updating.” This procedure, inspired
by the 20 questions (divide-and-conquer) search strategy [6], uses a carefully
chosen sequence of ”questions” to guide the operation of BP. The first stage
of BP is devoted to matching a ”key feature” of the template – corners or
T-junctions which are relatively rare in the background clutter. A second key
feature is chosen for BP to process next, in such a way that the conjunction of the
two features is expected to be an even rarer occurrence in the background. By
the time BP has processed these first two key features, substantial pruning has
occurred – even though BP may still be far from convergence – which significantly
speeds up the subsequent iterations of BP.

The result is a deformable template algorithm that detects and localizes
shapes in grayscale images in as little as several seconds on an 850 MHz AMD
processor. We demonstrate our algorithm on three deformable shape models –
the letter “A,” a stick-figure shape, and an open hand contour – for a variety of
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images, showing the ability of our algorithm to cope with a wide range of shape
deformations, extensive background clutter, and low contrast between target and
background.

Our work and related work on algorithms for deformable template matching
[21], which emphasize the use of a generative Bayesian model that uses separate
models to account for shape variability and for variations in appearance, may
be compared with other recent work on object detection and shape matching. A
variety of object detection techniques have been developed which find instances
of deformable shapes by applying sophisticated tests to decide whether each
local region in an image contains a target or belongs to the background. In [5,
13] these tests are based on a strategy of posing a series of questions designed
to reject background regions as quickly as possible (similar in spirit to the 20
Questions strategy), while [12] relies on powerful statistical likelihood models of
the appearance of target and background in order to discriminate between them.
Although these object detection algorithms are fast and effective, they lack the
explicit models of shape and appearance variability used in Bayesian deformable
template models, and it seems difficult to extend these algorithms to highly
articulated shapes. Finally, we cite recent work on point set matching [2] and
matching using shape context [1], which are very effective matching algorithms
for use with point sample targets. These algorithms are designed to perform
highly robust matching in limited clutter, while our algorithm is intended to
address the problem of visual search in more highly cluttered grayscale images.

2 Deformable Template

Our deformable template is designed to detect and localize a given shape amidst
clutter in a grayscale image. The template is defined as a Bayesian graphical
model consisting of a shape prior and an imaging model, and an inference al-
gorithm based on BP is used to find the best match between the template and
the image. More specifically, the shape prior is a graphical model that describes
probabilistically what configurations (shapes) the template is likely to assume.
The imaging model describes probabilistically how any particular configuration
will appear in a grayscale image. Given an image, the Bayesian model assigns
a posterior probability to each possible shape configuration. A BP-based algo-
rithm is used to find the most likely configuration that optimally fits the image
data.

2.1 The Shape Prior

The variability of the template shape is modelled by the shape prior, which
assigns a probability to each possible deformation of the shape. The shape is
represented by a set of points x1,x2, . . . ,xN in the plane which trace the contours
of the shape, and by an associated chain θ1, θ2, · · · , θN of normal orientations
which describe the direction of outward-pointing normal vectors at the points
(see Figure (1)). Each point xi has two components xi and yi. For brevity we
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define qi = (xi, θi), which we also refer to as “node” i. The configuration Q,
defined as Q = (q1,q2, · · · ,qN ), completely defines the shape.
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Fig. 1. Left, “letter A” template reference shape, with points drawn as circles and line
segments indicating normal directions. Right, the associated connectivity graph of the
template, with lines joining interacting points (the dashed line denotes a long-distance
connection) and numbers labeling the nodes. Note that the connectivity graph has
loops.

The shape prior is defined relative to a reference shape so as to assign high
probability to configurations Q which are similar to the reference configuration
Q̃ = (q̃1, q̃2, · · · , q̃N ) and low probability to configurations that are not. This
is achieved using a graphical model (Markov random field) which penalizes the
amount of deviation in shape between Q and Q̃ in a way that is invariant to
global rotation and translation. (The scale of the shape prior is fixed and we
assume knowledge of this scale when we execute our algorithm.)

Deviations in shape are measured by the geometric relationship of pairs of
points qi and qj on the template, and are expressed in terms of interaction
energies Uij(qi,qj). Low interaction energies occur for highly probable shape
configurations, for which the geometric relationships of pairs of points tend to
be faithful to the reference shape Q̃, and high interaction energies are obtained
for improbable configurations (the precise connection to probabilities is formu-
lated in Equation (2)). Two kinds of shape similarities are used to calculate
Uij(qi,qj). First, the relative orientation of θi and θi+1 should be similar to
that of θ̃i and θ̃i+1, meaning that we typically expect θj − θi ≈ θ̃j − θ̃i. This
motivates the inclusion in the interaction energy Uij(qi,qj) of the following
term:

UC
ij (qi,qj) = sin2(

θj − θi − Cij

2
)

where Cij = θ̃j − θ̃i. This energy attains a minimum when θj − θi = Cij (and a
maximum when θj − θi = Cij + π).

Second, we note that the location of point xj relative to qi is also invariant
to global translation and rotation. As a result, the location xj relative to qi

should typically be similar to the location x̃j relative to q̃i (and in fact if qi is
known then it is possible to predict the approximate location of xj). In other
words, x̃i and θ̃i define a local coordinate system, and the coordinates of x̃j in
that coordinate system are invariant to global translation and rotation. If we
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define the unit normal vectors ni = (cos θi, sin θi) and ñi = (cos θ̃i, sin θ̃i) and
vectors perpendicular to them n⊥

i = (− sin θi, cos θi) and ñ⊥
i = (− sin θi, cos θi),

then the dot product of xj − xi with ni and n⊥
i should have values similar to

the corresponding values for the reference shape: (xj − xi) · ni ≈ (x̃j − x̃i) · ñi

and (xj − xi) ·n⊥
i ≈ (x̃j − x̃i) · ñ⊥

i . Now we can define the remaining two terms
in Uij(qi,qj), the energies

UA
ij (qi,qj) = [(xj − xi) · ni − Aij ]2

and
UB

ij (qi,qj) = [(xj − xi) · n⊥
i − Bij ]2

where Aij = (x̃j − x̃i) · ñi and Bij = (x̃j − x̃i) · ñ⊥
i . The full interaction energy

is then given as:

Uij(qi,qj) =
1
2
{KA

ijU
A
ij (qi,qj) + KB

ijU
B
ij (qi,qj) + KC

ijU
C
ij (qi,qj)} (1)

where the non-negative coefficients KA
ij ,K

B
ij and KC

ij define the strengths of the
interactions and are set to 0 for those pairs i and j with no direct interactions
(the majority of pairs). Higher values of KA

ij ,K
B
ij and KC

ij produce a stiffer (less
deformable) template.

Noting that in general Uij(qi,qj) �= Uji(qj ,qi), we symmetrize the inter-
action energy as follows: Usym

ij (qi,qj) = Uij(qi,qj) + Uji(qj ,qi). We use the
symmetrized energy to define the shape prior:

P (Q) =
1
Z

∏

i<j

e−Usym
ij

(qi,qj) (2)

where Z is a normalization constant and the product is over all pairs i and j,
with the restriction i < j to eliminate double-counting and self-interactions. Note
that the prior is a Markov random field or graphical model that has pairwise
connections between all pairs i and j whose coefficients are non-zero. The values
of the coefficients were chosen experimentally by stochastically sampling the
prior using a Metropolis MCMC sampler, i.e. generating samples from the prior
distribution to illustrate what shapes have high probability (see Figures (2,4) for
examples). Learning techniques such as maximum likelihood estimation could be
employed to determine more accurate values.

2.2 The Imaging Model

The imaging (likelihood) model explains what image data may be expected
given a specific configuration. Two forms of image data are derived from the
raw grayscale image I(x): an edge map Ie(x) to provide local evidence for the
presence or absence of an object boundary at each pixel, and an orientation
map φ(x) to provide estimates of the orientation of edges throughout the image.
The filter that defines Ie(x) was chosen appropriate to the problem domain,
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Fig. 2. Stochastic samples from shape prior.

but in this section we will assume it is the magnitude of the image gradient:
Ie(x) = |G � ∇I(x)| where G(.) is a smoothing Gaussian. The orientation map
φ(x) is calculated as arctan(gy/gx) where (gx, gy) = G�∇I(x). (Both filters can
be evaluated very rapidly on an entire image.)

First consider the behavior of the edge map. The likelihood model quantifies
the tendency for edge strength values to be high on edge and low off edge.
Following the work of Geman and Jedynak [6] and Konishi et al. [8], we define
two conditional distributions of edge strength that are empirically obtained:
Pon(Ie(x)) = P (Ie(x)|xON edge) and Poff (Ie(x)) = P (Ie(x)|xOFF edge). See
Figure (3) for samples of Pon and Poff in a particular domain. Note that Poff

is a simple model of the background which expresses the fact that edge pixels
are rare off the target shape. (A more realistic background model, which would
capture the fact that background clutter is structured, seems unnecessary for
our application.)

Fig. 3. Empirical distributions that make up the imaging model. Left panel shows
Pon(Ie) = P (Ie| ON edge), dashed line, and Poff (Ie) = P (Ie| OFF edge), solid line, as
a function of Ie(x) = |G
∇I(x)|. Note that Pon(.) peaks at a higher edge strength than
does Poff (.), since true edge boundaries tend to have higher image gradient magnitude.
Right panel shows Pang(φ|θ), the distribution of measured edge direction φ (obtained
from the G 
 ∇I(x) direction) given the true edge normal direction θ, plotted as a
function of the angular error φ − θ (in degrees). Note the sharp fall-off about 0 (the
plot is periodic with period 180◦), showing that the angular error tends to be small.

Next we turn to the orientation map. Since φ(x) estimates the angle that ∇I
makes with the x-axis, we can expect that on a true object boundary the value
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of φ(x) should point roughly perpendicular to the tangent of the boundary. (For
instance, if the intensity is uniformly high on one side of a straight boundary and
uniformly low on the other, then φ(x) should describe the vector perpendicular
to the boundary that points from the darker to the lighter region.) Denoting the
true normal orientation of the boundary as θ, we expect that φ(x) is approx-
imately equal to either θ or θ + π. This relationship between θ and φ(x) may
also be quantified as a conditional distribution Pang(φ|θ), which was measured
in previous work [3], see Figure (3). If x is not on an edge then we may assume
that the distribution of φ(x) is uniform in all directions: U(φ) = 1/2π.

The imaging model is a distribution of the edge map and image orientation
data across the entire image, conditioned on the template shape configurationQ.
Defining d(x) = (Ie(x), φ(x)) and letting D denote the values of d(x) across the
entire image, we can express the likelihood model as a distribution that factors
over every pixel:

P (D|Q) =
∏

all pixels
x

P (d(x)|q1 · · ·qN ) (3)

where P (d(x)|q1 · · ·qN ) is set to Pon(Ie(x))Pang(φ(x) − θi) if there exists an
i such that x = xi – i.e. if x lies somewhere on the configuration shape – or
to Poff (Ie(x))U(φ(x)) otherwise. In other words, pixels on the target contour
have edge strengths distributed according to Pon(Ie) and orientations drawn
from Pang(φ|θ); pixels off the target contour have edge strengths distributed
according to Poff (Ie) and orientations drawn from U(φ).

2.3 The Posterior Distribution

The shape configurationQ is determined by the posterior distribution P (Q|D) =
P (Q)P (D|Q)/P (D). As an approximation we can assume that no points in
the template qi and qj map to the same point x in the image (a reasonable
approximation since the prior would make such a deformation unlikely), so we
can re-express the likelihood function in a more convenient form:

P (D|Q) =
N∏

i=1

Pon(Ie(xi))Pang(φ(xi) − θi)
Poff (Ie(xi))U(φ(xi))

F (D) (4)

where F (D) =
∏

all pixels x Poff (Ie(x))U(φ(x)) is a function independent of Q.
Thus the posterior can be written as:

P (Q|D) ∝ P (Q)
N∏

i=1

Pon(Ie(xi))
Poff (Ie(xi))

Pang(φ(xi) − θi)
U(φ(xi))

(5)

Note that the ratio Pon(Ie(xi))/Poff (Ie(xi)) will be high for pixels with high
image gradients, and that Pang(φ(xi) − θi)/U(φ(xi)) will be high where the
image gradient is approximately aligned parallel with (or 180◦ opposite to) the
direction specified by θi.
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Finally, we can express the posterior as a Markov random field with pairwise
interactions (i.e. a graphical model):

P (q1, · · · ,qN |D) =
1
Z

∏

i

ψi(qi)
∏

i<j

ψij(qi,qj) (6)

where ψi(qi) is the local evidence for qi (from the likelihood function, Equa-
tion (4)) and ψij(qi,qj) is the compatibility (or binary potential) between qi

and qj (from the shape prior, Equation (2)).

3 Inference by Efficient Belief Propagation

The posterior distribution expresses our knowledge of what shape configurations
are most likely given the image data. One way to estimate the most likely shape
configuration is to calculate the MAP (maximum a posterior) estimate, i.e.Q∗ =
arg maxQ P (Q|D). However, we find empirically in our application that the MAP
marginal estimate suffices, which is the MAP estimate applied separately to each
variable qi:

q∗
i = arg max

qi

P (qi|D) (7)

for all i, where P (qi|D) =
∫

dq1dq2 . . . dqi−1dqi+1 . . . dqNP (Q|D)
is the marginal posterior distribution of qi. (If the posterior is sufficiently peaked
about its mode then the MAP marginal estimate will approach the MAP esti-
mate, and we speculate that this is the case for our application.) We can estimate
the MAP marginal using the BP (or alternate algorithms such as CCCP [20]).
(An alternate version of BP, the max-product belief propagation algorithm, may
also be used to estimate the MAP directly.) We note that the MAP marginal
estimate may not suffice for multiple targets (which produce multiple modes in
the posterior), but techniques similar to those used to find multiple targets in
[3] may be adapted to solve this problem in future research.

If the connectivity of the Markov random field contains no loops (cycles) –
i.e. the associated connectivity graph forms a tree – then algorithms such as BP
are guaranteed [11] to find the exact marginals of the posterior in an amount of
time linear in N . These algorithms are not guaranteed to find a correct solution
when the connections have loops, which will naturally arise for the shapes we
will consider in this paper. However, recent work shows that, empirically, BP
works successfully in certain domains even when loops are present [10,16], and
our experimental results corroborate this result.

In this section we describe how the BP algorithm is used to compute the
MAP marginals of the posterior distribution. We note that BP requires the use
of discrete variables, so it is first necessary to quantize the configuration variable
Q by restricting it to assume only a discrete set of values (referred to as the
“state space”). In principle this quantization can be made as fine as necessary to
approximate the original posterior arbitrarily well, but for computational reasons
we will use as coarse a quantization as possible.
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We will require that qi ∈ S, where S is a finite, discrete state space, for all
i = 1, . . . , N . In general we will define S according to an adaptive quantization
scheme to be the set of all triples (x, y, θ) such that (x, y) are the coordinates
of pixels on the image lattice (or only those pixels having sufficiently high edge
values), and θ belongs to a sampling of orientations in the range [0, 2π). See
Section (4) for details.

3.1 The Standard BP Algorithm

The Markov Random Field framework represents the template as a set of nodes
with a particular pairwise connectivity structure and a posterior probability dis-
tribution given by Equation (6). In order to estimate the marginal distributions
the BP algorithm introduces a set of message variables, where mij(qj) corre-
sponds to the ”message” that node i sends to node j about the degree of its
belief that node j is in state qj . The BP algorithm to update the messages is
given by:

m
(t+1)
ij (qj) =

1
Zij

∑

qi

ψij(qi,qj)ψi(qi)
∏

k∈N(i)\j

m
(t)
ki (qi) (8)

where Zij =
∑

qi
m

(t+1)
ij (qi) is a normalization factor and the neighborhood

N(i) denotes the set of nodes directly coupled to i (excluding i itself), and the
superscripts (t+ 1) and t are discrete time indices. The product is over all nodes
k directly coupled to i except for j. The messages m

(0)
ij (.) may be initialized

to uniform values (see next subsection for details). The updates can be done in
parallel for all connected pairs of nodes i and j, or they can be applied to different
subsets of pairs of nodes at different times, without changing the fixed point of
Equation (8). We will exploit this freedom in our focused message updating
scheme, described in section (3.3), in order to boost the speed of convergence.

The belief variable bi(qi) is an estimate of the marginal distribution P (qi|D)
derived from the message variables as follows (omitting the time superscripts for
simplicity):

bi(qi) =
1
Z ′

i

ψi(qi)
∏

k∈N(i)

mki(qi) (9)

where Z ′
i is a normalization factor chosen so that

∑
qi

bi(qi) = 1. If the connec-
tivity graph is a tree, then the belief variables bi(qi) are guaranteed to equal the
true marginals P (qi|D) when the update equations have converged to a fixed
point[11].

In general the computational cost of performing a message update is pro-
portional to |S|2, where |S| is the size of the set S, since the sum over qi in
Equation (8) must be evaluated for all qj on the right-hand side of the equation.
However, we exploit the fact that the compatibility function ψij(qi,qj) is van-
ishingly small for most combinations of qi and qj . We have experimented with
exploiting this “sparsity” constraint in two ways. One way is to consider only
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all (xj , yj) that are sufficiently close to (xi, yi) (no more than a few times the
distance between (xi, yi) and (xj , yj) on the reference shape), i.e. all qj within
a ball B centered on qi. The other is to use a smaller ball B centered on a pre-
diction of qj given qi, using the reference shape to make the prediction. Both
of these schemes reduce the computational cost of performing a message update
from |S|2 to |S||B|.

3.2 Belief Pruning

We initialize the messages to uniform values: m
(0)
ij (qi) = 1/|S|, which corre-

sponds to all of the beliefs being initialized to uniform distributions across S.
We then perform message updates followed by calculations of the beliefs, and
iterate this process. If at any point the (normalized) belief of a state qi asso-
ciated with node i falls below a threshold value ε (which we typically set to
ε = 10−8/|S|), we remove this state from further consideration for node i. More
precisely, if b

(t)
i (qi) is the belief of node i in state qi at time t, then we define a

pruned state space S
(t)
i for node i:

S
(t)
i = {q ∈ S|b(t)i (q) > ε}

Using this notation we can write the following message update equation:

m
(t+1)
ij (qj) =

1
Zij

∑

qi∈S
(t)
i

ψij(qi,qj)ψi(qi)
∏

k∈N(i)\j

m
(t)
ki (qi) (10)

for all qj ∈ S
(t)
j . The expression for the beliefs is unchanged from Equation (9)

except that b
(t)
i (qi) is only evaluated for qi ∈ S

(t)
i , and the normalization factor

Z ′
i is chosen so that

∑
qi∈S

(t)
i

bi(qi) = 1.

3.3 Focused Message Updating

The BP message update equation can be executed either by updating all the
messages mij(qi) (we are omitting time superscripts in this section for conve-
nience) in parallel or by updating certain messages before others. The idea of
focused message updating is to update messages in a particular sequence so as
to speed up BP. The sequence of message updates corresponds to a particular
sequence of nodes i1, i2, . . . iM . The first messages to be updated are mi1,i2(qi2),
followed by a calculation of the belief bi2(qi2). This causes the state space Si2 ,
which was initialized to the full space S, to be pruned. Then messages mi2,i3(qi3)
are updated, and since Si2 has just been pruned this update will be faster than
the first update. Additional pruning will occur when bi3(qi3) is calculated, and
the process repeats until miM−1,iM

(qiM
) is updated. Subsequent sequences of

updates are performed until messages mij(qj) have been updated for all neigh-
boring pairs i and j at least once and the updates have converged. In practice,
we have obtained good solutions for our deformable template by calculating the
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beliefs after a sufficiently long fixed sequence of updates, without needing to
check for convergence to decide when to halt the updates.

For our deformable template the initial sequence of nodes has been chosen
consistent with the 20 Questions (divide-and-conquer) search strategy [5,13].
Nodes corresponding to “key features” of the target shape – portions of the
contour, such as T-junctions and corners, that are less likely than other portions
to appear in the background clutter – are visited in the message updates first.
This can be illustrated in the case of the letter “A” template, whose connectivity
graph is shown in Figure (1). We begin by passing messages from node 3 to 16,
which is a pair of neighbors chosen as defining a portion of a T-junction on the
left side of the letter. The normals corresponding to these neighboring nodes
are roughly perpendicular to each other, and we expect this configuration to be
somewhat rarer in background clutter than the straight-line configurations that
predominate in the structure of the letter “A” (e.g. nodes 0 through 3 lie along
a roughly straight section).

Continuing the 20 Questions strategy, the best portion of the template to
search for next should be the other T-junction (on the right side of the letter),
because we expect that the conjunction of the two T-junction features should
be quite rare in the background. Accordingly we next pass messages from node
16 to 19 (via the long-distance connection) and then from 19 to 11, and by the
time messages are passed to node 11 a significant amount of pruning has taken
place. Messages are then passed in the opposite direction, from nodes 11 to 19 to
16 to 3, so that the state space at all four of those nodes has been substantially
reduced, and we can treat these four nodes as a foundation from which we can
send out messages to the rest of the nodes in the template. There are many
possible ways to continue the updates, and we refer to the technical report [4]
for details of the procedure we use. Briefly, the bridge of the letter is traversed,
followed by the two legs, followed by the main loop at the top of the letter, and
then the entire process is repeated.

We experimented with removing the long distance connection from the letter
“A” prior (which required slight modifications of the message update sequence)
and found that, although BP still converged to the correct solution, it took about
50 percent longer to do so. This shows that the long-distance connection causes
substantial pruning, and since the bulk of the computations take place in the
message updates among the first several pairs of nodes, increased pruning early
on can speed up the overall convergence significantly. Empirically we found that
the combined use of belief pruning and focused message updating speeds up BP
by a factor of about 30.

4 Experimental Results

We tested our deformable template on three shape models: the letter ”A,” a
stick-figure shape and the contour of an open hand. For each shape, the shape
prior was created by fixing a suitable reference shape and a sparse connectivity
structure. The coefficients KA

ij ,K
B
ij and KC

ij from Equation (1) were then chosen
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so that the stochastic samples from the shape prior represented the desired shape
variability reasonably well (see Figures (1,2,4) to see the reference shapes and
stochastic samples for the letter “A,” stick-figure and hand shapes).

Fig. 4. Stick-figure shape on top row, hand shape on bottom row. Reference shapes
are shown in leftmost column with lines showing the associated connectivity graph,
followed by stochastic shape samples in other columns. In the hand shape sample
figures, the thumb is shown on the bottom, and long-distance connections are shown
between adjacent fingertips.

The letter “A” and stick-figure templates were tested on grayscale images of
a whiteboard with handwritten characters and shapes (see Figures (5,6,7) for
sample results), and the hand template was tested on grayscale indoor images
taken of the hand. The images, which were taken by a digital camera at a
resolution of 1280 x 1000 pixels, were decimated by an appropriate amount
(typically by a factor of 4 in each dimension) to reduce the size of the state
space S. The edge map Ie(x) and orientation map φ(x) were then computed on
the decimated images, which took less than a second of CPU time.

To reduce the state space S further, we pre-pruned the images by removing
pixels that were unlikely to be edges: any pixel location x such that the ratio
Pon(Ie(x))/Poff (Ie(x)) < 0.5 was removed from consideration in the state space
S. Finally, we experimented with the simplest possible quantization of template
angles: for each pixel location (x, y) remaining after pre-pruning, the triples
(x, y, φ(x, y)) and (x, y, φ(x, y)+π) were included in S. A finer sampling of angles
in the range [0, 2π), perhaps including several angles focused in the neighborhood
of φ(x, y) and φ(x, y) + π, may be more desirable, though this has not yet been
tested. Finally, the template was scaled manually to match the scale of the target
shape in each image before running BP (it sufficed to set the scale to a precision
of about ±10%.)

For the whiteboard images, the usual edge map Ie(x), based on the magnitude
of the image gradient (see section (2.2)) was replaced by a Laplacian operator
in order to minimize the number of edge responses: the image gradient is high
on both sides of a handwritten stroke, whereas the magnitude of the Laplacian
attains a high value only in the center of the stroke. Since the Laplacian map
had high contrast on the whiteboard images, we were able to safely quantize its
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values into two bins, so that the Pon(Ie(x))/Poff (Ie(x)) ratio assumed either a
low or a high value (see [4] for details).

Results for the “A” template are shown in Figures (5) and (6). Figure (5)
illustrates the deformable template’s ability to handle significant shape defor-
mations (left panel) and global rotations (right panel). Figure (6) demonstrates
that matching is successful even with substantial amounts of clutter. Figure (7)
shows successful matches for the stick-figure template, which demonstrates the
high amount of variability that is allowed (in this case in the arms of the stick-
figure). Finally, Figure (8) shows that the deformable template can detect shapes
even when the target has relatively low contrast relative to the background.

The CPU time needed to perform the deformable template matching by BP
is roughly proportional to the number of nodes on the template and the number
of pixels that survive pre-pruning. However, how much pruning occurs during
BP, as well as when it occurs, also affects the speed significantly, and these
factors vary from image to image. On an 850 MHz AMD processor, the images
in Figure (5) took 2.8 and 21 seconds of CPU time, respectively; the total CPU
time divided by the number of initial states |S| for both was on the order of 1
msec per state. The times for the stick-figure and hand results were not measured
precisely but ranged from several seconds to half a minute for the stick figures
to a few minutes for the hands.
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Fig. 5. Two sample letter “A” results, with black-and-white crosses drawn to indicate
the location of the “A” shape as estimated by the deformable template algorithm. In
the example on the left, note that the template locates the upper-case “A” and not the
lower-case version (a separate shape prior would need to be used to detect lower-case
“A”’s). On the right, note that the template is rotation-invariant and thus is able to
detect the upside-down “A.”

5 Conclusion

We have described a promising algorithm for detecting flexible objects in real
images. The algorithm can handle substantial shape deformations, large amounts
of background clutter and low contrast between target and background.

It is desirable to speed up the algorithm further and to deal with certain
limitations of the model. Alternatives to BP for estimating posterior marginals,
such as CCCP [20] and tree reparameterization [14], enjoy certain advantages
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Fig. 6. Letter “ A” located by deformable template algorithm in images with consid-
erable background clutter.

Fig. 7. Stick-figure matching results. Note the high variability of the shape, especially
in the arms.

over BP (for instance, convergence to a locally optimal solution is guaranteed
for CCCP even on a loopy graph) and may prove faster than BP if techniques
analogous to belief pruning and focused message updating can be adapted to
them. We expect that augmenting the existing edge and orientation maps by
other low-level cues such corner, T-junction and endstop detectors would signif-
icantly speed up template matching by providing a quick method for zeroing in
on key features.
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Fig. 8. Top row, results of matching hand template in images. Matching succeeds even
for fairly low contrast between the target against background, as shown for second
result in bottom row (original image on left, Pon(Ie(x))/Poff (Ie(x)) ratio on right).

The biggest limitation of the current model seems to be the lack of scale
invariance. One way to overcome this limitation is to use a scale-invariant shape
representation. Another solution may be to use a hierarchical representation that
detects parts of the target shape – such as straight-line segments and fingertips
in the case of a hand shape – at a range of scales before grouping them together.
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