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Abstract

The discovery of the relationships between chemical
structure and biological function is central to biologi-
cal science and medicine. In this paper we apply data
mining to the problem of predicting chemical carcino-
genicity. This toxicology application was launched at
IJCAI’97 as a research challenge for artificial intelli-
gence. Our approach to the problem is descriptive
rather than based on classification; the goal being to
find common substructures and properties in chemi-
cal compounds, and in this way to contribute to sci-
entific insight. This approach contrasts with previous
machine learning research on this problem, which has
mainly concentrated on predicting the toxicity of un-
known chemicals. Our contribution to the field of data
mining is the ability to discover useful frequent pat-
terns that are beyond the complexity of association
rules or their known variants. This is vital to the prob-
lem, which requires the discovery of patterns that are
out of the reach of simple transformations to frequent
itemsets. We present a knowledge discovery method
for structured data, where patterns reflect the one-to-
many and many-to-many relationships of several ta-
bles. Background knowledge, represented in a uniform
manner in some of the tables, has an essential role here,
unlike in most data mining settings for the discovery
of frequent patterns.

Introduction
The toxicology evaluation problem. In this pa-
per we apply a data mining method to the problem of
predicting whether chemical compounds are carcino-

genic or not. This problem is of clear scientific and
medical interest. Cancer is the second most common
cause of death in western countries. Currently around
one third of the population will get cancer sometime
in their lifetime: and one quarter will die of cancer.
A large percentage of these cancers are linked to en-
vironmental factors such as exposure to carcinogenic
chemicals (estimated as high as 80%). Very few com-
pounds have been fully tested for carcinogenesis as the
process is very expensive and time consuming. Better
computer-based methods are therefore valuable.
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The National Toxicity Program of the U.S. National
Institute for Environmental Health Sciences conducts
standardized bioassays of chemicals on rodents, in or-
der to estimate their carcinogenetic effects on humans.
Within the Predictive Toxicology Evaluation (PTE)
project (Bristol, Wachsman, & Greenwell 1996) they
have published a collection of chemicals already ana-
lyzed -- roughly half of which have turned out to be
carcinogenic -- and a collection of chemicals whose tests
are undergoing. Assays of the published but untested
chemicals will be completed by PTE during this year.
These cases offer a possibility for true blind trials in car-
cinogenicity prediction research. The prediction of ro-
dent chemical carcinogenesis was launched at IJCAI ’97
as a research challenge for artificial intelligence (Srin-
isavan et al. 1997). The problem is suitable for data
mining as there exists a large database of chemicals
available for analysis, and new knowledge needs to be
discovered concerning the molecular mechanisms of car-
cinogenesis.

Rather than competing with expert chemists in clas-
sifying chemicals to carcinogenic or otherwise, our
goal was to discover frequent patterns that would aid
chemists - and data miners seeking predictive theories
- to identify useful substructures for carcinogenicity re-
search, and so contribute to the scientific insight. This
can be contrasted with previous machine learning re-
search in this application, which has mainly concen-
trated on predicting the toxicity of unknown chemi-
cals (Srinisavan et al. 1997; Kramer, Pfahringer, &
Helma 1997). We believe that a repository of frequent
substructures and their frequencies would be valuable
for chemical (machine learning) research. For example,
once we know all frequent substructures, we can make
stronger claims about the (non-)existence of high qual-
ity single rules than can usually be done with classifying
approaches based on heuristic search.

Contribution to data mining. The task of discov-
ering recurrent patterns has been studied in a variety of
data mining settings. In its simplest form, known from
association rule mining (Agrawal, Imielinski, & Swami
1993), the task is is to find all frequent itemsets, i.e., to
list all combinations of items that are found in a suffi-



cient number of examples. A prototypical application
example is in market basket analysis: find out which
products tend to be sold together.

Our contribution to the field of data mining is in
considering the discovery of useful frequent patterns
that are far more complex than association rules or
their known variants. We discover queries in first-order
logic that succeed with respect to a sufficient num-
ber of examples. Such patterns are out of the reach
of simple transformations to frequent itemsets. We
present an attempt for knowledge discovery in struc-
tured data, where patterns reflect the one-to-many and
many-to-many relationships of several tables. Back-
ground knowledge, represented in a uniform manner,
has an essential role here, unlike in most data mining
settings for the discovery of frequent patterns.

Datalog concepts. We use DATALOG (see, e.g., (Ull-
man 1988)) to represent both data and patterns. 
DATALOG, a term is defined as a constant symbol, writ-
ten in lowercase, or a variable, written with initial up-
percase. A lo#ical atom is an m-ary predicate symbol
followed by a bracketed m-tuple of terms. A definite
clause is a universally quantified formula of the form
B ~-- Ai, ...I An (n > 0), where B and the Ai are
logical atoms. This formula can be read as "B if Ai
and ... and An’. If n = 0, a definite clause is also
called a fact. A (deductive) DATALOG database is a set
of definite clauses. A formula 4--- Ai, ..., A,~ with-
out a conclusion part is called a denial. Such a formula
can also be viewed as a (PrtOLOG) {/uery ?- Ai, ...,
An: (the resolution based derivation of) the answer 
a given query with variables (Xi,..., X,~) binds these
variables to terms (al, ¯ ¯., a~), such that the query suc-
ceeds if each Xi is replaced by ai. This binding is de-
noted by (Xl/al,...,X~/a~). Due to the nondeter-
ministic nature of the computation of answers, a single
query Q may result in many bindings. We will refer by
answerset(Q,, D) to the set of all bindings obtained by
submitting query Q to a DATALOG database D.

Data and background knowledge. The DAT-
ALOG database for the carcinogenesis problem was
taken from http://www.comlab.oz, ac.uk/oucl/#roups/
machlearn/PTE/. The set we have used contains 337
compounds, 182 (54%) of which have been classified 
carcinogenic and the remaining 155 (46%) otherwise.

Each compound is basically described as a set of
atoms and their bond connectivities, as proposed
in (King et al. 1996). The atoms of a com-
pound are represented as DATALOG facts such as
atom(d1,dl_~5,h,1,0.327) stating that compound dl
contains atom d1_~5 of element h and type 1 with par-
tial charge 0.327. For convenience, we have defined
additional view predicates atomel, atomty, and atomch;
e.g., atomel(d1,dl.25,h). Bonds between atoms are de-
fined with facts such as bond(all, d1-$4, d1_25,1), mean-
ing that in compound dl there is a bond between atoms

dl_Z4 and d1_25, and the bond is of type 1. There are
roughly 18500 of these atom/bond facts to represent
the basic structure of the compounds.

In addition, background knowledge contains around
7000 facts and some short DATALOG programs to de-
fine mutagenic compounds, genotoxicity properties of
compounds, generic structural groups such as alcohols,
connections between such chemical groups, tests to ver-
ify whether an atom is part of a chemical group, and a
family of structural alerts called Ashby alerts (Ashby 
Tennant 1991).

Representation of substructures. The target pat-
terns or substructures are expressed as DATALOG
queries. For instance, ?- atomel(C,A,c), methyl(C,S)l
oecurs_in(A,S) is a pattern representing a carbon
atom A that occurs in a methyl structure S within com-
pound C.

Related work. Related problems in structure discov-
ery in molecular biology have been considered, e.g., in
(Wang et al. 1997; Kramer, Pfahringer, & Helms 1997;
King et al. 1996; King & Srinivasan 1996). Substruc-
ture discovery and the utilization of background knowl-
edge have been discussed in (Djoko, Cook, & Holder
1995). Discovery of logical patterns, similar to DATA-
LOG queries, has been considered in (De Raedt & De-
haspe 1997) and in the context of metaqueries (Shen
et al. 1996); they also emphasize the use of language
bias for the specification of the search space. Closely
related data mining problems have recently arisen also
in schema discovery in semi-structured data (Wang 
Liu 1997).

The substructure discovery problem we look at has a
complexity somewhere between frequent itemset discov-
ery and a full-scale inductive logic programming (ILP;
see, e.g., (Lavra~ & D~.eroski 1994)) approach. In data
mining, related problems in the area of discovering fre-
quent patterns include association rules (Agrawal et
al. 1996), episodes in sequences (Mannila, Toivonen,
& Verkamo 1997), and sequential patterns (Agrawai 
Srikant 1995), a family of problems discussed in more
general in (Mannila & Toivonen 1997).

Within ILP, a closely related problem is the discov-
ery of queries in first order logic that succeed with re-
spect to a sufficient number of examples (Dehaspe 
De Raedt 1997). In (Dehaspe & Toivonen 1998) 
discuss the relationship of ILP to frequent pattern dis-
covery, and relate data mining problems to ILP. The
logical setting for substructure discovery is based on
the learning from interpretations paradigm introduced
in (De Raedt & D~eroski 1994).

Frequent substructure discovery
Discovery task. Intuitively, the problem we consider
is the following: given the above data on chemical com-
pounds and their structures and properties, find recur-
rent compound substructures and properties. Since the
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properties are also a result of the structure of a com-
pound, for the rest of the paper we just talk collectively
about (sub)structure discovery.

This problem is an instance of the generic problem
of finding all potentially interesting sentences (Mannila
& Toivonen 1997). Given a database r, a class £ of
sentences (patterns), and a selection predicate q which
is used for evaluating whether a sentence Q E/3 defines
a potentially interesting pattern in r. The task is to
find the theory of r with respect to £ and q, i.e., the
set Th(£, r, q) = {Q E £ [ q(r, Q) is true). In (Dehaspe
& Toivonen 1998)~ this framework has been used to
formulate the task of frequent query discovery in DAT-
ALOG. We now define frequent substructure discovery
as a special case of frequent query discovery.

Definition 1 (Frequent substructure discovery)
Assume

¯ r is a DATALOG database of chemical compounds,
their structures and properties, as described above,

¯ £ is a set of substructures ezpressed as DATALOG

queries ?- A1, ..., An, where each logical atom Ai
concerns some structural property of the compounds,
as described above,

¯ q(r, Q) is true if and only if the frequency of query
Q E 12 with respect to r is at least equal to the fre-
quency threshold specified by the user.

The task is to find the set Th(£, r,q) of all frequent
substructures.

We next define what frequency exactly means in this
setting.

Definition 2 (Substructure frequency) Given
r and Q G £ as above, a relation keypred(C), where
keypred is a predicate name not used in Q or r, and C
is the key variable used in Q to refer to the compound
namej the (absolute) frequency of query Q w.r.t, r 

[answerset(?- keypred(C), r U {keypred(C) +-- Q})[,

i.e., the number of bindings of the C variable with which
the query Q is true in r, i.e., the number of compounds
in which substructure Q occurs.

Frequent probabillstle rules. Once frequent sub-
structures and their frequencies are discovered, prob-
abilistic rules can be produced, much like in the case
of association rules. In terms of the DATALOG concepts
introduced above, a probabilistic rule R is an expression
of the form A1,...,A~ ~ A~+I,...,An, where At are
atoms. This formula should be read as "if query ?-
A1,...,AI: succeeds then query ?- A1,...,An succeeds
also". The confidence of rule R can be computed as
the ratio of the frequencies of queries ?- A1,... ,Aa and
?- A1,...,Ak. The frequency (or support) of rule R is
the frequency of query ?- A1,...,An.

The patterns searched for are significantly different
from frequent itemsets or association rules, and we can-
not see any useful or meaningful way of transforming
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the problem into a search for association rules. As an
example, consider the discovery of a pattern such as

if(in a given compound) a carbon atom has a bond
with an atom with partial charge tess than -0.2
then (the compound is) carcinogenic.

As a (propositional) association rule, it seems impos-
sible to break the condition part to a conjunction of
several items. If "carbon atom" is one item and "atom
with partial charge less than -0.2" another item, how
can we represent the fact that they have a bond? The
straightforward way is to consider the condition of the
rule as just one item ’% carbon atom that has a bond
with an atom with partial charge less than -0.2". Such
an approach with association rules leads to two serious
problems.

¯ The number of different items explodes, as each pos-
sible combination of properties that can be associated
with an atom must be considered as a separate item.
Since several atoms can be related, as in the example
above, the number of possible items explodes further.

¯ The search (e.g., with APRIOrtI) is inefficient as the
search space is flattened and the structural informa-
tion is lost. The generalization hierarchy between the
derived items could in principle be treated as an item
hierarchy, but the proposed methods (Han & Fu 1995;
Holsheimer et al. 1995; Srikant & Agrawal 1995) are
not feasible for complex cases like this.

As a probabilistic rule, in turn, the pattern can
be expressed in a natural way as atomel(C, Al, c),
atomch(C,A$,X), -0.~ > X, bond(C, A1,A2, Y) ~ 
cinogenic. In the following section we describe WARMR,

a method for searching such frequent patterns.

Substructure discovery with WARMR

We now briefly describe the WARMP~ algorithm used in
the experiment. More details can be found in (Dehaspe
& De Raedt 1997; Dehaspe & Toivonen 1998). WAR.MR
is the first general purpose ILP system to employ the
efficient levelwise method known from the APRIORI al-
gorithm (Agrawat et al. 1996). In (Dehaspe & Toivo-
nen 1998) we show how WArtMR can be tuned to sim-
ulate APRIORI and some other well-known algorithms
for frequent pattern discovery. A stand-alone version of
WARMR is freely available for academic purposes upon
request.

Language bias. WAR.MR is, in principle, capable of
discovering arbitrary frequent DATALOG queries from
a given database. In practice, however, the applica-
tion domain and problem setting constrain the set of
meaningful and useful patterns. In WARMR, the set of
allowed patterns is specified with a declarative language
bias. This well-known ILP mechanism is valuable for
data mining systems: the search space is made explicit,
and modifying it is easy.



The language bias is specified using expressions of
the form rmode(n : (Aa,...,An)), where the Ai 
conjuncted logical atoms. The rmode declarations indi-
cate which logical atoms can be included in a query, the
maximal number of times (n > 0) they can be included,
and the modes and types of the variables in the logical
atoms. A variable V in input mode, denoted with +V,
has to occur somewhere to the left in the query. Typ-
ing of variables can be used to constrain the occurrence
of input variables, such that for instance atomty(C,S,1)
will not be added to ?- atomel(C,A,c), methyl(G,S),
but atoraty(C,A,1) or occurs_in(A,S) will. This format
for the definition of the language of pattern £ was origi-
nally proposed for PROGOL (Muggleton 1995) and later
adapted to TILDE (Blocked & De Raedt 1998).

Levelwlse search. The levelwise algorithm (Mannila
& Toivonen 1997) is based on a breadth-first search
in the lattice spanned by a specialization relation_’~
between patterns, where plY_p2 denotes pattern "pl is
more general than pattern p2", or "p2 is more specific
than pattern pl". The specialisation relation used in
WARMR is 0-subsumption, a strictly stronger variant of
the subset relation: pl 0-subsumes a p2 if and only if
there exists a (possibly empty) binding of the variables
of pl, such that every logical atom of the resulting query
occurs in p2.

The levelwise method looks at a level of the lattice
at a time, starting from the most general patterns. The
method iterates between candidate generation and can-
didate evaluation phases: in candidate generation, the
lattice structure is used for pruning non-frequent pat-
terns from the next level; in the candidate evaluation
phase, frequencies of candidates are computed with re-
spect to the database. Pruning is based on monotonic-
ity of _ with respect to frequency: if a pattern is not
frequent then none of its specialisations are frequent. So
while generating candidates for the next level, all the
patterns that are specialisations of infrequent patterns
can be pruned.

The levelwise approach has two crucial useful proper-
ties (Mannila & Toivonen 1997). First, the database 
scanned at most k + 1 times, where/~ is the maximum
level (size) of a frequent pattern. All candidates of 
level are tested in single database pass. This is an im-
portant factor when mining large databases. Second,
the time complexity is linear in the size of the result
times the number of examples, assuming matching pat-
terns against the data is fast.

Candidate generation in WARMR. To generate
candidates, WARMR employs a classical specialisa-
tion operator under 0-subsumption (Lavra~ & D~,eroski
1994). A specialisation operator p maps queries E £:
onto sets of queries E 2£, such that for any Query1 and
V Query2 E p(Queryl), Queryl 0-subsumes Query2.
The operator used in WARMR essentially adds conjunc-
tions to the query as allowed by the language bias spec-

ifications.
The language bias, in particular mode declarations

and the fact that conjunctions of several logical atoms
can be added in a single refinement step, complicates
pruning significantly. We can no longer require that
all subsets of a candidate are frequent, cf. for instance
APRIORI, as some of the subsets might simply not be
in ~:. Instead, WARMR requires candidates not to 0-
subsume any infrequent query.

Candidate evaluation and memory management
in WARMR. In the candidate evaluation phase the fre-
quencies of a set of queries are computed in a single
database pass. Therefore, a straightforward execution
of Definition 2 (frequency of a single query) is not prac-
tical, as it would require one pass per candidate. The
WARMR algorithm rather considers one compound C
at a time and for each candidate Qi runs the query
?- keypred(C) in database r°U r sG (9 {keypred(C) ~--
Qi}, where r° c r only contains clauses about com-
pound C and r ~ C_ r is a fixed portion of background
knowledge which contains clauses relevant for all com-
pounds. If query Qi succeeds, an associated counter qi
is incremented.

Here we take advantage of the fact that database r
of n compounds C1,..., Cn, and background knowledge
BG can be partitioned into n + 1 databases r °t U... U
r°~U r Ba. For very large databases of compounds it
is essential that r°~ is typically very small compared to
r, and can be loaded in main memory even if r can-
not. This has the crucial advantage that evaluation of
candidates Qi can be done (relatively) efficiently with
respect to a single compound at a time.

Experiments

We randomly split the set of 337 compounds into 2/3
for the discovery of frequent substructures, and 1/3 for
the validation of derived probabilistic rules about car-
cinogenicity.

Frequent substructures. In order to investigate the
usefulness of different types of information in the bio-
chemical database, WARMR’s language bias was varied
to produce three sets of frequent patterns.

¯ Ezperimeng 1: only atom element, atom type, and
bond information. At level 6, WA~tMR generates sub-
structure ?- a~omel(C, Al, c), bond(C, AI,A2,BT),
atomel(C, A2,c), atomty(C,A~,lO), a~omel(C, A3,h),
bond(C,A$,A3,BT), i.e., "a carbon atom bound to a
carbon atom of type 10 bound to a hydrogen atom,
where the two bonds are of the same bond type". In
the training set, this highly frequent substructure is
encountered in 128 compounds (57%).

¯ Ezperiment 2: everything except the atom/bond in-
formation. An example of a substructure discov-
ered at level 4 is ?- siz._ring(C,8l), alcohol(C, S2),
ashby_aler~(C, dil O, SS), connected(S1,SS) (frequency:
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m (F = 10%)] E2 (F = 4%) E3 (F = 
L NOC NOFS NOC NOFS NOC NOFS
1 6 6 58 41 85 49
2 123 34 1093 413 1466 501
3 214 137 3381 2631 3219 2184
4 813 672 15411 13963 7190 6219
5 4133 3725 15577 14435
6 25434 23961

Total 29993 28535 19934 17048 27537 23388

Table 1: Results of three runs with WARMR on car-
cinogenicity analysis. Legend: E = experiment, F =
frequency threshold, L = level, NOC = number of can-
didates, NOFS = number of frequent substructures.

11 compounds (5 %)), i.e., "an alcohol and a six ring
connected to a structure with Ashby alert dil0".

¯ E~periment 3: the full database, except the Ashby
alerts. At level 5, VVARMR produces substructure
?- 8i~_ring(C,S), atomel(C, A1,h), ato,~el(C, A2,c),
bond(C, A1,AZ, X), occurs_in(A2,S) (frequency: 157
compounds (70%), i.e., ’% hydrogen atom bound 
a carbon atom in a six ring".

The number of candidates and frequent patterns pro-
duced during these experiments is tabulated in Table 1.
Notice that, overall, there are few infrequent candi-
dates, and the number of candidates steadily increases.
As a consequence, the exploration of deeper levels is
problematic. The empty cells in the table indicate at
which level the experiments were interrupted.

Probabillstic rules. As described above, our repos-
itory of frequent substructures can be exploited di-
rectly, i.e. without going back to the database, to
produce probabilistic rules about carcinogenicity. For
instance, we can combine ?- cytogen_ca(C,n), 8ul-
fide(C,S) (frequency: 7%) and ?- non_carcinogenic(C),
cytogen_ca(C,n), sulfide(C,S) (frequency: 6%) to gen-
erate the probabilistic rule

cytogen.ca(C,n), sulfide(C,S) ::~ non_carcinogenic
(frequency: 6%; confidence: 86%).

To rank these rules we have applied a bino-
mial test that verifies how unusual the confidence
of rule substructure(C) ~ (non_)carcinogenic(C) is,
i.e. how much it deviates from the confidence of
true =~ (non_)carcinogenic(C). All rules with signifi-
cance below 3 * ¢r were discarded, with cr an estima-
tion of the standard deviation. For instance, the signif-
icance level of the above rule is 3.16 * ~. The 215 rules
that passed this test were further annotated with their
significance level on the 1/3 validation set, and finally
combined with human domain expertise. The list below
summarizes the main findings.

¯ In experiment 1, only using atom-bond information,
no substructure described with less than 7 logical
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atoms is found to be related to carcinogenicity. This
places a lower limit on the complexity of rules that
are based exclusively on chemical structure.

¯ For experiments 2 and 3, validation on an indepen-
dent test set showed that the rules identified as inter-
esting in the training set were clearly useful in predic-
tion. The estimated accuracies of the rules from the
training data were optimistically biased, as expected.

¯ The rules found in experiments 2 and 3 are domi-
nated by biological tests for carcinogenicity. It is very
interesting that these tests appear broadly indepen-
dent of each other, so that if a chemical is identified
as a possible carcinogen by several of these tests, it is
possible to predict with high probability that it is a
carcinogen - unfortunately, such compounds are rare.

¯ Inspection of the rules from experiment 2 revealed
that the Ashby alerts were not used by any rules.
We believe this reflects the difficulty humans and
machine have in discovering general chemical sub-
structures associated with carcinogenicity - however,
it is possible that the intuitive alerts used by Ashby
were incorrectly interpreted and encoded in PROLOG
by (King & Srinivasan 1996).

¯ Inspection of the rules from experiment 3 revealed no
interesting substantial chemical substructures (atoms
connected by bonds) in the rules found.

¯ Two particularly interesting rules that combine bi-
ological tests with chemical attributes were found.
It is difficult to compare these with directly exist-
ing knowledge, because most work on identifying
structural alerts has been based on alerts for car-
cinogenicity, while both rules identify alerts for non-
carcinogenicity. It is reasonable to search for non-
carcinogenicity alerts as there can be specific chem-
ical mechanisms for this, e.g. cytochromes specifi-
cally neutralise harmful chemicals. The rule ?- cy-
togen_ca(C,n), ring(sulfide, A,B) for identifying non-
carcinogenic compounds is interesting. The combi-
nation of conditions in the rule seems to be crucial:
the cytogen and sulfide tests in isolation seem to do
worse. Within rule ?- atomch(C,A,X), X<_ -0.215,
salmonella(C,n) the addition of the chemical test
makes the biological test more accurate at the ex-
pense of less coverage. As the rule refers to charge
this rule may be connected to transport across cell
membranes.

Discussion. It is interesting and significant that no
atom-bond substructures described with less than 7
conditions were found to be related to carcinogenic-
ity. This result is not inconsistent with the results ob-
tained by (King & Srinivasan 1996) and (Srinivasan et
al. 1997) using PROGOL because most of the substruc-
tures there involve partial charges, and the ones that
don’t do not meet the coverage requirements in experi-
ment 1. The hypothesis space which PROGOL searched
to form its theory (a single complex disjunctive "alert")



is larger than the hypothesis space of queries searched
by WARMR. Comparing the PI~OGOL theory on this
split it is interesting to see that the significance score
is not very good on train and test set, whereas the ac-
curacy is good on the test set, and the significance is
good on the overall set.

Although the lack of significant atom-bond substruc-
tures found in experiment 1 is disappointing, it is per-
haps not too surprising. The causation of chemical car-
cinogenesis is highly complex with many separate mech-
anisms involved. Therefore predicting carcinogenicity
differs from standard drug design problems, where there
is normally only a single well defined mechanisms. We
consider that it is probable that the current database is
not yet large enough to provide the necessary statisti-
cal evidence required to easily identify chemical mecha-
nisms. Biological tests avoid this problem because they
detect multiple molecular mechanisms; e.g., the Ames
test for mutagenesis detects many different ways chem-
icals can interact with DNA and cause mutations; bi-
ological tests also detect whether the compound can
cross cell membranes and not be destroyed before reach-
ing DNA. Biological tests vary in expense, speed, and
accuracy. At the extreme cheap and fast and relatively
inaccurate end is the Ames test for mutagenicity, this
is fast and uses bacteria (so there are no ethical issues).
At the other end are long expensive trials which involve
the dissection of thousands of rodents.

The ultimate goal of our work in predictive toxicol-
ogy is to produce a program that can predict carcino-
genicity in humans from just input chemical structure.
Such a system would allow chemicals to be quickly and
cheaply tested without harm to any animals. This goal
is still far distant. Our results suggest that an inter-
mediate goal for data mining in this predictive toxicol-
ogy problem is to identify the combination of biological
tests and chemical substructures that provides the most
cost-effective tests for testing chemical carcinogenesis.

Conclusions
We presented a data mining problem in a biochemical
database. The goal is to discover frequent substruc-
tures of chemical compounds in relation to their possi-
ble carcinogenicity. Rather than trying to predict the
toxicity of unknown compounds, our purpose is to assist
chemical experts in discovering chemical mechanisms of
toxicology.

One result of our experiment is a repository of fre-
quent substructures in a general DATALOG format. We
believe this repository constitutes a new description of
the data that is useful for chemists and data miners
looking for predictive theories. We have also identified
substructures, both known and new, that could be re-
lated to carcinogenicity. On the other hand, we have
found that, within this biochemical database, short, ac-
curate and highly significant rules apparently do not
exist.

The frequent substructures that we search for are de-
scribed as DATALOG queries. We gave examples of such

patterns found in the carcinogenicity database, and we
argued that association rules are not a suitable repre-
sentation for patterns needed in this application. Re-
lational patterns are needed instead to describe useful
aspect of substructures and their properties.

Although we have discussed one application only in
this paper, the problems attacked are general. While as-
sociation rules are a useful formalism, there are a num-
ber of problems where much more expressive frequent
patterns can be useful. In the domain of market basket
analysis, for instance, a number of properties can be
associated with products, such as the department, the
price, etc. With association rules it would be difficult
to express, e.g., the pattern that if something in promo-
tion is purchased then something else is purchased from
the same department. Or, consider telecommunication
alarm analysis and the discovery of episodes (Mannila,
Toivonen, & Verkamo 1997) and a frequent pattern of
the form

if alarm of class c from device X and Y is a device
connected to X and Y is a base station then alarm
of class d from device Y.

Such patterns cannot be discovered with a straightfor-
ward application of propositional association or episode
rule discovery methods. Specialized solutions can cer-
tainly be found for specific cases, but with a loss of
generality and flexibility.

In this paper we outlined the WARMR method for
discovering frequent DATALOG queries. We would like
to point out two useful properties of the method. First,
by changing the language bias the user can easily
search for different patterns without modifying the algo-
rithm. Second, WARMR can utilize background knowl-
edge specified as tables or DATALOG programs. In both
these respects WARMR differs favourably from most
data mining methods for mining frequent patterns.
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