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The problem of determining what nonlinear evolution equations are exactly solvable by 
inverse scatte;ing techniques is simplified by considering a linear limit. By linearizing a 
given eigenvalue problem and. the associated time evolution operator, it .. is possible to 
determine the class of linearized dispersion relation (s) of the exactly solvable nonlinear 
evolution equations. Examples are given to illustrate the method.· 

§ 1. Introduction 

In recent years, we have seen a large number of nonlinear evolution equa
tions,ll-m which can be exactly solved by what is called the method of "inverse 
scattering transforms",7' hereafter called IST. The difficulty of finding what evolu
tion equations are solvable by this method can be well appreciated by investigators 
in this field, and as of now, no systematic method exists. for determining when a 
given nonlinear evolution equation can or can11ot be solved exactly by this method. 
Some progress in this direction has recently been made by Ablowitz, Kaup, Newell 
and Segur.7' They showed for the Schri:idinger and the Zakharov-Shabae' eigen
value problems, that if given a meromorphic dispersion relation,· I)) (k), with only 
a finite number of poles, there exists a nonlinear evolution equation exactly solv
able by the Zakharov-Shabat IST. And if I)) (k) is also odd, then . there existed 
another and different nonlinear evoluti~n equation which is exactly solvable by the 
Schri:idinger IST. Furthermore, in the linear limit of these nonlinear evolution 
equations, the frequency-wave number relation is exactly the initially assumed I)) (k). 
This clearly indicates that those nonlinear evolution equations which are. exactly 
solvable by an IST, can be characterized by two items: i) the _dispersion relation 
of the linearized evolution equations and ii) an eigenvalue problem. Thusr the 
number of different nonlinear evolution equations solvable by IST (all having the 
same linearized dispersion relation) is limited by our ingenuity for finding eigen
value problems with solvable inverse scattering problems. 

Although we are still not able to determine whether or not a given equation 
is, in general, solvable by an IST, we can extend (or at least show how) the 
results of Ref. 7). We do this by noting that one of the important distinguishing 
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Eigenvalue Problems for Solving Nonlinear Evolution Equation 73 

characteristics of these equations is their linearized dispersion relation (s) .7l Since 

these nonlinear evolution equations arise from an integrability condition, one of the 
more difficult tasks in finding them is the difficulty of going through the necessary 
algebra for obtaining the integrability condition, which is fully nonlinear. But 

if we linearize this procedure, :ve can obtain the final result in a very general 
form. And since we only need the linearized dispersion relation(s), this is certainly 
quite sufficient. 

In brief, what we do in § 2 is the following: We take a general eigenvalue 
equation with an arbitrary set of potentials. We then proceed to find the most 
general set of linearized ,dispersion relations for these potentials if the nonlinear 
evolution equations for these potentials is to be solvable by an IST. Thus, when 
we have a nonlinear evolution equation which we suspect may be solvable by an 
IST, we have a relative quick means of determining if a particular eigenvalue 

problem contains this equation. Finally, in § 3, we will illustrate this technique 
with specific examples, and in the process,_ find one new equation which can be 

solved by an IST. 

§ 2. Derivation 

Consider the general eigenvalue problem 

[D(-ia,) +QC -iax, r;; x, t)]'P"(x, t) =J..1J!(x, t) (1) 

on the interval - oo<x<oo and where 1J! is a general column vector, D(l) is 

assumed to be a matrix polynomial in l, of some finite order, Q is a general matrix 
potential which vanishes as x~ ± oo and ). is the eigenvalue which will be related 

to (by 

J..=f((), (2) 

with f to be specified. The inclusion of ( in (1) is to allow the potential matrix 
to contain eigenvalue-dependent terms as in the eigenvalue problem for the sine
Gordon equation in laboratory coordinates.3l If this is to be a problem solvable 

by an IST, the time evolution of 1J! must be of the form 

iat1J!(x, t) =H((, J.., x, t)1J!(x, t); (3) 

where H is a local operator involving, at worst, derivatives. (By local, we mean 
that H does not contain any integrals over 1J!.) 

Let us now look at (1) and (3) as Q~O and take Q to be the order of c. 

In the linear limit, we may use Fourier analysis, and without loss of generality, 
we can consider only one Fourier component of Q at a time. Let 

Q(-iax,(,x, t) =cei<kx-wt)q(-iax,(), (4) 

where (I) (k) is the linear dispersion relation for Q (i.e., in the linear limit, (I) (k) 
is f~equency-wave number relation for the fields contained in Q, and may be 
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multivalued). Also take 

1Jf(x, t) =1Jfo(l, t)eax+e1Jf1((, l, k, t)eiC!+klx+O(e2), (5) 

H((, A, x, t) =Ho ( -iox, (,A)+ eei<kx-wt> H1 ( -iox, k, (,A)+ O(e2). (6) 

Then Eqs. (1) and (3) yield, to first order in e,. 

[D(l) -A]1Jfo=O, (7) 

[D(l) -A]Ho(l, (, A)1Jfo=O, (8) 

{
Ho(k+l,(,A)E(k+l,A)q(l,() l 

H 1(l, k, (,A) 1Jfo(l, t) = -E(k+ l, A)q(l, A) [Ho(l, (,A) +Iw(k)] J 1JI"o(l, t)' 

(9) 
where E is defined by 

E(l, A) [D(l) -A] =I, (10) 

and I is the identity operator (matrix). If the operator H is to be local, at 
least to first order in e, then H 1 (l, k, (, A) [modulo equations (2) and (7)] must 
be a finite polynomial in l. It is this requirement which will dete~mine the 
linearized dispersion relation(s) associated with a particular eigenvalue problem. 

§ 3. Examples 

To illustrate this technique; we shall consider three examples of eigenvalue 
problems. Two for which the complete set of exactly solvable nonlinear evolu
tion equations is essentially known7> (the Schrodinger equation and the Zakharov
Shabat equation), and one new eigenvalue problem to illustrate the ingenuity which 
may be required to find exact solutions for other nonlinear evolution equations. 

A. The standard Schrodinger equation 

First consider the Schrodinger equation where 

D(l) =P, (11) 
and for the moment, we shall retain the ( dependence in ( 4). Equation (8) is 
then trivially satisfied [modulo (7)] and without loss of generality, we may take 

Ho(l, (,A) =ho(C A) +lh1((, J), 

q (l, () = q ( () . 

(12) 

(13) 
In (12), this choice can be made because modulo (7, 11), l 2 =A and any higher 
powers of l can be collapsed into the A dependence of h0 and h 1• In (13), the 
same is still true, except that also the inclusion of any U(x) Bx1Jf term in the 
Schrodinger equation can always be transformed away. 

Then evaluating (9) gives 

H (l k , A)= q(() [h (~' A)- a>(k) ]. 
l ' ' <.,' 2l + k I <.,' k (14) 
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Clearly, for H 1 to be a finite polynomial in l, we must have the residue of the 

pole at l = - tk vanish, or 

q(~)[h1(~, J.) -w(k)/k] =0, (15) 

modulo the condition 

(16) 

For the standard Schrodinger equation, there is no eigenvalue-dependent potential 

terms, so we can ignore the ~-dependence of q and h1• Then (15) gives 

(17) 

as the. class of linearized dispersion relations associated with the standard equation. 

General means for finding these solvable nonlinear evolution equations have recent

ly been given by Ablowitz, Kaup, Newell and Segur.7l 

B. The Schrodinger equation with ~-dependent potentials 

Let us now slightly modify the Schrodinger equation and see if anything 

different happens. We can insert an eigenvalue-dependent term into the potential 

of the Schrodinger equation and change the preceding eigenvalue problem to be 

[ -8/+Q(x, t) +~R(x,t)]P"= (~2 +f1.)P", (18) 

where fl. is some constant. This is still of the form given by (11) if we define 

f(O to be 

(19) 

The Fourier transform of the potentials is of the form 

q(~) =q+~r' (20) 

and we may take 

(21) 

Since we are still using the Schrodinger equation, (15) is still true, as well as 

(16) if f(O is given by (19). Combining these results gives 

q[1Jo(k2/4) -w(k)/k+~'l/1(k2/4)] 

+r[1J1 (k2/4) (k2/4-f1.) +~1J0 (k2/4) -~w(k)/k] =0. (22) 

By (16) and (19), ( has the two possible solutions 

(23) 

and (22) must be valid for either. Therefore, we have two linear homogeneous 

equations for q and r and a solution exists iff 

(24) 

Equation (24) 1s clearly different from (17) if 1J1 (?.) =f=O and is the same if 1J1 (?.) 
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76 D. J. Kaup 

=0. Thus, with the very simple modification of the Schrodinger equation made 
in (18), we suddenly have an entirely new class of nonlinear evolut_ion equations 
which can be solved by another IST. The inverse scattering problem for (18) 
has been solved and will be published shortly.13> When r;0 ()..) is ~ero, we ,clearly 
have a set of nonlinear evolution equations which are second order in time (w2 

=polynomial in k2) and which has waves traveling in both directions. To see 
what one of these nonlinear evolution equations might be, let's pick a case which 
might be interesting. If we choose r;o (A.) = 0, r;1 (A.) = 2i and ,a= 1/4, (24) becomes 

(25) 
which is the linearized dispersion relation of the. Boussinesq equation.12> To see 
what the nonlinear evolution equation is which corresponds to this eigenvalue 
problem and (25), we simply work backwards. At zeroth order in e, from (6), 
(12) and (21), we have 

H=ho-ihiJ:x 

(26) 
which then tells us what the form of H must be when q=r=O at x= ± oo. 
So we can take 

(27) 
as our eigenvalue problem, and 

as our time evolution operator, where B---'>2( as X-'>± oo. One may readily verify 
that the desired solution is 

~xx+ [C2 +t-i¢e-H¢x?+iC¢x]~=O, (29) 

i~t = (2(- iqS:x) ~:r: + ti¢x:r:~, (30) 
with the integrability condition for (29) and (30) being 

TCe=¢x:r::xx+¢x:x-2(¢:xTC):x, (31a) 

TC. c/Ji+c/J:x2 • (31b) 
Of course, (31) is not the Boussinesq equation due to the presence of a cubic 
nonlinearity. However, it is interesting to note that (31) is derivable from the 
water wave equations, as is the Boussinesq equation, if one goes to one order 
higher in the nonlinearity. Furthermore, the second-order eigenvalue problem 
(29) can be readily inverted/3> whereas the eigenvalue problem for the Boussinesq 
equation is a third-order problem,m which has not been inverted. 

C. The Zakharov-Shavat equation 
As a final example, we will apply this procedure to another second-order 

equation which will illustrate further use of the conditions (7) and (8). This 
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is the generalized Zakharov-Shabat equation2>. 4> 

V1,+it:V1=qVz, 

Vz,-it:Vz=rV1, 

for which we have 

D(l) =l~s, 

where 

(32a) 

(32b) 

(33) 

(34) 

and is the third Pauli spin matrix. In this case, we again ignore all t: dependence 

and we have 

From (8), one finds that Ho must be restricted to be of the form 

Ho(l; X) = ho(A)J +hs (,\) ~s, 

and as before, one finds 

H (l k ') 7J!. = [/l())jk + hs~sQ-- ~ -())jk]7J!. 
1 , , A o k + 2l sq o , 

where 

Q=~sq-q~s 

and we have used (7), which for (33) is 

J...1f!o = l~/.Fo. 

(35) 

(36) 

(37) 

(38) 

(39) 

Note that at the pole (l =-k/2) in (37), due to (39), A does not have a definite 

value, although ,\2 does. Thus, we must break h3 (,\) into even and odd parts by 

(40) 

Then requiring the residue at the pole to vanish gives 

(41) 

Since Q and 0"3Q are linear independent, ( 41) has a nontrivial solution iff 

(42) 

The general method for finding these nonlinear evolution equations has also been 

given by Ablowitz, Kaup, Newell and Segur.7) 
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