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ABSTRACT
Most modern compilers operate by applying a fixed, pro-
gram-independent sequence of optimizations to all programs.
Compiler writers choose a single “compilation sequence”,
or perhaps a couple of compilation sequences. In choosing
a sequence, they may consider performance of benchmarks
or other important codes. These sequences are intended
as general-purpose tools, accessible through command-line
flags such as -O2 and -O3.

Specific compilation sequences make a significant differ-
ence in the quality of the generated code, whether compiling
for speed, for space, or for other metrics. A single universal
compilation sequence does not produce the best results over
all programs [8, 10, 29, 32]. Finding an optimal program-
specific compilation sequence is difficult because the space
of potential sequences is huge and the interactions between
optimizations are poorly understood. Moreover, there is no
systematic exploration of the costs and benefits of search-
ing for good (i.e., within a certain percentage of optimal)
program-specific compilation sequences.

In this paper, we perform a large experimental study of
the space of compilation sequences over a set of known bench-
marks, using our prototype adaptive compiler. Our goal is
to characterize these spaces and to determine if it is cost-
effective to construct custom compilation sequences. We
report on five exhaustive enumerations which demonstrate
that 80% of the local minima in the space are within 5 to
10% of the optimal solution. We describe three algorithms
tailored to search such spaces and report on experiments
that use these algorithms to find good compilation sequences.
These experiments suggest that properties observed in the
enumerations hold for larger search spaces and larger pro-
grams. Our findings indicate that for the cost of 200 to
4,550 compilations, we can find custom sequences that are
15 to 25% better than the human-designed fixed-sequence
originally used in our compiler.
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1. INTRODUCTION
The basic structure of a compiler has been frozen since the

late 1950s. It consists of a fixed set of passes that run in one
of a handful of preselected sequences (e.g., -g, -O1, -O2, . . . ).
After forty or more years of research, we have at our disposal
a huge collection of optimizations, but the fixed structure of
our compilers cannot use these techniques to their great-
est effect. In Lctes 99, we showed that choosing a set of
optimizations and an order for them in a program-specific
way could produce better code, whether optimizing for run-
time speed or for code space [8]. Embedded systems are
a natural application area for such compilation techniques,
because the developers are often willing to pay additional
costs to meet specific performance goals. Since that paper,
several authors have looked at related problems or have built
systems that work along similar lines [20, 21, 29, 23, 33].

Our work in Lctes 99 used a particularly simple genetic
algorithm (ga) to choose compilation sequences. To improve
on that method, we need to understand the huge discrete
search spaces in which a compiler that tries to find custom
compilation orders operates. The compiler used in this pa-
per has 16 distinct transformations, ignoring parameter set-
tings. Choosing sequences of length 10 produces a space con-
taining 1610, or 1,099,511,627,776, sequences. (Letting the
search vary the parameters to the optimizations would cre-
ate an even larger space.) If the compiler is finding program-
specific sequences, each program will generate its own search
space. Before we can build practical compilers that oper-
ate in such spaces, we need a fundamental understanding of
these search spaces and their properties.

This paper presents the results of a large experimental
study that characterizes the search spaces in which such
a compiler operates. It describes our prototype adaptive
compiler. It reports on large-scale experiments, including
complete enumerations of some limited subspaces and sparse
samplings of larger spaces. It discusses the efficacy of several



search algorithms that we have designed to capitalize on the
measured properties of these spaces.

To our knowledge, this paper is the first experimental
characterization of these search spaces. Some of the results
are intuitive; for example, these spaces are neither smooth
nor continuous, so that simple steepest descent methods are
not guaranteed to reach a global minimizer. Other results
are surprising; for example the distance from a randomly
chosen point to a local minimum is small (see Figure 6).

Section 2 discusses prior work on the problem of finding
custom compilation sequences. Section 3 describes the enu-
meration experiments that we have performed to understand
the properties of the search spaces. Section 4 presents sev-
eral search strategies and evaluates their efficacy on a set
of benchmark programs with our prototype compiler. The
work in this section uses much larger search spaces than the
enumerations in Section 3. The final section discusses some
of the open problems that must be solved to make adaptive
compilers practical.

2. PRIOR WORK
A growing body of literature suggests that adaptive be-

havior can improve program performance. This work falls,
roughly, into three areas: programmed adaptation in li-
braries, algorithms to find good compilation sequences, and
attempts to adaptively control the compilation process using
command-line parameters.

Several groups have produced adaptively self-tuning nu-
merical libraries. This work suggests the kind of improve-
ment that might be achieved with adaptive compilation.
The Atlas library chooses, at runtime, the most appropri-
ate implementation from a set of precompiled versions; the
installation runs a series of machine-specific performance
tests that compute values for runtime parameters such as
blocking sizes [31]. Both fftw and uhfft generate custom-
optimized codes for performing fast Fourier transforms [17,
16, 25]. The numerical libraries for the Thinking Machines
CM-2 and CM-5 machines use metrics based on problem size
to make algorithm-choice decisions [19].

Other authors have looked at choosing compilation se-
quences. Kulkarni et al. used a ga, performance informa-
tion, and user input to select a sequence of local optimiza-
tions in Vista [23]; their ga is modeled after Schielke’s
ga [8]. Their system might well be improved by using the
search techniques described in Section 4. Zhao et al. are
developing analytical models that can be used to steer the
selection of a compilation sequence [33]. In the long run,
models like those that they propose can replace parts of the
feedback cycle that our system uses. Triantifyllis et al. rec-
ognize the potential benefits of finding good sequences; to
limit compile time, their system uses a fixed set of sequences
and retains the best results [29].1 The explicit goal of our
work on search algorithms is to achieve similar efficiency
without constraining the compiler to pre-selected sequences.

Several groups have looked at the problem of adapting
compiler behavior by picking program-specific command-
line parameters. Granston and Holler developed an algo-
rithm that picked program-specific or file-specific command-
line options for the hp pa-risc compiler [18]. Chow and Wu
used a fractional factorial design to attack the problem in

1This approach resembles the best-of-three spilling heuristic
proposed for register allocation by Bernstein et al. [3].

Intel’s compiler for the IA-64 [7]. Knijnenburg et al. adopted
a different approach; they used a parameter sweep to find
the best blocking factors for loops [21, 20]; we have shown
similar results with search-based techniques that use fewer
probes of the search space [12].

3. CHARACTERIZING SEARCH SPACES
Prior work has demonstrated that automatically-chosen,

program-specific compilation sequences can produce signif-
icantly different results for a variety of objective functions,
including both the runtime speed and size of the compiled
code [8, 10]. The techniques used to find such sequences,
however, are too expensive to make such adaptation prac-
tical for most compilations. The long-term goal of our re-
search is to discover effective techniques for deriving compi-
lation sequences that are efficient enough for routine use.

Advances are needed on at least two fronts to make these
techniques practical: better methods for evaluating the im-
pact of a specific compilation sequence and more effective
techniques for searching the space of possible sequences.
Because the search algorithm must evaluate each sequence
that it considers, techniques to efficiently evaluate the re-
sults of compilation have the potential to drastically reduce
the overall cost of finding good sequences. In particular, ac-
curate performance models may drastically reduce the time
spent in evaluation [24]. Better search techniques can also
decrease the number of sequences that must be evaluated.
This work focuses on understanding the properties of these
search spaces and designing search algorithms that capital-
ize on those properties.

Unfortunately, we know too little about the interactions
between optimizations to reason about these spaces analyt-
ically. Existing models are not yet mature enough for our
large-scale experiments [33]; thus, our approach is exper-
imental. We conduct two kinds of experiments: enumer-
ations and explorations. Enumerations examine a subset
of the optimizations and evaluate each point in that sub-
space for a single program and a sample input. They help
us understand properties of the search space and develop
intuitions about how search algorithms should work. Explo-
rations use a specific search algorithm to find good sequences
for a variety of programs under some objective function.
They let us evaluate the effectiveness of a search technique
across a variety of programs and confirm the intuitions de-
veloped in the enumerations.

Our Prototype Compiler We perform these experiments us-
ing our prototype adaptive compiler. As shown in Figure 1,
it has front ends for Fortran and C, a set of 16 distinct
optimizations, and back ends that generate code for a sim-
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Figure 1: Prototype Adaptive Compiler



ulator and for the Sparc. The optimizations can be run
in arbitrary order. The prototype uses a feedback loop and
a steering algorithm to pick a compilation order, measure
its impact, and adjust the compilation order. We have run
the prototype compiler with objective functions that mea-
sure operations executed, static code size, and a property
believed to correlate with power consumption. Throughout
the paper, we refer to the individual optimizations by the
following code letters:

c Sparse conditional constant propagation; this optimistic
global algorithm combines constant propagation with
unreachable code elimination [30].

d Dead code elimination; this global algorithm imple-
ments the SSA-based algorithm due to Cytron et al. [13],
with an improvement due to Shillner [11].

g Optimistic global value numbering ; an application of
Hopcroft’s dfa-minimization algorithm to global re-
dundancy elimination [1].

l Partial redundancy elimination (pre); this global tech-
nique uses data-flow analysis to find both full and par-
tial redundancies and eliminate them [26].

m Renaming ; this global pass builds a name space suit-
able for the implementations of pre and lcm. The
compiler inserts it (automatically) before pre or lcm.
It can also run as a standalone pass.

n Useless control-flow elimination; a simple, global al-
gorithm for eliminating useless nodes and edges the
control-flow graph [11].

o Logical peephole optimization; this peephole optimizer
examines operations that are connected by def-use chains
rather than proximity in the instruction stream [14].

p Iteration peeling ; this pass peels the first iteration from
each inner loop that it finds.

r Algebraic reassociation; this global transformation uses
associativity and distributivity to reorder expressions [4].

s Register coalescing ; this global pass combines live ranges
that are connected by copy operations. It uses the in-
frastructure of a graph coloring register allocator [6].

t Operator strength reduction; this pass implements an
ssa-based global algorithm [9].

u Local value numbering ; the classic algorithm, credited
to Balke, finds local redundancies and folds local con-
stants.

v SCC-based value numbering ; This global, optimistic,
hash-based algorithm performs value numbering and
constant folding [28].

x Dominator-based value numbering ; this algorithm op-
erates over regions in the dominator tree, giving it a
different scope that v [5].

y Value-numbering over extended blocks; this pass ex-
tends Balke’s algorithm (u) to extended basic blocks [5].

z Lazy code motion (lcm); this improvement to pre pro-
vides more careful placement of inserted operations [22].

Enumeration Results The search spaces are huge. Schielke’s
experiments operated in a 10-of-10 space (sequences of length
10 drawn from 10 optimizations) with 1010 possible sequences.
To keep the enumerations manageable, we used 10-of-5 sub-

spaces (9,765,625 points) and small programs. We compiled
each program with each sequence and recorded the corre-
sponding fitness value. This process creates large but man-
ageable datasets that we can analyze to gain insights into
the structure of these spaces. (We confirm the insights with
explorations of larger spaces for larger programs.) We also
use the datasets in offline experiments, since lookup is faster
than compiling the code and evaluating it.

Our first enumeration used a small Fortran program, fmin,2

and optimized it to minimize operations executed. We chose
the 5 optimizations experimentally; we started a hill-climber
from 100 randomly-chosen points in a 10-of-13 space. We
selected for use in the enumeration the 5 optimizations that
occurred most often in the 100 final sequences found by the
hill climber. They are loop peeling (p), partial redundancy
elimination (l), peephole optimization (o), register coalesc-
ing (s), and useless control-flow elimination (n). We call this
subspace fmin+plosn.

The fmin+plosn enumeration used 14 cpu-months on 3
processors; it took 6 wall-time months. Subsequent en-
gineering improvements in the compiler have radically de-
creased the overall time for such enumerations; we can now
enumerate a 10-of-5 space on 10 processors in about 2 weeks.

The results in fmin+plosn range from 1,002 to 1,716 in-
structions executed—a difference of 42%. The unoptimized
code also executes 1,716 instructions. For comparison, the
ga has found solutions at 822 (in a 10-of-13 space) and 835
(in a 10-of-16 space). The reader is cautioned against read-
ing any significance into the fact that the ga found a worse
solution in the larger space; the ga only probes a small frac-
tion of the space.

The fmin+plosn enumeration shows that the search space
is neither smooth nor convex. (Other enumerations con-
firm this result.) The fmin+plosn space has 189 strict local
minima—points with the property that every string at Ham-
ming-distance one has a higher fitness value.3 If we define
a nonstrict local minimum as a point where all Hamming-1
points have equal or higher fitness values, then fmin+plosn

contains 31,995 nonstrict local minima.
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Figure 2: Strings of Length Four in adpcm+plosn

2fmin has 150 lines of Fortran source code organized into 44
basic blocks. It minimizes an external function using a com-
bination of golden section search and successive parabolic
interpretation.
3The Hamming distance between two strings is the number
of positions in which they differ. Two strings are Hamming-
1 if they differ in a single position.



Understanding the data from these enumerations is dif-
ficult because we cannot visualize a 10-dimensional space.
The largest space that we can conveniently plot is a 4-of-5
space—strings of length 4 drawn from a set of five optimiza-
tions. The plot in Figure 2 shows the 625 fitness values for
adpcm-coder from MediaBench in the 4-of-5 plosn space.
The fitness values in this plot (and throughout this paper)
give the number of instructions executed by the compiled
code on a simulated risc architecture. (We discuss this
issue more in Section 4.) The surface resembles the sur-
face of a heavily-cracked glacier; it conveys little or no intu-
ition about the relationships between sequences and fitness
values. The fmin+plosn space displays similar disorder, as
shown in Figure 3.
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Figure 3: Strings of Length Four in fmin+plosn

To complicate matters, any visualization requires that we
impose an order on p, l, o, s, and n. Figures 2 and 3 present
the data with the strings ordered in the sequence p, l, o, s,
and n. We would like to find an order for the axes where the
data displayed properties that simplified the search. For ex-
ample, the following interpretation of the 4-of-5 adpcm data
would lend itself to a simple descent method.
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Figure 4: Reordered adpcm+plosn data

Unfortunately, this data does not correspond to any consis-
tent ordering of the strings. (The two axes are labelled in
different orders.) It was produced by averaging the fitness
values across rows and sorting by row, then averaging fitness
values by column and sorting by column. The 120 consis-
tent orders for the data resemble Figure 2 much more closely
than Figure 4. The same holds true of the other datasets
that we have examined.

Measured Properties of the Search Space To date, we have
enumerated five 10-of-5 subspaces using two small programs
and optimizing for operations executed. The data demon-
strate the range of possible improvement and the impact
that selection of optimizations can have on the results. (In
the fitness values for adpcm, the notation m indicates millions
of operations.)

Best Worst
Value # Value # Range

fmin+plosn 1,002 1 1,716 1 41%
fmin+pdxnt 1,216 8 1,716 1024 29%
zeroin+plosn 832 3,099 1,446 1 42%
zeroin+pdxnt 1,020 8 1,446 1024 29%
adpcm+plosn 9.34m 291 22.93m 1 45%

The columns labeled # show the number of sequences that
produce the given value (out of 9,765,625). The enumera-
tions expose several properties of the search spaces that may
be useful in the design of searches.

• The subspaces have many local minima, both good
and bad. In fmin+plosn, most local minima lie within
5% of the best. However, as Figure 5 below shows, a
second group of local minima lies 23% to 25% above
the global minimum. Thus, any single hill-climber run
might reach a “bad” local minimum, but the best re-
sult from multiple hill-climber runs (starting at ran-
dom points) should find a “good” local minimum.

Local minima distribution for fmin+plosn
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Figure 5: Distribution of Minima in fmin+plosn

• The distance from a randomly-chosen point to a local
minimum, measured in Hamming-1 steps, is small rel-
ative to the size of the space. As shown in Figure 6
below, an impatient hill-climber finds a minimum in
sixteen or fewer steps in the 10-of-5 spaces. Explo-
ration studies in the 10-of-16 spaces confirm that this
property appears to hold there, as well.



Distribution relative to the best value

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

0.
00

%

5.
00

%

10
.0

0%

15
.0

0%

20
.0

0%

25
.0

0%

30
.0

0%

35
.0

0%

40
.0

0%

45
.0

0%

50
.0

0%

55
.0

0%

60
.0

0%

65
.0

0%

70
.0

0%

75
.0

0%

distance from the best value

%
 o

f 
st

ri
n

g
s

zeroin+plosn fmin+plosn

Distribution relative to the best value

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

0.
00

%

5.
00

%

10
.0

0%

15
.0

0%

20
.0

0%

25
.0

0%

30
.0

0%

35
.0

0%

40
.0

0%

45
.0

0%

50
.0

0%

55
.0

0%

60
.0

0%

65
.0

0%

70
.0

0%

75
.0

0%

distance from the best value

%
 o

f 
st

ri
n

g
s

zeroin+pdxnt fmin+pdxnt

Figure 7: Distribution of Function Values in Different Spaces

Distribution of the # of steps to local minima for fmin+plosn
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• To differentiate between a good minimum and a bad
minimum, we would like to build a reasonably accurate
model of the distribution of fitness values. In the 10-
of-5 subspaces, it appears that 1,000 probes produces a
model that is accurate enough to let the compiler eval-
uate solution quality elsewhere in the space, as shown
in Figure 8 below. The horizontal axis shows fitness
value while the vertical axis indicates the percentage of
the dataset at that value. (The model also provides a
concrete upper bound on the results—the best probe.)

Distribution of 1000 random probes and exhaustive 5^10 set
for fmin + plosn

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700

distance from best value 5%-10%-15%-20%

%
 o

f 
d

at
a 

se
t

exhaustive
1000 random probes

Figure 8: Random probes versus enumeration

• The distributions of function values and local minima
depend on both the program and the set of transfor-
mations being considered. Compare the distribution
of values for fmin and zeroin in two distinct spaces,
plosn and pdxnt, as shown in Figure 7.

One further aspect of the subspace enumerations bears men-
tion. The pdxnt subspace was chosen to address the per-
ceived weaknesses of the plosn subspace. (The best se-
quence in fmin+plosn is 18% slower than the best 10-pass
sequence found by a ga; that ga-selected sequence uses 8
distinct transformations.) In fact, the best sequence in the
hand-picked pdxnt space is worse than the best sequence in
plosn, by roughly 20%, for both fmin and zeroin. Choos-
ing the best optimizations for a program is difficult; adaptive
search is usually more effective than human insight.

The enumeration studies, while time consuming, have been
limited to small programs and 10-of-5 spaces. From these
studies we have drawn conclusions about the number and
distribution of local minima. We believe that those conclu-
sions apply to larger programs and larger search spaces. As
support for this belief, we cite two distinct arguments. First,
many other complex problems, such as 3-satisfiability, dis-
play similar structure; local search algorithms have proven
effective in finding good solutions for those problems [27].
Second, the algorithms described in this section are designed
to capitalize on these properties. The success of these al-
gorithms and the fact that they behave as predicted are
indirect evidence suggesting that the structural properties
observed in the 10-of-5 spaces carry over to the 10-of-16
spaces.

4. SEARCHING THE SPACE
The enumeration studies provide insight into the struc-

ture of the search space. In particular, they show that the
spaces have enough local minima that biased sampling tech-
niques, such as multiple hill-climber runs, should find good
solutions. This is fortunate, since enumeration is not practi-
cal for realistic spaces. This section describes several search
techniques and presents the results of using those search
techniques to find sequences for a collection of benchmark
programs. These exploration studies help us evaluate the
suitability of specific search techniques for use in a sequence-
finding adaptive compiler. In this section, we report results
from exploration studies in the 10-of-16 space.



gc-10 gc-50 hc-10 hc-50 ga-50 Sequence Testing

fmin 88.3% 588 88.3% 588 74.0% 413 73.9% 2,124 73.5% pppxocdlsn 75.4%
zeroin 71.2% 1,377 70.5% 5,307 74.0% 462 71.0% 2,054 69.6% oplvscdzsn 72.5%
adpcm-c 68.0% 838 68.0% 1,687 70.4% 402 68.5% 2,238 67.0% prppocvdsn 67.6%
adpcm-d 70.0% 1,567 70.0% 3,573 70.0% 423 70.0% 2,328 69.4% prpopcdlsn 70.1%
g721-e 84.1% 303 84.1% 303 85.3% 502 83.3% 2,857 81.3% pnpppcdzsn 81.5%
g721-d 83.9% 303 83.9% 303 82.2% 427 82.1% 2,752 80.8% vpppppcdsn 80.5%
fpppp 81.1% 678 81.1% 1,078 78.8% 632 75.3% 3,220 75.3% nopclvdsnp 76.9%
nsieve 57.5% 1,859 57.5% 6,521 57.5% 391 57.5% 2,452 57.5% pppppcdzsn 53.2%
tomcatv 120.3% 303 120.3% 303 85.4% 458 83.0% 2,555 82.7% crxpotvdsn 82.8%
svd 77.6% 545 77.6% 728 77.1% 631 75.8% 2,756 73.9% cztpvodvsn 70.2%

Figure 9: Performance in the 10-of-16 Space Relative to the Fixed Sequence “rvzcodtvzcod”

While we run explorations in the larger 10-of-16 space,
we also run them in the enumerated 10-of-5 spaces. The
results of the enumerations play an important role in the
exploration experiments. Having precomputed data makes
explorations of the 10-of-5 subspaces fast—lookup costs less
than compilation followed by evaluation. In the enumerated
spaces, we can also evaluate the quality of solutions found
by an exploration—because we have complete data, we know
the global minimizer(s).

Improving the Genetic Algorithm The ga used in our lctes
99 paper used a population of 20 sequences in a 10-of-10
search. Sequences were ranked by fitness value. At each
generation, the ga removed the worst string along with 3
others randomly chosen from the lower half of the popula-
tion. Replacements were generated by random choice from
the top half of the population and single-point crossover. All
strings, except the most fit, were then subject to mutation.
(Exempting the best string ensures its survival.) The ga
found its best sequences in 200 to 300 generations.

Extensive experiments with variations on the ga improved
its behavior. Our best results use a population of 50 to 100
sequences and single-point random crossover with fitness-
proportionate selection. (In choosing sequences for use in
the crossover operation, each sequence is assigned a weight
proportional to its fitness value, normalized by the best value
yet seen.) At each generation, the best 10% of the sequences
survive without change. The rest of the new generation is
created by repeatedly picking a pair of sequences and per-
forming the crossover operation followed by a low probabil-
ity, character-by-character mutation. If a new sequence has
already appeared in an earlier generation, it is mutated until
an untried sequence is found. (Viewing the ga as a search,
it is wasteful to explore the same sequence twice. The ga
maintains a hash table of sequences and their fitness val-
ues to detect duplicates.) With these modifications, the ga
finds its best solutions within 30 to 50 generations.

Hill Climbers An alternate search strategy is to choose an
initial point, evaluate its neighbors, and move to a point
with a better fitness value. Such “hill climbers” can be effi-
cient and effective ways to explore a discrete space. Because
simple hill climbers stop at local minima, they are often
invoked multiple times from distinct starting points. (The
enumerations showed that the search spaces are littered with
local minima.) The resulting algorithm performs a stochas-
tic descent with multiple restarts from randomized points.

Our hill climbers define the “neighbors” of a string x as
all Hamming-1 strings for x. To find the step that produces
the greatest change in fitness value, the search must evaluate

each Hamming-1 neighbor; in the 10-of-5 subspaces, each
string has 40 Hamming-1 neighbors (4 other options in each
of 10 positions). The enumeration results suggest that a hill
climber should typically halt, in fmin+plosn, in 8 or fewer
steps, with an upper bound of 16 (see Figure 6). Multiple
trials of a hill climber should find good results quickly.

To confirm that hill climbers work as well in the large
spaces as they do in the enumerated spaces, we ran them
in the 10-of-16 spaces. In practice, a random descent al-
gorithm (first downhill step) often outperforms a steepest
descent algorithm (largest downhill step). An impatient ran-
dom descent algorithm shows particular promise; it bounds
the number of neighbors that it evaluates at each step. (The
underlying idea is similar to Baluja and Scott’s patience pa-
rameter [2].) To compensate for its shallower local explo-
ration, our impatient random descent algorithm performs
more trials. As the results in Figure 9 show, the impatient
random descent algorithm competes well against more ex-
pensive techniques.

Greedy Constructive Algorithms Greedy algorithms pro-
duce good results for many complex problems (e.g., list
scheduling). To assess the potential of greedy techniques for
our search spaces, we implemented and evaluated a greedy
constructive algorithm. It views the search space as a dag
where the root node represents the empty sequence. In a
space with n optimizations, the root node has n children,
representing the sequences of length 1. Every other node
has 2n children that represent the effects of prepending or
appending a different optimization to the parent node’s se-
quence. The constructive algorithm walks downward from
the root, moving at each step to the child with the best
fitness value, until it constructs a sequence of the desired
length.

Ties in fitness value complicate the greedy search. We
have built versions of the constructive algorithm that ex-
plore all equal-valued paths (gc-exh), that repeat the search
fifty times and break ties randomly (gc-50), and that use a
breadth-first exploration (gc-bre). Ties, when they occur,
can drastically increase the cost of gc-exh; for example, on
the program adpcm-d, gc-exh explores 936,222 sequences in
the 10-of-16 space while gc-50 examines 3,202 and gc-bre
examines only 425 sequences.4

Predictive Algorithms Clearly, a transformation can only
improve the program if the code contains instances of the in-
efficiency that the transformation attacks. The magnitude

4As expected, the more expensive searches can produce bet-
ter results. In this case gc-50 does as well as gc-exh. gc-
bre produces code that executes 1% more instructions.



gc-10 gc-50 hc-10 hc-50 ga-50 Best Sequence Testing

fmin 90.4% 557 90.4% 557 90.5% 557 90.4% 2,280 90.2% pppvcppodp 96.2%
zeroin 94.2% 1,419 94.2% 2,584 93.8% 363 92.5% 1,941 91.1% pppopsndyc 94.7%
adpcm-d 100.6% 1,317 100.5% 1,317 100.0% 339 100.0% 1,645 99.9% rppppopcdx 99.9%
svd 109.0% 463 108.9% 463 91.7% 513 91.7% 2,670 89.5% cozdtppvdn 85.9%

Figure 10: Results on the SPARC architecture

of that improvement depends on both the transformation
and the fraction of runtime attributable to that inefficiency.
Eventually, we expect to find correlations between proper-
ties of the input program and good sequences. These corre-
lations may lead to algorithms that predict good sequences
by examining the source code. For example, loop-free code
is unlikely to benefit from operator-strength reduction or
loop peeling. At this point, we have not begun to relate
program properties to optimization sequences.

Comparing the Algorithms The table in Figure 9 presents
results of typical runs of several search algorithms. gc-10
and gc-50 use the greedy constructive method with random
tie breaking; gc-10 performs 10 trials while gc-50 does 50
trials. hc-10 and hc-50 are impatient random descent hill
climbers. They test up to 10% of the current point’s neigh-
bors, using 10 trials and 50 trials respectively. ga-50 is the
genetic algorithm, run with a population of 50 sequences
and 100 evolutionary steps.

The programs are a mix of benchmark codes from the
suites that we use in regression testing the compiler. fmin

and zeroin are small numerical routines from the Forsythe,
Malcolm, and Moler book on numerical methods [15]. svd

implements Golub and Reinsch’s singular value decomposi-
tion [15]. nsieve is the classic sieve of Eratosthenes bench-
mark. adpcm and g721 are taken from MediaBench, while
fpppp and tomcatv are from Spec95.

For each program and each search algorithm, the table
shows the best results from 3 runs of the search in the 10-of-
16 space, using the transformations listed in Section 3. Each
result consists of two numbers. The first is the number of
instructions executed by the compiled code on a simulated
risc architecture.5 Since we cannot know the best sequence
in the 10-of-16 spaces, the table shows the number of ex-
ecuted instructions as a percentage improvement over the
execution of code compiled with the fixed-sequence version
of the compiler, which uses the sequence rvzcodtvzcod.6

The second entry gives the number of sequences that the
search evaluated. ga-50 always evaluates 4,550 sequences.

The “Sequence” column shows the best sequence found
for that program. The “Testing” column shows the perfor-
mance of the best sequence on an alternate input dataset.
(Since fpppp, nsieve and tomcatv use no external data, we
modified parameters and initializations to change the com-
putation.) The data shows no systematic bias in favor of the
training data. In fact, some of the testing datasets produce

5Using a simulated architecture allows us to run the exper-
iments on a variety of underlying machines. The data in
Figure 9 are taken from a large set of experiments that took
several calendar months on a collection of machines includ-
ing Sparcs running Solaris, MacIntosh G4 servers running
Mac OSX, and a Pentium running Linux.
6The sequence rvzcodtvzcod was chosen by the compiler’s
original designers to optimize for speed. It represents a high
level of optimization.

better results than the training data, presumably because
the sequence targets code that matters more in the testing
data than in the training data.

All the techniques find consistent improvements. The only
negative results arise with the greedy constructive technique
on tomcatv. ga-50 often finds marginally better results than
the other techniques, but it finds them at a significantly
higher cost in compile time.

The tables in Figures 9 and 10 show results for ga-50, a
genetic algorithm with a population size of 50 run for 100
generations. In practice, the ga finds good sequences in
fewer than 100 generations. The table in Figure 11 shows
the results for fmin in the 10-of-16 space using three dis-
tinct genetic algorithms: 50×50 (50 sequences for 50 gen-
erations), 50×100 (50 sequences for 100 generations), and
100×100 (100 sequences for 100 generations). The data is
presented in the same form as in Figure 9, so that the cen-
ter column, 50×100, corresponds to the ga-50 column in
Figure 9. While performing more work (either running the
ga for more generations or using a larger population of se-
quences) can produce better results, the improvements are
often marginal. Limiting ga-50 to 50 generations brings its
cost down to 2,300 evaluations, making it cost-competitive
with hc-50.

50×50 50×100 100×100
fmin 73.5% 73.5% 73.5%
zeroin 69.6% 69.6% 69.6%
adpcm-c 67.0% 67.0% 67.0%
adpcm-d 69.4% 69.4% 69.4%
g721-e 81.3% 81.3% 80.8%
g721-d 81.5% 80.8% 80.5%
fpppp 75.9% 75.3% 75.3%
nsieve 57.5% 57.5% 57.5%
tomcatv 85.1% 82.7% 82.7%
svd 73.9% 73.9% 69.9%

Figure 11: Varying the Work Done in the GA

Evaluating a sequence involves compiling and executing
the code. The enumeration studies took cpu-months for
tiny programs. Using the insights from those large-scale
experiments, we refined both our biased searches and our ga
parameters to the point where we can work with codes from
MediaBench and Spec. The results in this paper show that
we can obtain good results with even fewer evaluations; for
example, hc-10 in the 10-of-16 space found good solutions
(relative to the ga) in 400 to 650 evaluations.

These results show that biased search can do nearly as well
as the more expensive genetic algorithms. The improved ef-
ficiency of methods such as hc-10 and gc-10 will make it
feasible for us to work with larger programs and validate
these findings. We expect that this work will lead to prac-
tical systems that adaptively choose program-specific com-



pilation orders. One of the next steps in this work is to
replace actual execution with evaluation of a performance
model. That work will let us validate our ideas on larger
programs. (In a practical system, large codes will likely be
optimized in smaller pieces, so the results from this paper
will carry over to those larger programs.)

The experiments reported in Figure 9 target a simple sim-
ulated risc architecture. Figure 10 shows results on the
Sparc architecture for fmin, zeroin, adpcm-d, and svd, in
the same format as Figure 9. In general, we see a smaller
variation in performance with the Sparc back end than with
the simulator. We are investigating the reasons for this ef-
fect. Our Sparc back end is new and the compiler may
need some additional optimizations to take full advantage
of it. The disappointing results for adpcm-d support that
idea. fmin shows more sensitivity to training/testing effects
on the Sparc than on the simulated architecture.

5. LONG-TERM VISION
The overriding goal of our work is to lay the foundation

for a new generation of compilers—adaptive compilers that
adjust their behavior to produce the best code that they can
in any particular circumstance. These compilers will be self-
steering and self-tuning. They will use multiple compilations
in a feedback loop to discover good configurations for each
combination of input program and target machine.

Our work on finding compilation sequences demonstrates
that we can find good sequences using algorithms that only
examine a tiny fraction of the possible compilation orders.
Before these techniques are practical, however, many open
problems must be solved.

Search Algorithms The experiments described in this paper
have focused on determining properties of the search spaces
in which the prototype adaptive compiler works. Knowing
about the structure of these search spaces has helped us
devise better search algorithms; the hill climbers, in par-
ticular, are susceptible to tuning based on properties of the
underlying space. For example, hc-50 does surprisingly well
by exploring less of the local space and using more random
starting points. Search algorithms that explicitly consider
the structure of the input program may produce better re-
sults than the algorithms that we have shown.

Effect Modeling Our enumeration studies have built an
empirically-derived model of the search space in which the
prototype operates. An alternate approach would construct
models of the interactions between optimizations, in an at-
tempt to predict the impact of sequences without applying
them [33]. Composable interaction models, whether derived
empirically or analytically, might lead to steering algorithms
that model the space of transformation effects and explore
it without needing to compile or execute the code.

Performance Modeling In optimizing for operations exe-
cuted, evaluating the compiled code’s performance is the
dominant cost. Performance models that predict running
time could greatly reduce the cost of evaluating a sequence.
Because the expense is large, hybrid schemes that combine
profiling with modeling might be practical. Improvements in
this area have the potential to make adaptive, search-based
compilation practical.

Learning Methods In the long term, we hope to develop
learning methods that correlate source-language program

characteristics with specific optimization strategies. If we
can develop reasonably accurate techniques to predict good
optimization strategies from properties of the source code,
it could significantly reduce the number of evaluations re-
quired to find a good program-specific sequence.

Building Compilers The primary impediment to building
adaptive compilers appears to be the fact that most com-
pilers are not written in a modular style, with well defined
interfaces and limited interpass communication. Further re-
search is needed to discover how optimizations should be
structured to improve the opportunities for command-line
adaptive control.
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