HIROSHIMA MATH. J.
22 (1992), 225-236

Finding disjoint incompressible spanning
surfaces for a link

Osamu KAKIMIZU
(Received January 17, 1991)

Introduction

In this paper we shall consider the problem of finding disjoint
non-equivalent incompressible spanning surfaces for a link. It is known that
there are many links in the 3-sphere which have plural non-equivalent
incompressible spanning surfaces ([1], [10], [3], [8] etc.). We shall associate
to each link L a certain simplicial complex IS(L) whose vertex set is the set
FF (L) of the equivalence classes of incompressible spanning surfaces for
L. We also introduce a ‘distance’ on #%(L). Using this distance, we prove
that the complex IS(L) is connected. As an application of this result, the
complexes IS(L) for composite knots are determined under some additional
conditions.

Let L be an oriented link in the 3-sphere S3, and let E(L) = S* — Int N (L)
be its exterior where N(L) is a fixed tubular neighborhood of L. We shall
use the term “spanning surface” for L to denote a surface S = XnE(L) where
T is an oriented surface in S* such that 6% = L, % has no closed component
and is possibly disconnected and that nN(L) is a collar of 0 in £. Two
spanning surfaces for L are said to be equivalent if they are ambient isotopic
in E(L) to each other. A spanning surface S is incompressible (resp. of minimal
genus) if each component of S is incompressible in E(L) (resp. the Euler number
x(S) is maximum among all spanning surfaces for L). Let %(L) denote the
set of equivalence classes of spanning surfaces for L, and #%(L) and .# (L)
the subsets of & (L) consisting of those classes of incompressible and of minimal
genus ones respectively.

Now we associate to each non-split oriented link L a simplicial complex
IS(L) as follows: The vertex set of IS(L) is £& (L), and vertices oy, 04,...,0;
e £ & (L) span a k-simplex if there are representatives S;ea;, 0 <i <k, so that
5;nS; =0 for all i <j Replacing F¥(L) with #F(L), we obtain another
simplicial complex MS(L), and MS(L) becomes a full subcomplex of IS(L). In
§1 we define a ‘distance’ on &(L), and in §2 we prove the main theorem
(Theorem 2.1) which is formulated in terms of the distance. The main theorem
implies the following
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THEOREM A. Let L be a non-split oriented link. Then both IS(L) and
MS(L) are connected.

Scharlemann and Thompson [12, Prop.5] proved the connectedness of
MS(L) in the case when L is a knot. We have a feeling that Theorem A is
useful for the classification of the incompressible spanning surfaces for a given
link. For example, Eisner [3] proved that a composite knot of two non-fibred
knots has infinitely many non-equivalent minimal genus spanning surfaces. In
§3 we prove the following theorem by using Theorem A.

THEOREM B. Let K be a composite knot of two knots K, and
K,. Suppose that, for each i =1 and 2, K, is not fibred and the incompressible
spanning surfaces for K, are unique. Then IS(K)= MS(K) and this complex
is in the form of

di-1 (43 Gi+1
) ). ) ) )
A\ S J J A

In Theorem B the vertices o;(ieZ) are represented by the surfaces
constructed by FEisner [3]: See §3.

Recently we have gotten the classification of the incompressible spanning
surfaces for each prime knot of < 10 crossings [9]; Theorem A is extensively
used in its proof.

1. Distance on & (L)

Let L < S* be an oriented link, E = E(L) its exterior and #(L) the set
of equivalence classes of spanning surfaces for L. In this section, we will
define a distance on &(L).

Consider the infinite cyclic covering p: (E, ay) — (E, a) such that
p*nl(E, a,) is the augmentation subgroup of n,(E, a) where acE is a base
point (cf. [2]), and let 7 denote a generator of the covering transformation
group. Let S < E be a spanning surface for L, and let E, denote the closure
of a lift of E— S to E (note that E — S is connected since S has no closed
component). Put E; = t/(E,) and S; = E;_\NE; (jeZ). Then we see that

(1) E=UE,p'(S)=US; and p|S;: S;— S is a homeomorphism.
jeZ jeZ

Let ' < E be another spanning surface for L. Then we have a similar
description of E:
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(1.2) E=UE, Ei-{nNE,=8;, p"*(S)= US; and Ej=r1"E}).
keZ keZ
We set
m =min (ke Z|E,NE; # @}, r = max (ke Z|E,nE; # J} and
as, S)=r—m.
It is easy to see that
(1.3) (a) d(s,S8)=1,
(b) d(S,S)=1if and only if SNS' =9,
() E;nE;#@ if and only f m<k—j<r, and
(d E;c U E,Sie U E.

m<k<r m+i<k<r

Now, for o, ¢'e (L), we define d(o, 6')e Z, (the set of non-negative
integers) by

J ) 0 if ¢=0,

o, 0)=

( { min d(S, S') if ¢ #0g'.
Sea,S’ea’

ProrosiTioN 1.4.  The function d: S (L) x S (L) — Z, satisfies the axioms
of distance, i.e. for every o, ', 6" S (L),

(i) d(o,0)=0if and only if 0 =0,
(ii) d(o, 6') = d(o', 0) and
(ii) d(o, ¢") < d(o, ') + d(d’, ¢").

Proor. (i) follows from (1, 3) (a).

(i) Suppose that ¢ # ¢’ and d(o, ¢') = d(S, S’) for some Sea, S'ed’. By
(1.3) (c), EonE; #@ if and only if —r <j< —m. Hence d(d', o) <d(S', S)
<(—m)—(—r)=d(o, ¢). Similarly we have d(¢’, 6) > d(o, ¢’}, and hence
d(e, ') = d(¢, 0).

(i) It suffices to verify the inequality in the case that ¢ # ¢ and
o' # ¢". Suppose that d(c, 0') =d (S, S') for Seo, and S’ed’. Then we can
take S”€o” so that d(¢’, o”) = d(8’, $”), and E has the following description
associated with §”:

E= UE/,ELnE =8/,p7'(§) = US/ and E/ =7l
icZ icZ

Now suppose that E;nE; # @ if and only if m <k —j <r, and that E;nE{ # @
if and only if m'<i—k<r This implies that d(s,¢0)=r—m and
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dlo',6")=r —m’. If E;nE;! # 0, by (1.3) (c) there is ky(m < ky <) so that
E,,NE/#0. Since m <i—ky<r, and m+m <i<r+7r. This implies
that d(o, 6) <d(S,S")<(r+r)—(m+m)=d(s, o)+ d(d, ¢"). O

2. Main theorem

The following Theorem 2.1 is the main theorem in this paper, from which
Theorem A follows directlt. For a spanning surface S, its equivalence class
will be denoted by [S]e ¥ (L).

THEOREM 2.1. Let L<S® be a non-split link and S,S < E(L) two
incompressible (resp. minimal genus) spanning surfaces for L. Suppose that
n=d([S],[S]) = 1. Then there is a sequence of incompressible (resp. minimal
genus) spanning surfaces S = Fy, F,..., F, such that

1 [FI1=051,
(2) F,_(nF;=0 for each 1 <i<n, and
3) d([S],[F1)=1i for each 0 <i<n.

PrOOF. We prove the theorem by induction on n = d([S], [S"]). In the
case of n=1, §' is equivalent to F with SnF=0 by (1.3) (b), and the
conclusion is clear. Thus we assume that the theorem holds for n <q—1
(¢ =2) and then will prove it for n=q. Moving S’ by an ambient isotopy
of E = E(L), we may assume that

2.2) d(s, S")=gq, 0SndS’ = ¢ and S intersects S’ transversely.

Note that E is irreducible since L is non-splittable. From this together with
the incompressibility of S and S’ we can further assume that

(2.3) each circle of SNS’ is essential on S and §'.

We will find an incompressible (resp. minimal genus) spanning surface
§” < E which satisfies the condition

(2.4) $"nS' =0 and d([S],[S"]))=q— 1.

We use the same notation E, (1.1), (1.2), etc. for E, S, S’ as in the beginning
of §1. Consider E; where r=max{keZ|E,nE;#@}. We note that
EonS,,; =9 and E,nS, =0 by (1.3). By (2.2) and (2.3), S; intersects S;
transversely and each circle of S;nS; is essential on S; and S;. Hence

(2.5) each component of S;NE, and S,nE, is incompressible in E;.

Let X be a regular neighborhood of S;U(E,NE,) in E; with XnE, = 0.
Let Y be the closure of the component of E; — X containing S,,,, and put
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R=XnY. Then R is a surface in E; which is disjoint from E,, E,, S; and
S;+1. R inherits the orientation from S, and S;, and p(R) < E is a spanning
surface for L with p(R)nS’ = 0. Now we consider the two cases that both
S and §' are of minimal genus and that both S and S’ are incompressible
separately.

Case 1: Both S and S’ are of minimal genus. We see that p(R) is also
of minimal genus as follows. Put Z=(EqUE)N( \U E;). Let V be a

k<r—1

regular neighborhood of (E; US,)NZ in Z, and W the closure of the component
of Z — V containing S, (note that S, = Z). Put Q = VnW. Then Q inherits
the orientation from S, and S;. p: Q— E is an embedding since Q < E,
—(SoUS,), and hence p(Q) is a spanning surface for L. By the constructions
of 0 and R together with (2.3), we see that x(Q) + x(R) = x(S,) + x(S}) = x(S)
+ x(S’) = 2x(S). This implies that x(Q) = x(R) = x(S) and p(R) is of minimal
genus since so is S. We put §” = p(R).

Case 2: Both S and S’ are incompressible. In this case R is not
necessarily incompressible in E,. We will modify R to be incompressible.

Put X' =CI(E; — Y). By applying a finite number of simple moves due
to McMillan [11] to X’ in E;, we obtain a 3-submanifold X" so that each
component of C1(6X”nInt E)) is incompressible in E;. This means that there
is a finite sequence of 3-submanifolds of E;, X' = X,, X,,...,X; = X" such
that, for each 1 <i <k, one of the following conditions (i)-(iv) holds:

(i) X, is obtained from X,;_, by adding a 2-handle whose core is a 2-disk
D < Int E] such that DnX;_, = dD < C1(6X;_,nInt E}) and D is essential in
Cl(0X;_ynInt E;).

(ii)) There is a 3-ball C = Int E; such that X; =X, _,UC and X;,_;nC
=0C < C1(éX;_,nInt E,).

(iii) X, is obtained from X;_, by splitting at a 2-disk D < X;_, such
that 6D = DnCl(0X;_,nInt E}) and D is essential in Cl(0X;_,nInt E)).

(iv) There is a component C of X;_, such that C is a 3-ball and
X;=X,_,—-C.

CramM 2.6. We can take X” so that X"nE, =@ and E,nE/ = X"

Consider the above sequence X' = X,, X4,...,X; = X". We will show that
each X; can be taken so that X;nE, =@ and E,nE,/ = X; by induction on
i. By the definition of X', X, satisfies the condition. We suppose that X;_,
satisfies the desired condition, and consider X;. If X, is obtained by a simple
move of type (ii), the added 3-ball C is disjoint from E, since C < Int E; and
since there is no component of E,nE, which is contained in Int E;. Hence
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X, satisfies the desired condition. Similarly, if X; is obtained by a simple
move of type (iv), then the removed 3-ball is disjoint from E,, and X; satisfies
the condition. In the case that X; is obtained by a simple move of type
(i), we can modify the 2-disk D, a core of the added’ 2-handle, so that
DNE,=@. In fact since each component of §,nNE, is incompressible in E,
by (2.5), this modification can be done by using the standard cut and paste
argument. Hence we can take X; to be satisfy the desired condition.
Similarly, in the case that X, is obtained by a simple move of type (iii), we
can take the splitting 2-disk D to be disjoint from E, by (2.5). Hence we
can take X; to be satisfy the desired condition. Thus Claim 2.6 follows.

Let Z be the union of the components of X” containing some components
of §; and put F = Cl(0ZnInt E;). Clearly ZnE, =@ by Claim 2.6. Claim
2.6 further implies that E,nE; < Z since there is no component of EqNE,
which is disjoint from S;. Moreover F is incompressible in E; and p(F)
becomes an incompressible spanning surface for L which is disjoint from S’. In
this case we put §” = p(F).

Now we consider the two cases together, and show the following assertion

@7 d([S1. [5D=q— 1.

We have d([S'], [S"]) <1 by §'nS”"=@. From this and by the assumption
that d([S], [S"]) = g together with Proposition 1.4 (iii), we have d([S], [S"])
>d([S],[S])—d([S],[S"])=q— 1. On the other hand, we consider the
description of E associated with $” as (1.1) in §1:

E=\E/,El_\nEj=8] and p '(§")=US/.
icZ ieZ
By the construction of $”, we may assume that S = F in Case 2 (resp. S, = R
in Case 1). Then we sec that E,c U E;/. Hence d([S],[S"])

r—g<isr-1
<d(S,8"y<q—1, and (2, 7) follows. Thus S” = E is an incompressible (resp.
minimal genus) spanning surface for L satisfying the condition (2.4).

Now we will define the desired sequence of incompressible (resp. minimal
genus) spanning surfaces S = Fy, F,,...,F,. Since §" satisfies (2.4), by the
inductive assumption, there is a sequence of incompressible (resp. minimal
genus) spanning surfaces S = Fy, Fy,...,F,_; such that

(1) [F,-1=1[8"],
2y F,_ynF,=@ for each 1 <i<g—1, and
(3) d([S],[F])=iforeach 0<i<gq—1.

Let {h} be an isotopy of E such that h,=id and h,;(S")=F,_;. Put
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F,=hy(S"). Then [F]1=I[S81], F,_nF,=0 since $"nS' =@, and d([S],
[F,]) = d([S], [S"]) = q by the assumption. Thus the theorem holds for n = g.
The proof of Theorem 2.1 is now completed. []

3. Simplicial complexes IS(L) and MS(L)

In this section we first note some properties of the complexes IS(L) and
MS(L), and then prove Theorem B. Let L be a non-split oriented link. Then
the dimension of IS(L) is finite by Haken’s finiteness theorem [5, p. 48].
However the example described in [8] shows that IS(L) is not necessarily
locally finite in general. By Theorem A we can define #,(o, ¢’) (resp. £y (o, 0'))
for o, 0'e F¥(L) (tesp. A4 F(L)) by the minimum length of edge paths in
FFL (L) (resp. MS(L)) connecting ¢ to ¢’. Then we have

ProrosiTioN 3.1. (1) £,(0, ') = d (0, ¢') for o, '€ FF(L).
(2) £y(0, 6') = d(o, 0') for o, 6 € MF(L).

Proor. We give the proof of (1) only because the proof of (2) is
similar. First note that /,(g,¢’)=1 is equivalent to d(s, ¢')=1. Also
Theorem 2.1 shows that #,(0, ') < d (g, ¢'). Conversely, if Z,(6, ¢’) = n, then
by the definition there is a finite sequence ¢ = 0y, 04,...,6, = ¢ in F&L(L)
so that £ (o;,_,,0;)=1 for all 1 <i<n. Hence

(0, 0') = £1(00, 01) + -+ £1(0,-1, 0,)
= d(0q, 01) + -+ + d(0,_1, 0,)
> d(a,, 0,) = d(o, o).
Thus we get £,(0, ¢') =d(0, 0"). [

Now let K be a composite knot of two non-fibred knots K, and K,. We
will determine the simplicial complexes IS(K) and MS(K) under the assumption
that the incompressible spanning surfaces for K; are unique for i=1 and
2. We note that there are many non-fibred 2-bridge knots whose incompressi-
ble spanning surfaces are unique (cf. [6]). Also there are many non-fibred
and non-2-bridge prime knots of < 10 crossings whose incompressible spanning
surfaces are unique ([9]).

In [3] and [4] Eisner constructed infinitely many non-equivalent minimal
genus spanning surfaces for K. We review the construction. We may assume
that E(K) = E(K,)UE(K,) and the intersection 4 = E(K,)nE(K,) = 0E(K,)
NJE(K,) is an annulus. Let S = E(K) be a minimal genus spanning surface
for K such that so is R;=SnE(K,) for K, (i=1,2). Note that S =R, UR,
and the intersection I = R,NR, =SNA is an arc. We fix an identification
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A={"s0<0<1,0<s<1}

so that I ={(1,5)]0<s<1} and the loop m:[0, 1] E(K), 8 (e**, 1)
represents a meridian element yen, (E(K), a) where a = (1, 1)edl < E(K). Let
A x [0, 1] < E(K,) be an embedding such that 4 = 4 x {1} and (4 x [0, 1])
NOE(K) = 84 x [0, 1]. We define a homeomorphism f: E(K) — E(K) by

(32 fIE(K,) =id, fI(E(K,) — (4 x [0, 1])) = id and
f(e*™, s, ) = (29 5, 1) on A x [0, 1].

Now we put S®™ = f*(S) for each neZ Then we see that each S® is a
minimal genus spanning surface for K which satisfies the following properties:

33) (a) S®nA=1L.
(b) S™NE(K,)=R,.
() S™nE(K,) is a minimal genus spanning surface for K, and
equivalent to R;.
(d) S® = fk"*(S™) for each ke Z.

ProrosiTION 3.4 ([3], [4]). S® is not equivalent to S™ for all k # n.

Moreover we show the following proposition; Theorem B in the
introduction follows from this together with Proposition 3.1.

PrOPOSITION 3.5. Let K be a composite knot of two non-fibred knots K,
and K,, and let {S™},., be the spanning surfaces for K constructed
above. Suppose in addition that, for i=1,2, the incompressible spanning
surfaces for K; are unique. Then

(1) any incompressible spanning surface for K is equivalent to some S™, and
(i) d([S™], [S®])=n—k for all n> k.

PrOOF. By the construction of {S®}, we can move S**! by a tiny
isotopy of E(K) so that S®*1 is disjoint from S®. Hence d([S®], [S**V])
= 1. It follows from this together with Proposition 3.4 that IS(K) contains
the following complex as a subcomplex:

Sk-D}  [s09}  [sk+ 1)

e} ) O ) )
/) A4 (4 J -/

If there is an incompressible spanning surface for K which is not equivalent
to any S®, then by Theorem A, there is an incompressible spanning surface
which is not equivalent to any S® and disjoint from some S®™. Thus we
prove (i) by showing the following assertion for each neZ.

(3.6) Let F be an incompressible spanning surface for K which is disjoint from
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S§™. Then F is equivalent to S®~V, §® or §"+ 1,

Moreover it suffices to show (3.6) for n =0 by (3.3).

Let F be an incompressible spanning surface for K which is disjoint from
S©. We can move F by an isotopy of E(K) so that F intersects A
transeversely in an arc J since F is incompressible. Note that J is properly
embedded in A and parallel to I in A. Hence F,= FnE(K,) becomes an
incompressible spanning surface for K; (i=1,2). We may assume that
J={(—1s)]0<s5<1} (c A). By the uniqueness of the incompressible
spanning surfaces for K, F; is parallel to R, in E(K,) (i=1,2). Let
e?: F, x [0,1] > E(K;) be an embedding such that e?|F; x {0} =id and
eD|F; x {1} is a homeomorphism F;—»R; (i=1,2). We can take ¢? so that
eI %[0, 1])=AneF;x[0, 1]) (i =1, 2) in addition. Hence e?(J x [0, 1])
=A, or =A_ where A, ={(*",5)|0<60<1/2,0<s<1} and A_={(e2", s)|
1/2<6<1,0<s<1}. Thus there are four cases (1)-(4):

(1) eI x[0,1])=e?(J x[0,1])=A,. In this case F=F,UF, is
parallel to § = R, UR,.

@ eV(J x[0,1])=e?(J 'x [0,1]) = A_. In this case F is also parallel
to S.

(3) eV(J x[0,1])=A, and e?P(J x [0,1]) = A_. In this case we see
that F is equivalent to S = f(S).

4 eV(J x[0,1])=A_ and e?(J x[0,1])=A,. In this case F is
equivalent to ST = f71(S).

Thus (3.6) and hence (i) are proved.

Next we prove (ii). It follows from (i) that if d([S*], [S™]) < n — k for
some k < n, then d([S¥], [S¥]) =1 for some i,j with j —i>2. Thus, to
prove (ii) it suffices to show the following assertion

3.7) d([S®], [S™]) =2  for all k, n with n — k> 2.

Moreover it suffices to show (3.7) for k =0 by (3.3).

We now assume that, for some n > 2, there is an isotopy h: E(K) x [0, 1]
— E(K) so that hy =id and h (S™)nS =@, and then we will show that this
implies a contradiction. Let p: (E, ap) > (E(K), @) be the infinite cyclic
covering. Putting E(K;) = p~'(E(K;), we see that the restriction p: E(K,.)
— E(K,) is the infinite cyclic covering for K, E=EK)UEK, and
A = E(K,)nE(K,) = p~'(A) is homeomorphic to I x (— o0, ). Also E has
the following description (see §1):
(3.8) E= U Ew, Ex-iNE =S, p™ ' (S) = U Si,

keZ keZ

aoeSo and (Ek, Sk’ ak) = tk(EO’ SO’ aO)
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where 7 is the covering transformation corresponding to the meridian element
pen,(E(K), a). Putting (E); = E.nE(K) and (S,); = S,nE(K), we have a
description of E(K;) (i=1, 2):

(39) E(Ki) = U (Exi> (Ex=1)in(EQ; = (Sy); and p~1(R) = U (Sy)i-
keZ keZ
Now consider the lift (S&, a,) of (S™, a). We can identify S¢ with the
surface obtained as follows: Set H=( {J (E))NdE(K,) and R=H

O<k<n-—1
U(S,);- We push R into U (Ep, by a tiny isotopy keeping dR = 9(So),
O0<gk<n—1

fixed so that the resulting surface R’ satisfies the condition R'n3JE(K,) = R’
= 3(Sp);. Then by the definition of S’ we can identify S with R'U(S,),
(see Figure 1).

R 5™ x {0
N g( ><\{ B S

—r\ 3 { /\ Y

So S, Sa-1 E(Kl)
L/ e’
B [ B2

%o a = \A a,
E,)

—— — ~—

o E, E,—,
Figure 1

We next consider the lift g: (S™ x [0, 1], ao x {0})—(E, a5) of the
restriction h: (S™ x [0, 1], a, x {0}) - (E(K), ao). Note that g(S™ x {0})
=S and that g(S™ x {1}) is contained in E, for some keZ since
h(S™)nS =@. We move g if necessary so that g is transverse relative to
A. Thus A’ =g '(A) is a properly embedded surface in S x [0, 1] which
satisfies the following
(3.10) There is a unique pair of component A, of A’ and component C of
0Ay so that A'n(S™ x {0}) = 4on(S™ x {0})=I<=C and 94 —C < S®
x {1} (cf. (3.3)).

Since E(K)) (i = 1, 2) are aspherical and since ™ x [0, 1] is irreducible,
by the standard technique (cf. [7, Lemma 6.5]), we can modify g into a
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homotopy g¢': S™ x [0, 11— E such that ¢'|S™ x {0} = g|S® x {0}, g'(S™
x {1}) < E,, and that (3, 10) remains valid for A'=g¢'~!(4) and each
component of A’ is incompressible in S™ x [0, 1] in addition. Hence, by
Haken [5, Lemma in §8], 4; must be a disk, A’ has no closed component
and each component of A’ — A, is parallel to a surface in S® x {1}. It
follows from this that we can further eliminate all components of A" — A;
from g'~!(A) by moving g'. Thus the resulting ¢’ satisfies the condition that
g~ '(A) is a disk which is isotopic to I x [0, 1] in S® x [0, 1]. Now we
have two cases. Note that either n — k> 2 or k> 1 since n> 2.

Case 1: n—k >2. In this case we will show that ((E,_)y, (S,— 1)1 (Sh1)
is homeomorphic to (S,); x ([0, 1], 0, 1}: This contradicts the assumption
that K; is not fibred. Firstly, using the above homotopy ¢, we get a
homotopy §: R’ x [0, 1] — E(K,) such that

(3.11) §|R’ x {0} = id, §(OR’ x [0, 1]) < GE(K,), T = (R’ x {1}) is a properly
embedded surface in E(K,) and T < (E); — ((S);U(Sk+1),) (see Figure 2).

We also note that

(3.12) the surface R" = R'n(E,-,); is parallel to CI(3(E,_;); — (S,_),) in
(E,_,);, and in particular dR” is parallel to d(S,_;); in (S,—1):.

(So)s (811 (Sn-1)s (S

it

R [ E(K)

i

|
T

Figure 2

(Ea-ih

We now move § to be transverse relative to (S,_,);- Then X =
G 1((S,-,),) is a surface in R’ x [0, 1], and there is only one component X,
of X so that Xna(R x [0,1])= X,nd(R' x [0,1]) = R x {0}. Moreover
XoNd(R x [0, 1]) is the circle dR” x {0}. We can further modify § so that
each component of X =g '((S,_,);) is incompressible in R’ x [0, 1] by
[7, Lemma 6.5]. Hence, by Haken [5, Lemma in §8], X = X, and X, is
parallel to R” x {0} in R x[0,1]. Thus the region Z bounded by
(R” x {0})U X, is homeomorphic to R” x [0, 1]. By using the restriction §|Z,
we get a homotopy a: R” x [0,1]—> ) (E), so that ay=1id and «(0R"

kzn—1
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x [0, 1JUR” x {1}) =(S,-,);- Thus by Waldhausen [13, Lemma 5.3], R" is
parallel to the surface in (S,_,); bounded by OR”. From this together with
(3.12) we see that ((E,_.);» (S,—1):,» (S,)1) is homeomorphic to (S,);
x ([0, 1], 0, 1); this contradicts the assumption that K, is not fibred.

Case 2: k> 1. In this case, by using similar argument as in the case 1,
we can show that ((E,),, (So)2, (S1),) is homeomorphic to (S,), x ([0, 1], 0, 1).
This contradicts the assumption that K, is not fibred.

Thus (3.7) and hence (ii) are proved. The proof of Proposition 3.5 is now
completed. []
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