
Finding Frequent Items in Sliding Windows with
Multinomially-Distributed Item Frequencies∗

(University of Waterloo Technical Report CS-2004-06, January 2004)

Lukasz Golab, David DeHaan, Alejandro López-Ortiz Erik D. Demaine
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Abstract

This paper presents algorithms for identifying fre-

quent items within a sliding window in the data stream

computational model, assuming that item types con-

form to a multinomial distribution. We begin by in-

troducing the drifting data distribution model, which

assumes that item type frequencies approximately fol-

low the same distribution in every instance of the slid-

ing window, but gradual changes in the parameters of

the distribution are allowed across the lifetime of the

stream. Under this model and given the assumption

of multinomially-distributed item frequencies, we show

how to determine the true frequencies of items using

space that is only a fraction of the sliding window size.

We then use these approximate frequencies to identify

items that exceed a given frequency threshold. Our al-

gorithms are shown to outperform classical inference

based on random sampling from the sliding window.

1 Introduction

A data stream is a real-time, continuous, ordered
sequence of items generated by sources such as sensor
networks, Internet traffic flow, credit card transaction
logs, or on-line financial tickers. In the last several
years, it has been shown that the unique properties of
data streams—virtually unbounded length, fast arrival
rate, and lack of system control over the order in which
items arrive—generate many interesting research prob-
lems in algorithm analysis and data management; see
[9] for a recent survey. One such problem concerns
maintaining statistics over the recently arrived portion
of a stream in order to identify emerging trends. This
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may be accomplished by monitoring item types or cate-
gories that occur frequently, either above some thresh-
old or in the top k positions when ranked by frequency.
To emphasize recent data, applications typically im-
pose a sliding window on the stream and ignore all
values that fall outside the window. Time-based win-
dows are defined in terms of the last t time units and
count-based windows are defined in terms of the last N
items seen.

If the entire sliding window fits in memory, then
computing statistics over the window is trivial. How-
ever, there are applications where either the stream
arrives arrives so fast that useful sliding windows do
not fit in memory (e.g. monitoring Internet traffic on
a high-speed link), or computations are carried out lo-
cally by embedded devices with severe memory con-
straints (e.g. sensors). In such cases, the sliding window
must somehow be summarized and query results must
be approximated on the basis of the available summary
information. One solution is to divide the sliding win-
dow into sub-windows, called basic windows [14], and
store only a summary in each basic window. When the
newest basic window fills up, it is appended to the slid-
ing window, the oldest basic window is removed, and
statistics over the sliding window are recomputed.

The basic window approach applies to distributive

and algebraic aggregates [10], where the data set may
be divided into partitions (basic windows), and the fi-
nal answer may be computed by pre-aggregating the
partitions. However, finding frequently occurring items
is a holistic aggregate [10] because the summary infor-
mation needed for pre-aggregating the partitions is pro-
portional to the size of the partitions. In other words,
there is no obvious rule for merging the basic window
summaries in order to obtain a list of frequent items
in the sliding window, unless each basic window stores
frequency counts for all of its items. For instance, if



each basic window only stores counts of its top three
categories, we would completely ignore a frequent item
type that consistently ranks fourth in each basic win-
dow (false negatives). Furthermore, an item type that
appears on the top-k list in one basic window may not
appear elsewhere in the window (false positives).

In previous work [8], we showed that false positives
and negatives resulting from the above concerns are
rare if item types in the sliding window conform to a
power-law like distribution, in which case we expect
several very frequent categories that will be counted in
every basic window. In this paper, we will show that
the basic window approach may also be used to find
frequent items in sliding windows if item types conform
to a multinomial distribution in each instance of the
window. Our specific contributions are as follows.

• We classify distribution models for sliding win-
dows and propose a drifting data model, which,
combined with the assumption of multinomially-
distributed item types, allows us to use the basic
window technique for identifying frequent items.

• We propose three algorithms, MoreFrequen-

tItem, MostFrequentItem and Over-

Threshold, for identifying frequent items within
a stream adhering to our data model. The
first two identify the most frequent item in
the window, but estimating frequency or even
bounding the error in the identification is shown
to become infeasible as the number of item types
grows. OverThreshold identifies all items
over a specified threshold frequency and may be
used for frequency prediction with bounded error
dependent upon the allocated memory.

• We demonstrate that MoreFrequentItem and
OverThreshold outperform classical inference
based on random sampling in terms of identifying
items over a fixed threshold.

1.1 Background

Finding frequent items is a well-studied problem in
the infinite stream model, where the objective is to ex-
amine the stream on-line and continuously maintain a
set of frequent items using limited memory; see Sec-
tion 2 of [4] for an overview. Three approaches (and
combinations thereof) have appeared in the literature:
sampling, counting, and hashing. Random sampling
alone is usually insufficient for answering frequent item
queries because it may result in large variance when
the sampled frequency is used as the estimator of the
actual frequency. Counting methods usually allocate

a limited number of counters to keep track of selected
item frequencies (e.g. [5, 12]), but ensuring that all the
frequently occurring items are indeed being monitored
is difficult. Clearly, we cannot monitor all the items
as this may require space proportional to the window
size—consider an instance of a sliding window where
one item type occurs twice and the others once. A hy-
brid sampling-counting approach is a possible solution,
where random sampling is used only to select which
items are to be assigned counters; once an item is se-
lected, all of its occurrences are counted [6, 7]. Simi-
larly, a hashing-counting solution does not rely on sam-
pling to decide whether to keep a counter for an item
type, but instead hashes each item’s key to d hash ta-
bles and adds a new counter only if all d buckets to
which a particular element hashes are large [6].

A simple method for adapting any of the above al-
gorithms to the sliding window model is to store fre-
quent item sets for each basic window, and somehow
merge the individual sets to obtain an approximate list
of frequent items over the entire sliding window. This
approach was used in [1, 8], but, as already mentioned,
in the general case we are not guaranteed to obtain
meaningful results by merging the frequent item sets
from individual basic windows. Maintaining a win-
dowed histogram [13] is another possibility, but it may
not be possible to store separate counts for each fre-
quently occurring type. We know of no previous work
in the frequent item problem over data streams with
multinomially-distributed item frequencies, nor are we
aware of previous research in modeling changes in dis-
tribution across the lifetime of a data stream.

1.2 Organization

The remainder of this paper is organized as follows.
Section 2 introduces our distribution model and as-
sumptions, Section 3 describes the MoreFrequen-

tItem and MostFrequentItem algorithms, Sec-
tion 4 introduces the algorithm OverThreshold, Sec-
tion 5 compares the prediction error of our algorithms
with random sampling and inference for proportions,
Section 6 discusses possible extensions of our work, and
Section 7 concludes the paper.

2 Distribution Models for Data
Streams and Sliding Windows

We begin by defining a series of item type distribu-
tion models for data streams and explain their conse-
quences in the sliding window model. The most general
model, which we call adversarial, assumes no under-



lying distribution; an adversary is free to choose the
category of each item in the stream. In this model,
the space complexity of the frequent item problem is
proportional to the size of the data set. Hence, it is in-
tractable to maintain a set of frequent items in limited
memory over the entire stream, but it is feasible to do
so over a sliding window that fits in the allowed mem-
ory. The basic window model may be used to maintain
distributive and algebraic statistics over sliding win-
dows in limited space, even in the most general adver-
sarial model. For holistic aggregates in the adversarial
model, we conjecture that the best possible strategy
is to re-execute a non-streaming algorithm periodically
over the state of the sliding window at the given time.

In the stochastic distribution model, a stream is as-
sumed to contain an arbitrary probability distribution
of category frequencies with the characteristic that the
order in which the categories occur is uniformly ran-
dom. The parameters and type of the distribution
are assumed to remain fixed across the lifetime of the
stream. The fixed stochastic model is a variation that
explicitly specifies the type of the distribution. All of
the previous work on finding frequent items in data
streams assumes a stochastic model (the algorithm pre-
sented in [8] was in fact designed to work in the adver-
sarial model, but performs well in practice only in the
fixed stochastic model with a power law distribution).

In the stochastic model, maintaining a sliding win-
dow measures the variance of the distribution in the
current window relative to the expected frequencies.
To account for permanent changes in the expected fre-
quencies, we propose the drifting distribution model, in
which the relative frequencies of the categories are as-
sumed to vary over the lifetime of the stream, provided
that they vary sufficiently slowly that for any given slid-
ing window of size N excerpted from the stream, with
high probability the window could have been generated
by a stochastic model. The fixed drifting model can also
be defined by specifying the type of distribution. The
drifting model allows us to assume a stochastic model
within a single sliding window without introducing sig-
nificant error.

To illustrate the drifting model, consider a category
whose relative frequency p(t) is a function of time. As
shown in Figure 1, for a (time-based) window of size
N , we require that p(t) vary by at most δ in all inter-
vals [t − N + 1, . . . , t], for a “small” value of δ. That
is, we allow small variations in the dispersion of the
categories within the sliding window, in turn allowing
the frequency of each category to change over the life-
time of the stream. This definition is somewhat sim-
ilar to Lipschitz functions of bounded variation (see,
e.g. [3]). A function f : R → R is called a Lipschitz

Figure 1: Pictorial representation of the drifting dis-
tribution model.

function if there exists a constant M > 0 such that
|f(y) − f(x)| ≤ M |y − x| for all x, y ∈ R.

In this paper, we propose algorithms that iden-
tify frequently occurring items in sliding windows in
the fixed stochastic and fixed drifting models, given a
multinomial distribution of item types. The input is
assumed to consist of a multiplexed stream containing
many distinct categories generated from a multinomial
distribution, with the relative probabilities unknown a
priori and possibly changing slowly across the lifetime
of the stream. We assume that the variation in the un-
derlying relative frequencies across a window of size N
does not contribute to the approximation error. The
available storage is only a fraction of the sliding window
size and items may be seen only once in order of arrival.
We anticipate that the stream arrives at a high rate,
so only a constant number of operations (amortized) is
allowed for each item.

3 Identifying the Most Frequent Item

In this section, we present an algorithm for identify-
ing the most frequent item in a sliding window that con-
forms to a fixed stochastic or fixed drifting model with a
multinomial distribution. We show that the algorithm
works well when only two categories are present, but
becomes computationally expensive as the number of
categories increases. In the next section, we modify the
algorithm to instead identify items occurring above a
given threshold, and we show that solving this problem
is significantly easier. We begin by considering count-
based windows and extend our approach to time-based
windows in Section 6.1.

3.1 Two Categories

In the simplest case of two item types (binomial
distribution), call them x and y, whose actual rela-



tive frequencies px and py sum to one, we wish to de-
termine which of the two types occurs in the window
with higher frequency and give an estimate for that
frequency. Using the basic window approach, a simple
exact algorithm is to store counters that contain the
difference of the number of x-items versus the num-
ber of y-items in each basic window. Summing the
counters over all basic windows gives the difference in
the observed counts, from which percentage frequen-
cies may be obtained if the size of the sliding window
is known. In what follows, we show that if the sliding
window conforms to a binomial distribution, we need
only record the identity of the more frequent item in
each basic window to estimate item frequencies.

3.1.1 A Simple Algorithm

The following algorithm divides the sliding window
of size N into a set of n equally-sized basic windows,
each of which is summarized by an entry in a queue.
Statistics are refreshed every b = N/n items.

Algorithm MoreFrequentItem

1. Initialize global counters fx and fy to zero

2. Repeat:

(a) Initialize local counters lx and ly to zero

(b) For each element e in the next b elements:
If e is of type x, increment lx,
Otherwise, increment ly

(c) Add a summary containing the type of the
“winner” (larger local counter) to the back
of queue Q, and increment the corresponding
global counter

(d) If sizeOf(Q) > N/b:

i. Remove the summary from the front of Q
and decrement the corresponding global
counter

ii. Output the identity and value of the
larger global counter

Since a single bit can identify the “winner” between two
categories, algorithm MoreFrequentItem requires
O(N/b) space and Θ(1) amortized time.

Each time a basic window is filled, MoreFrequen-

tItem outputs the identity of the item expected to be
more frequent in the sliding window. Suppose that the
output item is x. The algorithm also supplies a fre-
quency fx of the basic windows dominated by x. How-
ever, it is not immediately clear how fx is related to
the actual relative frequency px of item x.

Proposition 1. Consider the random variable w
defined as follows

w =

{

1 if x is more frequent in a basic window
0 otherwise

(1)
Then, w constitutes a Bernoulli variable.

Proof. The probability of success is the same for
all basic windows as they all have the same size. Suc-
cess occurs with probability Bx equal to the probability
that type x is more frequent than type y within the ba-
sic window. That is, Bx is the probability that type x
occurs d b

2
e or more times in a basic window of size b,

given by Equation (2); recall that item types x and y
conform to a binomial distribution, where the proba-
bility that a given element e belongs to type x is px and
the probability that e belongs to type y is py = 1− px.
Failure occurs with probability 1−Bx.

Bx =

b
∑

i=d b

2
e

(

b
i

)

pi
x(1− px)b−i (2)

2

Corollary 1. Since the probability of type x win-
ning in any one basic window is independent of its prob-
ability of winning in any other basic window, the sum
of n Bernoulli variables as defined in Equation (1) is a
binomial variable with parameters n and Bx.

The frequency fx output by MoreFrequentItem

may be used to calculate an observed relative frequency
B̂x that x is the winner of a basic window:

B̂x = fx/n. (3)

This value can then be substituted in Equation (2) in
order to obtain p̂x, the expected relative frequency of
item x. Unfortunately, Equation (2) cannot be solved
in closed-form for p̂x, so numerical methods must be
used in order to obtain a value for p̂x for a given B̂x.

3.1.2 Bounding the Error

We will make use of the following result due to Hoeffd-
ing [11]. Consider a sample of n items from a bino-
mial distribution and an observed frequency of f . The
following is Hoeffding’s bound on the deviation of the
observed frequency from the true frequency p.

Pr

{

f

n
− p ≥ ∆

}

≤ e−2n∆2

(4)

We assume that the numerical methods used to ob-
tain p̂x from B̂x are not a significant source of error;
therefore, the primary source of error stems from the
quality of B̂x as an estimate for Bx. Now, Bx is a



Figure 2: Solving for p̂x numerically.

binomial random variable (by Corollary 1, fx is a bino-
mial random variable, and Bx is simply a normalized
form of fx). Using the Hoeffding bound along with a
symmetry argument gives the following.

Pr

{

(B̂x − ∆) ≤ Bx ≤ (B̂x + ∆)
}

> 1− 2e−2n∆2

(5)

The right-hand side is the confidence level, so by set-
ting it equal to the desired confidence (e.g. 0.95) we
can solve for ∆ (note that n is fixed by the choice of
b). Because Bx in Equation (2) increases monotoni-
cally with px, we can find lower and upper bounds for
px by numerically computing solutions to Equation (2)
for the points Bx = (B̂x − ∆) and Bx = (B̂x + ∆),
respectively. This process is illustrated in Figure 2,
with the three lines corresponding to B̂x −∆, B̂x, and
B̂x + ∆. As shown, a B̂x value of 0.5 generates a 95%
confidence interval for px of [0.484, 0.516].

It should be noted that because the basic window
size b occurs in the bounds of the summation in Equa-
tion (2), the choice of b has a large impact on the er-
ror in predicting px. As b increases, the following be-
haviour may be observed.

1. The prediction error ∆ surrounding B̂x increases
because n, the number of basic windows used to
make the prediction, decreases.

2. The graph of Bx vs. px degrades from a linear
function to a step function centered at px = 0.5.

Figure 3 demonstrates the effect of changing b for a
window of size N = 10000. It shows the curve B̂x as
a function of px, along with the curves B̂x − ∆ and
B̂x + ∆ that bound the 95% confidence region. The
three graphs demonstrate the following values of b: (a)
5 (b) 50 (c) 500.

The observation that B̂x as a function of px de-
grades to a step function with increasing b is cru-
cial for characterizing the effect of basic window size
on prediction error. For small values of b, algorithm
MoreFrequentItem predicts a wide range of values
for px, whereas for large values of b, the useful pre-
diction range for px is very small. However, the pre-
diction error immediately about the point px = 0.5
remains tight as b grows. The net effect is that as
the choice of basic window size ranges from 1 to N ,
MoreFrequentItem’s usefulness as a frequency pre-
dictor diminishes, but its accuracy as a Boolean test
for identifying the majority item remains. Since the al-
gorithm’s space usage is inversely proportional to b, we
conclude that there is a direct tradeoff between space
and the accuracy of the frequency prediction, but the
simple identification of the majority item does not fully
illustrate this tradeoff.

3.2 Multiple Item Types

Algorithm MoreFrequentItem from the previ-
ous section may be modified as follows to identify the
most frequent item among d categories.

Algorithm MostFrequentItem

Repeat:

1. For each element e in the next b elements:
If a local counter exists for the type of element e,
increment it,
Otherwise, create a new local counter for this ele-
ment type and set it equal to 1

2. Add a summary S containing the type of the “win-
ner” (largest local counter) to the back of queue
Q

3. Delete all local counters

4. If a global counter exists for the type named in S:
Increment the global counter,
Otherwise, create a new global counter for this el-
ement type and set it equal to 1

5. If sizeOf(Q) > N/b:

(a) Remove the summary from the front of Q and
decrement the corresponding global counter

(b) Delete the counter if its size reaches zero

(c) Output the identity and value of the largest
global counter

The space requirement of algorithm MostFre-

quentItem consists of two parts: the working space



0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1px

0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1px
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Bx

0.2 0.4 0.6 0.8 1px

(a) (b) (c)

Figure 3: Effect of basic window size on inference error for N = 10000 and (a) b = 5, (b) b = 50, and (c)
b = 500.

needed to create a summary for the current basic win-
dow, and the storage space needed for the summaries
of the basic windows. In the worst case, the work-
ing space requires min(b, d) local counters of size log b.
For storage, there are N/b summaries each requiring
log d bits. There are also at most N/b global counters
of size log (N/b). This gives a total space bound of
O(min(b, d) log b + N

b
log d + N

b
log N

b
). The time com-

plexity of MostFrequentItem is O(b) for each pass
through the outer loop. Since each pass consumes b
arriving elements, this gives O(1) amortized time per
element.

The largest weakness of this algorithm lies in the
intractability of using the output value fi in order to
estimate the relative frequency pi of the most frequent
item i. In fact, even just bounding the error on the
identity of i is intractable for large d. Consider the case
of three item types x, y, and z. In the case of two item
types, Bx in Equation (2) was constructed by summing
the probabilities of all possible cases where x was in ma-
jority within a basic window. These cases were easily
identified as exactly those where x occurred at least
d b

2e times. However, in the case of three categories,

the test count(x) ≥ b
3 is a necessary but not sufficient

criterion for identifying a majority by x, because x’s
majority also depends on its count being greater than
both y and z. This gives rise to the equation

Bx =

b
∑

i=d b

3
e

(

b
i

)

pi
x







b−i
∑

j=0

(

b− i
j

)

pj
ypb−(i+j)

z

−

b−i
∑

j=i+1

(

b− i
j

)

[

pj
yp1−(i+j)

z + p1−(i+j)
y pj

z

]







(6)

with analogous equations existing for By and Bz. In
order to compute px given estimates for Bx, By and

Bz, we must solve a non-linear system of two equations
and two unknowns (the third equation is eliminated by
rewriting pz in terms of px and py).

In the general case of d item types, to estimate pi

we must solve a non-linear system of d − 1 equations
and d−1 unknowns, where the number of terms within
each equation grows combinatorially in d. Even if we
restrict the problem to bounding the prediction error
in the identification of i as the most frequent item, we
cannot translate the width of the Hoeffding-bounded
error surrounding B̂i to a range surrounding p̂i without
solving the entire system.

Because the Most Frequent Item Problem is a sim-
plification of the more general Top-k Problem, the
above results demonstrate that it is infeasible to ex-
trapolate a solution to the top-k problem with bounded
error using only a set of sub-solutions (top-k lists for
portions of the total window) and the assumption of a
multinomial distribution of item categories.

4 Identifying Over-Threshold Items

The complexity involved in using algorithm Most-

FrequentItem is due to the interdependence among
item types inherent in the concept of a winner for each
basic window. Because of the dependencies involved
in the creation of the stored top-k lists, we cannot use
these lists to solve for the relative frequency of one
type without simultaneously solving the entire system.
If we wish to solve for the frequencies of only selected
categories, we must eliminate the dependencies within
the frequent item lists in individual basic windows.
One way to introduce independence is to replace
the concept of winner (implying comparison among
peers) with achiever (implying comparison against an
external standard). As a consequence, rather than
each basic window resulting in exactly one winner,



each basic window may result in the recognition of
zero or more achievers. The following algorithm
employs a user-defined threshold 1/m to create an
items-over-threshold list for each basic window.

Algorithm OverThreshold

Repeat:

1. For each element e in the next b elements:
If a local counter exists for the type of element e,
increment it,
Otherwise, create a new local counter for this ele-
ment type and set it equal to 1

2. Add a summary S containing the element types of
all local counters ≥ b/m to the back of queue Q

3. Delete all local counters

4. For each type named in S:
If a global counter exists for this type, increment
it,
Otherwise, create a new global counter for this el-
ement type and set it equal to 1

5. If sizeOf(Q) > N/b:

(a) Remove the summary S′ from the front of Q

(b) Decrement the global counters for all element
types named in S′

(c) If a counter is decremented to zero, delete it

(d) Output the identity and value of all global
counters greater than some threshold τ

The space complexity of algorithm OverThresh-

old is at most m times worse than MostFrequen-

tItem, with a worst case bound of O(min(b, d) log b +
mN

b
logd + mN

b
log N

b
) where d is the total number

of item types in the system. The time complexity is
O(min(m, b) + b) per iteration of the outer loop, which
still yields O(1) amortized time.

We now proceed to resolve two issues related to al-
gorithm OverThreshold. Firstly, we identify the re-
lation between the frequency fx output by the algo-
rithm and the true relative frequency px. Secondly, we
investigate how to calculate the required value of τ used
in step 5(d) of the algorithm. We first note that, as in
section 3.1, we can define a Bernoulli random variable

w =

{

1 if count(x) ≥ b/m in a basic window
0 otherwise

(7)

whose probability of success Bx is given by the sum
of the probabilities for all scenarios where x exceeds
the threshold. In the construction of Equation (2) in
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Figure 4: Effect of threshold parameter on inference
error.

section 3.1 we exploited the fact that “majority” in
the case of two categories is equivalent to surpassing a
threshold of db/2e. In case of an arbitrary threshold,
our new equation for Bx becomes the following.

Bx =

b
∑

i=d b

m
e

(

b
i

)

pi
x(1− px)b−i (8)

Observe that unlike Equation (6), this equation relates
Bx to px without dependence on the relative frequen-
cies of any other items.

To address the first issue, note that fx induces a
value B̂x = fx/n which is an approximation for the true
Bx of Equation (8). The frequencies {f1, . . . , fd} follow
a multinomial distribution with parameters n, B1, B2,
. . . , Bd, so the marginal distribution for fx (and hence
B̂x) follows a binomial distribution. Therefore, we can
directly apply the Hoeffding bound from Equation (5)
to quantify the error in this approximation. The result
is that the observations made in section 3.1.2 regarding
the effect of b on the shape of the curve and the error
in prediction all directly apply, with the generalization
that the step function centers around px = 1/m rather
than px = 1/2. Figure 4 demonstrates the three curves
(corresponding to B̂x−∆, B̂x, and B̂x +∆ for the 95%
confidence level) associated with the values N = 10000,
b = 50, and m = 10.

The accuracy of frequency prediction centers
around the relative threshold 1/m, therefore 1/m
should be chosen very close to the actual desired re-
porting threshold. Assume that 1/m is the desired
threshold. Then, the value for τ should be the expected
value for Bx when px=1/m, which can be calculated by
substituting 1/m for px in Equation (8). This value for
τ gives the most likely list of types that have a relative



frequency over 1/m; however, the solution may contain
either false negatives (high frequency types not identi-
fied) or false positives (low frequency types incorrectly
identified). By adding (subtracting) the value ∆ to
(from) τ , we can guarantee with the confidence level
associated with ∆ that the solution contains no false
positives (negatives), with the tradeoff that the solu-
tion is more likely to contain false negatives (positives).

5 Comparison with Random Sampling

We are interested in comparing the accuracy in
identifying high-frequency categories between our al-
gorithms and classical inference for proportions. Let p̂
be the sample proportion (observed count divided by
the sample size n). The interval within which the true
proportion p lies may be calculated as follows.

p ∈ [p̂− z∗S, p̂ + z∗S] (9)

The value of z∗ is the percentile of the standard nor-
mal distribution that corresponds to a given confidence
level (z∗ = 1.960 for 95% confidence, z∗ = 2.576 for
99% confidence). S is the standard error of the sample
given by the following equation.

S =

√

p̂(1− p̂)

n

√

N − n

N − 1
(10)

The second term is the finite population correction
factor because we are sampling from a population size
equal to the sliding window size N (recall our assump-
tion that each sliding window conforms to a multino-
mial distribution). This inference method relies on the
normal approximation to binomial distributions and
may be used if np ≥ 5 and n(1− p) ≥ 5.

In our experiments, the error metric is taken to be
the maximum expected error when the sample propor-
tion is equal to the threshold at the 95% confidence
level. For instance, in the two-category majority case,
we compare the range of p that algorithm MoreFre-

quentItem returns when B̂x = 0.5 with the confi-
dence interval predicted by Equations (9) and (10) for
p̂ = 0.5. We fix N , the size of the sliding window, to
be 10000, and investigate the consequences of increas-
ing the basic window size b, (or equivalently, decreasing
k, the number of basic windows). To ensure fairness,
we allow the random sampling algorithm to utilize the
same amount of memory that our algorithms require in
the worst case. Furthermore, we undercharge the ran-
dom sampling algorithm by ignoring the space costs
associated with maintaining a windowed random sam-
ple (see [2] for more details regarding these costs).

Figure 5: Prediction error of algorithm MoreFre-
quentItem and random sampling.

5.1 Algorithm MoreFrequentItem

First, we test algorithm MoreFrequentItem in
the role of an identifier of the majority between two
categories. Figure 5 compares the error (i.e. the length
of the interval within which the true value of px lies
with 95% confidence) as a function of b for algorithm
MoreFrequentItem and classical inference from a
random sample. Our algorithm outperforms classical
inference for all values of b. For instance, if b = 100,
the algorithm’s error is only one-fifth of the error in ran-
dom sampling. As the value of b approaches 400, our
algorithm’s advantage in minimizing the error reaches
one order of magnitude. As seen in Figure 3 in Section
3, increasing b has little effect on the approximation
error of MoreFrequentItem at the decision point,
while at the same time reducing the space requirements
(and increasing the refresh delay). In contrast, random
sampling performs increasingly poorly as b gets large
because the ratio of the sample size to the population
size decreases.

5.2 Algorithm OverThreshold

We compare the worst-case performance of algo-
rithm OverThreshold with classical inference for
many categories with three threshold values: 0.5, 0.1,
and 0.01. The value of N remains fixed at 10000 and
the confidence level is still 95%. We assume that the
number of distinct items d is at least as large as b. Re-
sults are shown in Figure 6 for threshold values of (a)
0.5 (b) 0.1 and (c) 0.01.

We first note that the error in classical inference is
no longer a monotonically increasing function of b. This
is so because the space complexity of algorithm Over-



(a) (b) (c)

Figure 6: Prediction error of algorithm OverThreshold and random sampling.

Threshold depends on b (in the worst case, we need to
store the entire current basic window in memory since
we assumed that d ≥ b) and on mN

b
(the number of

synopses stored times the maximum number of items
that may possibly exceed the given threshold of 1

m
).

Thus, as b increases, our algorithm must allocate more
working storage for the current basic window, which
allows the classical inference algorithm to use a larger
sample size. This explains why the error in random
sampling eventually begins to decrease as b increases,
as seen in Figures 6(a) and 6(b).

Our second observation deals with the degrada-
tion in the worst-case performance of algorithm Over-

Threshold (relative to random sampling) for very
small threshold values. Clearly, a smaller threshold
value allows more items to exceed the threshold in
a given basic window, thereby increasing the upper
bound on the sizes of our synopses. Nevertheless, as
seen in Figure 6(a), our algorithm outperforms random
sampling when the threshold is 0.5. In Figure 6(b), we
see that when the threshold is lowered to 0.1, our algo-
rithm performs better for b > 25. In Figure 6(c), fur-
ther decreasing the threshold to 0.01 leads to a value of
b > 250 for which algorithm OverThreshold is more
precise than random sampling.

It should be noted that these results represent the
worst-case behaviour of algorithm OverThreshold,
where the maximal number of items exceeds the thresh-
old in a given basic window, and must be recorded. Re-
laxing this condition leads to a relative improvement in
the performance of our algorithm versus random sam-
pling. In the “best” case of only two categories, we
only require one counter in order to decide which item
type was more frequent within the current basic win-
dow. Thus, the amount of memory available to store a
random sample is smaller and our algorithm enjoys a
greater relative advantage (recall Figure 5).

6 Possible Extensions

6.1 Time-based Sliding Windows

Our algorithms are applicable to time-based win-
dows, where basic windows of possibly different sizes
span equal time intervals, due to the following result
from probability theory.

Theorem 1. A Poisson trial ai is a success with
probability pi and failure with probability 1− pi. Sup-
pose that A is the sum of n independent Poisson trials
ai with probabilities pi for 1 ≤ i ≤ n. Hoeffding’s
theorem states that A may be upper-bounded by a
binomial random variable B with parameters n and
p = 1

n

∑n

i=1 pi.

6.2 Top-k Estimation using Counts

Recall that algorithm OverThreshold finds items
that occur with frequencies exceeding a user-defined
threshold. The following is a possible extension that
computes a list of the k most frequent items. Consider
the general case of d distinct flows and some thresh-
old τ . In addition to storing the boolean information
of whether or not an item exceeded τ in a given ba-
sic window, we also store the counts of all the items
above τ . After computing the list of all the items that
exceed the threshold in the entire window, if there are
more than k such items, then we increase the threshold
slightly and eliminate all the items whose counts do not
exceed the new threshold. We continue this procedure
until there are exactly k items left.

The above suggests a more general approach of
assigning different thresholds for various item types.
That is, for item types x, y, z and w, we could choose
to include item x on our above-the-threshold lists only
if its relative frequency is above 0.4 and include other
items if their frequencies are above 0.35. This would



be an appropriate strategy if we knew that x is slightly
more popular than the other item types. This method
could be improved by incorporating feedback from re-
cent sliding windows and deciding whether to increase
or decrease thresholds for various items.

6.3 Reducing Space Usage

We propose two extensions of algorithm Over-

Threshold that reduce space usage: randomly sam-
pling items to be stored in the synopses and deleting
parts of older synopses if a particular item has already
exceeded the global threshold. In the first approach, if
an item exceeds the threshold in a given basic window,
we flip a biased coin and store the item with probability
h and ignore it with probability 1−h. This scheme re-
duces space and does not affect the running time, but it
introduces an additional source of error. This demon-
strates an interesting tradeoff between using space in
order to straighten out the error curve (as in Figure 3,
improving the range of px that can be predicted) and
using space to tighten the prediction error within the
usable part of the curve.

The second improvement essentially eliminates re-
dundant information and works as follows. Suppose
that an item would have to occur on at least 20 out
of 100 top-k lists in order to exceed a given threshold.
Suppose further that flow x occurs on 60 such lists. If
we removed every second occurrence of flow x from the
top-k lists, we would still have 30 such occurrences and
we would still conclude that x exceeds the threshold
(although we could not even attempt an estimation of
the true frequency of x). However, this would introduce
error for skewed data as the window slides. A better
solution would be to remove flow x from the 30 oldest
lists on which it occurs, which does not introduce any
error into future windows. In either case, this reduc-
tion in space comes at a cost of increased processing
time to locate the oldest items to delete.

7 Conclusions

We proposed a classification of distribution models
for sliding windows over data streams. We used one
of our models—the drifting distribution—to develop
algorithms for answering frequent item queries (and
to some extent for inferring the actual frequencies of
items) over multinomially-distributed sliding windows.
Our algorithms were shown to outperform classical in-
ference from a windowed random sample.

In future work, we intend to develop sliding win-
dow algorithms for other holistic aggregates and re-
fine the drifting distribution model. For the former,

we are interested in identifying any special cases that
would enable incremental execution of other holistic
aggregates (e.g. COUNT DISTINCT) using the basic
window technique. For the latter, we want to verify
that the drifting distribution model with a small value
of δ (the maximum allowed deviation in the probabil-
ity distribution over a given sliding window) does not
add a significant error to our algorithms. Moreover,
we would like to further divide the drifting distribu-
tion model according to the type of change in the dis-
tribution over time. For example, one type of change
could be that each item’s frequency changes slightly,
and another could involve a small number of categories
changing significantly and others remaining the same
(though some windowed aggregates may be oblivious
to the type of change in the distribution). Again, the
goal is to find special cases where efficient incremental
evaluation of complex statistics over the sliding window
is possible.
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