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FINDING FINITE B2-SEQUENCES FASTER

BERNT LINDSTRÖM

Abstract. A B2-sequence is a sequence a1 < a2 < · · · < ar of positive
integers such that the sums ai + aj , 1 ≤ i ≤ j ≤ r, are different. When q

is a power of a prime and θ is a primitive element in GF (q2) then there are
B2-sequences A(q, θ) of size q with aq < q2, which were discovered by R. C.
Bose and S. Chowla.

In Theorem 2.1 I will give a faster alternative to the definition. In Theorem
2.2 I will prove that multiplying a sequence A(q, θ) by integers relatively prime
to the modulus is equivalent to varying θ. Theorem 3.1 is my main result. It
contains a fast method to find primitive quadratic polynomials over GF (p)
when p is an odd prime. For fields of characteristic 2 there is a similar, but
different, criterion, which I will consider in “Primitive quadratics reflected in
B2-sequences”, to appear in Portugaliae Mathematica (1999).

1. Introduction

A sequence of positive integers a1 < a2 < · · · < ar is called a B2-sequence (or
Sidon sequence) if the sums ai + aj , 1 ≤ i ≤ j ≤ r, are different. Erdös and Turán
proved in [4] that ar ≤ n implies that r < n1/2 + O(n1/4). This was improved by
the author in [5] to r < n1/2 + n1/4 + 1. Erdös asked in [3] if r < n1/2 + C is true
for a constant C.

B2-sequences with r > n1/2 are known to exist by a theorem of Bose and Chowla
[1]. Let q be a power of a prime and θ primitive in GF (q2); then

A(q, θ) = {a : 1 ≤ a < q2, θa − θ ∈ GF (q)}(1.1)

will give a B2-sequence of size q. These Bose-Chowla B2-sequences have the stronger
property that the sums ai +aj, 1 ≤ i ≤ j ≤ q, are different modulo q2−1. This has
important consequences for the problem of Erdös, which Zhang noticed and used
in [7].

By Lemma 3.3 in [7], if {ai}r
1 is a B2-sequence (mod m), then {ai + b}r

1 will also
be a B2-sequence (mod m) for any integer b. Assume that a1 < a2 < · · · < ar and
define ar+1 = a1 + m. Determine the largest interval (ai, ai+1) for 1 ≤ i ≤ r. Let
b = m + 1 − ai+1. Then the largest number in the new sequence is, in general,
smaller.

Another idea of Zhang was to generate a large number of B2-sequences for
each q by varying the primitive element θ ∈ GF (q2). There are ϕ(q2 − 1) prim-
itive elements θ, where ϕ is Euler’s function. This number can be reduced to
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ϕ(q2 − 1)/4 due to symmetries of the B2-sequences. Then he determines one with
largest possible interval giving a smallest possible upper bound by the previous idea.
It is laborious to check each time that θ is primitive. But it is only necessary to do
this for one A(q, θ). The other sequences can be found if we multiply the sequence
by integers which are relatively prime to q2 − 1 and reduce modulo q2 − 1. This is
contained in Theorem 2.2. In Theorem 2.1 I prove that A(q, θ) can be determined
q times faster than suggested by (1.1).

Zhang considered only the case when q = p is an odd prime. To check that θ is
primitive in GF (p2) he used the following necessary and sufficient conditions: (i)
θp+1 is primitive in GF (p); (ii) θ, θ2, . . . , θp /∈ GF (p) (Lemma 4.3 in [7]).

In Theorem 3.1 I give a new criterion for θ to be primitive in GF (p2). If θ
satisfies the quadratic equation θ2 = uθ − v with u, v ∈ GF (p) my criterion poses
conditions on u2/v and v.

2. Finding A(q, θ) faster

In this section I will assume that q is a power of a prime. The following Lemma
2.2 generalizes Lemma 4.3 in [7].

Lemma 2.1. Let θ be a root of an irreducible quadratic X2 − uX + v with u,
v ∈ GF (q). Then we have

θq + θ = u, θq+1 = v.(2.1)

Proof. There are two roots θ and θq. The relations (2.1) follow since u is the sum
and v is the product of the roots of the quadratic.

Lemma 2.2. Let θ ∈ GF (q2) and write θq+1 = v. Then θ is a primitive element
if and only if

(i) θi /∈ GF (q) for 1 ≤ i ≤ q; and
(ii) order(v) = q − 1.

Proof. Assume that θ is primitive in GF (q2). Then order(θ) = q2−1. If θi ∈ GF (q)
for some i, 1 ≤ i ≤ q, then θi(q−1) = 1 gives a contradiction. Therefore (i)
holds. If order(v) = n < q − 1, then θ(q+1)n = 1 gives another contradiction since
(q + 1)n < q2 − 1. Therefore (ii) holds.

Conversely, assume that (i) and (ii) are satisfied. Note that v ∈ GF (q) since
vq−1 = θq2−1 = 1. Let order(θ) = n = (q +1)k + r, 0 ≤ r ≤ q. Then θn = 1 implies
that θr = v−k ∈ GF (q) and r = 0 follows by (i). Then vk = 1 and k = q−1 follows
by (ii). Hence n = q2 − 1.

Let θ be primitive in GF (q2). Define ui and vi ∈ GF (q) by

θi = uiθ − vi.(2.2)

We have ui 6= 0 for 1 ≤ i ≤ q by Lemma 2.2(i). Since v is primitive in GF (q) by
(ii), there are integers ti such that

ui = vti = θ(q+1)ti , 1 ≤ i ≤ q.(2.3)

If we divide (2.2) by ui, then we find

θi−(q+1)ti − θ = −viu
−1
i ∈ GF (q)(2.4)

and since, by definition

A(q, θ) = {a : 1 ≤ a < q2, θa − θ ∈ GF (q)},(2.5)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINDING FINITE B2-SEQUENCES FASTER 1175

it follows that

i− (q + 1)ti ∈ A(q, θ), 1 ≤ i ≤ q.(2.6)

We have

Theorem 2.1. Let θ be a primitive element in GF (q2) and define the integers ti
for 1 ≤ i ≤ q by (2.3) and A(q, θ) by (2.5). Then we have

A(q, θ) = {i− (q + 1)ti (mod q2 − 1): 1 ≤ i ≤ q}.(2.7)

Proof. With regard to (2.6) it remains to prove that the elements are distinct
modulo q2 − 1. If i− (q + 1)ti ≡ j − (q + 1)tj (mod q2 − 1), then i ≡ j (mod q + 1)
and we have i = j since 1 ≤ i, j ≤ q.

Example 2.1. Let q = 7 and θ2 = θ − 3 (cf. Example 3.1 in [7]). We find u1 =
u2 = 1, u3 = 5, u4 = 2, u5 = 1, u6 = 2, u7 = 3 and, since v = 3, t1 = t2 = 0,
t3 = 5, t4 = 2, t5 = 0, t6 = 2, t7 = 3, which gives A(7, θ) = {1, 2, 5, 11, 31, 36, 38}
after sorting.

If c is relatively prime to q2 − 1, then Mc(x) = cx defines a one-one mapping of
the integers modulo q2 − 1. For any integer t we define another one-one mapping
(mod q2 − 1) by Tt(x) = x− (q + 1)t.

Theorem 2.2. Let θ and θ1 be primitive elements in GF (q2) and θ = θc
1 = ucθ1−

vc(uc, vc ∈ GF (q)), uc = θ
(q+1)t
1 . Then A(q, θ1) = TtMcA(q, θ).

Proof. Let a ∈ A(q, θ). Then we have θa − θ ∈ GF (q) and θca
1 − ucθ1 ∈ GF (q). If

we divide this by uc (6= 0), we find that ca− (q + 1)t ∈ A(q, θ1) and TtMcA(q, θ) =
A(q, θ1) follows since both sets have q elements.

3. A criterion for primitive quadratics

I will prove a new criterion for a quadratic X2 − uX + v over GF (p), p an odd
prime, to be primitive, i.e., with a root θ, which is a primitive element in GF (p2).
I am looking for a criterion which is suitable for computations and faster than the
one in Lemma 2.2. There is a criterion by Bose, Chowla and Rao, Theorem 3A
in [2], which depends on cyclotomic polynomials. I do not think it is what I am
looking for, but I have use of the integral order of α ∈ GF (p2). It is the least
positive number n for which αn ∈ GF (p). I found this notion in [2].

I will need polynomials Qm(X) of degree m ≥ 0 defined recursively by

Q0(X) = 1, Q1(X) = X,(3.1)

Qm+1(X) = XQm(X)−Qm−1(X) when m ≥ 1.(3.2)

Lemma 3.1. Let α be a root of the irreducible quadratic X2−uX + v over GF (p)
with u, v 6= 0. Write u2/v = w and let n = 2(m + 1). Then (α2/v)n = 1 if and
only if Qm(w − 2) = 0.

Proof. We have (α2 + v)2 = u2α2. Hence α4 + v2 = (u2 − 2v)α2 and

(α2/v) + (v/α2) = w − 2.(3.3)

Write α2/v = β for brevity. Observe that β 6= ±1. Hence β2 − 1 6= 0.
Assume that βn = 1, n = 2(m + 1). If we divide βn − 1 = 0 by β2 − 1 6= 0 we

find β2m + β2m−2 + · · ·+ 1 = 0. Divide this by βm. Now

βm + βm−2 + · · ·+ β−m = 0.(3.4)
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The left-hand side of (3.4) can be written as a polynomial in β + β−1. In fact, it is
Qm(β + β−1). For obviously Q1(X) = X , Q2(X) = X2 − 2 and (3.2) follows since
(β + β−1)Qm(β + β−1) = (Qm+1 + Qm−1)(β + β−1). Since β + β−1 = w − 2 by
(3.3), we have Qm(w − 2) = 0.

Conversely, assume that Qm(w− 2) = 0. Then, working backward, we find that
βn = 1.

Lemma 3.2. If αm ∈ GF (p) and n is the integral order of α, then n|m.

Proof. Write m = kn + r, 0 ≤ r < n. Then αr = αm(αn)−k ∈ GF (p) and r = 0
follows by the definition of n.

Theorem 3.1. Consider a quadratic X2 − uX + v with u, v ∈ GF (p), v 6= 0 and
p an odd prime. Write u2/v = w. The quadratic is primitive if and only if the
following conditions are satisfied ((iv) or (iv′))

(i) v is primitive (mod p),
(ii) w 6≡ 0 is a quadratic nonresidue (mod p),
(iii) w − 4 is a quadratic residue (mod p),
(iv) Qm(w − 2) 6≡ 0 (mod p) when m ≤ [(p + 1)/6]− 1,
(iv′) for all odd primes q dividing p + 1 Qm(q)(w − 2) 6≡ 0 (mod p), where m(q) =

((p + 1)/2q)− 1.

Proof. When we prove the necessity of one condition we may assume that the
preceding ones are satisfied.

Condition (i) is necessary by Lemma 2.2(ii). Assume that (i) holds. Then v is
nonsquare in GF (p). It follows that w is nonsquare in GF (p) (u = 0 is impossible).
This gives (ii). A primitive quadratic is irreducible. Then the discriminant u2 − 4v
must be nonsquare in GF (p). If we divide by nonsquare v we will get a square by
the rules. This is (iii).

Assume that the conditions (i)–(iii) are satisfied. The quadratic is then irre-
ducible and we have v = θp+1 by Lemma 2.1, where θ is a root.

Assume that Qm(w − 2) ≡ 0 (mod p) for some m ≤ [(p + 1)/6]− 1. By Lemma
3.1 we have 1 = (v/θ2)n = θ(p−1)n with n ≤ (p + 1)/3. This is impossible when θ
is a primitive element in GF (p2). This gives (iv) and (iv′).

Assume that (i)–(iii) and (iv′) are satisfied. Let n be the integral order of θ.
Since θp+1 = v ∈ GF (p), p + 1 = kn follows by Lemma 3.2.

Note that v is nonsquare in GF (p) and v = θp+1 = (θn)k, θn ∈ GF (p). It follows
that k is an odd integer. We claim that k = 1.

Assume that k > 1. Let q be an odd prime divisor of k. Then n̄ = (p+1)/q will be
a multiple of n = (p+1)/k. Observe that (v/θ2)n = θn(p−1) = 1 since θn ∈ GF (p).
Then we have (θ2/v)n̄ = 1. By Lemma 3.1 it follows that Qm(q)(w−2) ≡ 0 (mod p),
a contradiction to (iv′). Therefore k = 1 and n = p + 1.

We have proved that the integral order of θ is p+1. I will prove that this implies
that θ is primitive. If N = order(θ), then θN = 1 and we have n | N by Lemma
3.2, i.e., p + 1 | N . Write N = (p + 1)a and we find that 1 = θN = va. Since v is
primitive in GF (p), it follows that p − 1 | a. Hence N = p2 − 1, which was to be
proved.

In calculations using a computer one could use (iv) and (3.1), (3.2). If the
calculations are done by hand, then (iv′) is better. In both cases start with a list
L1 of all quadratic nonresidues (mod p). The length of this list is (p− 1)/2. Delete

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINDING FINITE B2-SEQUENCES FASTER 1177

from this list all integers w for which w − 4 (mod p) belongs to the list. Then we
obtain a list L2, which is about half as long (the length of L2 is (p + 1)/4 when
−1 is a quadratic nonresidue (mod p) and (p− 1)/4 when −1 is a quadratic residue
(mod p)). Then go to (iv) or (iv′) and check the numbers in L2. Suppose we have
found a number w, which satisfies all four conditions. Then find a primitive element
(mod p) from a table and determine u such that u2 ≡ vw (mod p). Then we have
the coefficients u and v of a primitive polynomial. If we apply (iv) or (iv′) to all
numbers on the list L2 we may determine all primitive quadratic polynomials.

It is easy to prove by induction over m ≥ 1 that

Qm(X) =
[m/2]∑
i=1

(−1)i

(
m− i

i

)
Xm−2i.

Example 3.1. Let p = 29. The odd primes dividing p+1 are 3 and 5. We find that
m(3) = 4 and m(5) = 2. We have Q2(X) = X2−1, Q4(X) = X4−3X2+1. The list
of quadratic nonresidues is L1 = {2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27}. We
delete all w for which w−4 belongs to the list and find L2 = {3, 8, 10, 11, 17, 26, 27}.
From L2 we delete “3” since 3− 2 = 1 is a root of Q2 and we delete “8” and “26”
because 6 and 24 are roots of Q4 (mod 29). There remains: 10, 11, 17, 27, which
satisfy conditions (ii), (iii) and (iv′). There are ϕ(28) = 12 primitive elements v
in GF (29). Hence there are 4 · 12 · 2 = 96 primitive polynomials (4 numbers w,
12 numbers v, and 2 numbers u for each combination of v and w). This gives 192
primitive elements in GF (292) in agreement with ϕ(292 − 1) = 192. If we choose
w = 10 and v = 2, we find u = 7 (or −7) and X2−7X +2 is a primitive polynomial
(mod 29).

Corollary. If p = 2k − 1 is a (Mersenne) prime or if p = 2q − 1 for an odd
prime q, then the conditions (i)–(iii) are necessary and sufficient for the quadratic
X2 − uX + v to be primitive.

Proof. In the first case (iv′) is vacuously satisfied. In the second case m(q) = 0 and
Q0 = 1.

4. A very fast construction

There is a new construction of B2-sequences by I. Z. Ruzsa in [6], Theorem 4.4,
which gives B2-sequences of the size p− 1 for each odd prime p. The computations
are straightforward and therefore very fast. I have extended the construction by
the introduction of a factor f , an integer in 1 ≤ f < p−1, which is relatively prime
to p− 1. Let g be a primitive element mod p and define

R(p, f) = {pfi + (p− 1)gi mod p(p− 1): 1 ≤ i ≤ p− 1}.(4.1)

The integers of R(p, f) are smaller than p(p− 1).

Theorem 4.1. R(p, f) is a B2-sequence modulo p(p− 1).

Proof. Let pf(i+j)+(p−1)(gi+gj) ≡ a (mod p(p−1)) be the sum of two elements.
Then we find

gi + gj ≡ −a(mod p)(4.2)

and f(i+ j) ≡ a (mod p−1). Since f is relatively prime to p−1, there is an integer
h such that fh ≡ 1 (mod p− 1). It follows that i+ j ≡ ah (mod p− 1) and we have
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by Fermat’s little theorem

gigj ≡ gah (mod p).(4.3)

By (4.2) and (4.3) gi and gj are the roots of X2 + aX + gah = 0 in GF (p).
Hence, gi and gj are unique and determine {i, j} uniquely.

If we replace the primitive element g by another primitive gb we will get R(p, fd),
where bd ≡ 1 (mod p − 1). If we multiply R(p, f) by an integer c relatively prime
to p(p − 1) we get a translate of R(p, fc). Thus we have essentially only ϕ(p − 1)
B2-sequences for each prime p. This “count” is much smaller than the count of the
Bose-Chowla sequences A(p, θ). The estimates for C using R(p, f) are worse than
those of A(p, θ).
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Math., No. 6 (Genève 1963), Problème 31. MR 28:2070

4. P. Erdös and P. Turán, On a problem in additive number theory, J. London Math. Soc. 16
(1941), 212–215; ibid 19 (1944), 208.

5. B. Lindström, An inequality for B2-sequences, J. Comb. Theory 6 (1969), 211–212. MR
38:4436

6. I. Z. Ruzsa, Solving a linear equation in a set of integers, Acta Arith. 65 (1993), 259–282.
MR 94k:11112

7. Z. Zhang, Finding finite B2-sequences with larger m−a
1/2
m , Math. Comp. 63 (1994), 403–414.

MR 94i:11109

Department of Mathematics, Royal Institute of Technology, S-100 44, Stockholm,

Sweden
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