
Finding Hash Collisions with Quantum

Computers by Using Differential Trails with

Smaller Probability than Birthday Bound

Akinori Hosoyamada1,2 and Yu Sasaki1

1 NTT Secure Platform Laboratories, Tokyo, Japan,
{akinori.hosoyamada.bh,yu.sasaki.sk}@hco.ntt.co.jp

2 Nagoya University, Nagoya, Japan, hosoyamada.akinori@nagoya-u.jp

Abstract. In this paper we spot light on dedicated quantum collision
attacks on concrete hash functions, which has not received much atten-
tion so far. In the classical setting, the generic complexity to find colli-
sions of an n-bit hash function is O(2n/2), thus classical collision attacks
based on differential cryptanalysis such as rebound attacks build differ-
ential trails with probability higher than 2−n/2. By the same analogy,
generic quantum algorithms such as the BHT algorithm find collisions
with complexity O(2n/3). With quantum algorithms, a pair of messages
satisfying a differential trail with probability p can be generated with
complexity p−1/2. Hence, in the quantum setting, some differential trails
with probability up to 2−2n/3 that cannot be exploited in the classical
setting may be exploited to mount a collision attack in the quantum
setting. In particular, the number of attacked rounds may increase. In
this paper, we attack two international hash function standards: AES-
MMO and Whirlpool. For AES-MMO, we present a 7-round differential
trail with probability 2−80 and use it to find collisions with a quantum
version of the rebound attack, while only 6 rounds can be attacked in
the classical setting. For Whirlpool, we mount a collision attack based
on a 6-round differential trail from a classical rebound distinguisher with
a complexity higher than the birthday bound. This improves the best
classical attack on 5 rounds by 1. We also show that those trails are
optimal in our approach. Our results have two important implications.
First, there seems to exist a common belief that classically secure hash
functions will remain secure against quantum adversaries. Indeed, sev-
eral second-round candidates in the NIST post-quantum competition use
existing hash functions, say SHA-3, as quantum secure ones. Our results
disprove this common belief. Second, our observation suggests that dif-
ferential trail search should not stop with probability 2−n/2 but should
consider up to 2−2n/3. Hence it deserves to revisit the previous differen-
tial trail search activities.

Keywords: symmetric key cryptography, hash function, cryptanalysis,
collision, quantum attack, AES-MMO, Whirlpool, rebound attack

1 Introduction

Recently, post-quantum security has received a lot of attention from the crypto-
graphic community. The security of public-key cryptographic schemes is often re-
duced to some mathematically difficult problem, which can be affected by quan-
tum machines directly. In contrast, symmetric-key cryptographic schemes may
not have such a security reduction and post-quantum security of symmetric-key
cryptographic schemes has not been discussed until recently. In 2010, Kuwakado
and Morii [28] pointed out that the 3-round Feistel network would be distin-
guished only with polynomially many queries by using Simon’s algorithm [40]
in the quantum setting. After their discovery, a lot of researchers have tried to
apply Simon’s algorithm to symmetric-key schemes to obtain a drastic reduc-
tion of the complexity in the quantum setting, e.g. key-recovery attacks against
the Even-Mansour construction [29] and universal forgery attacks on various
message authentication codes (MACs) [24].

Simon’s algorithm allows to find a “hidden period” by only polynomially
many queries. From its nature, all the previous applications of Simon’s algorithm
are keyed primitives. Namely, a key or a key-dependent secret value takes a role of
the hidden period. Then, queries need to be made in a quantum manner, which
is called “superposition queries.” (An exception is a recently published paper
that utilizes Simon’s algorithm without superposition queries [6], but this is the
only exception.) Superposition queries can still be practical if one considers the
situation that keyed primitives are implemented in a keyless manner, white-box
implementation for example. Meanwhile, there seems to exist consensus that to
make superposition queries is more difficult than to make classical queries.

In contrast, the analysis of the keyless primitives does not require any online
queries because all computations can be done offline. In this work, we are tar-
geting hash functions, and thus do not make any superposition queries to keyed
oracles.

To find collisions of hash functions in the quantum setting is indeed impor-
tant. Recently many public-key schemes have been proven to be post-quantum
secure in the quantum random oracle model (QROM) [5], which is an analogue
of the random oracle model in the classical setting. These schemes include many
second-round candidates in the NIST post-quantum public-key standardization
process [36]. A quantum random oracle is an ideal model of concrete hash func-
tions that allows superposed quantum queries for adversaries, and the QROM
implicitly assumes that there exists a concrete hash function that behaves like
a random oracle against adversaries that make quantum superposed queries. In
particular, if a hash function is used to instantiate a quantum random oracle,
there should not exist any dedicated quantum collision attack on the hash func-
tion that is faster than the generic quantum collision attack. When the best
collision attack on a hash function is the generic one in the classical setting, it
is often believed to be also the case in the quantum setting. Thus, to find ded-
icated quantum collision attacks on classically collision-resistant hash functions
will give significant impacts in the real world.

2

In the classical setting, the generic attack complexity to find collisions against
an n-bit hash function is O(2n/2) by the birthday paradox. Therefore any dedi-
cated attack that finds collisions with less than O(2n/2) complexity is regarded
as a meaningful attack. In the quantum setting, the generic attack complexity
depends on the model (or assumptions) of the actual quantum machines. Irre-
spective of the model, the lower bound of the query complexity is proven to be
Ω(2n/3) [45] and there is an attack matching this bound if O(2n/3) qubits are
available (BHT) [11]. By the same analogy, any dedicated attack with less than
O(2n/3) quantum complexity should be regarded as a meaningful attack.

However, in the quantum setting, dedicated attacks need to be compared
with the generic attack complexity very carefully because the generic attack
complexity depends on the model of the quantum computations. For example,
BHT cannot be better than the classical computations by considering the fact
that each qubit can behave as either processor or memory [4]. (By running
2n/3 processors in parallel, collisions can be found in time O(2n/6) even with
classical machines.) However, if a quantum computer of polynomial size with
exponentially large quantum random access memory (qRAM) is available, BHT
is the best collision attack. It is hard to predict which model is more likely to be
realized in the future than others, and it would be useful to discuss advantages
of attacks in various models with various generic attack complexities.

While there are various generic attacks, we observe that there does not exist
any dedicated quantum attack against hash functions. This is a strange tendency
especially considering the fact that there are many attempts to speed up dedi-
cated cryptanalysis against block ciphers e.g. differential and linear cryptanalysis
[25], impossible differential cryptanalysis [44], meet-in-the-middle attacks [21,8],
slide attacks [7], and so on. In this paper, we explore dedicated collision attacks
against hash functions to find collisions faster than generic quantum attacks.

Here we briefly review dedicated collision attacks in the classical setting.
Some of famous collision attacks are ones presented by Wang et al. against SHA-
1 [41] and MD5 [42]. In short, they first derive the differential trail, and then
efficiently find message pairs which satisfy the first part of the differential trail
by using a “message modification” technique. The generated message pairs are
simply propagated to the last round to probabilistically satisfy the differential
trail of the remaining part. When the cost of message modification is 1, the latter
part of the differential trail can be up to 2−n/2 (if the differential probability is
smaller than 2−n/2, the attack becomes worse than the birthday attack). Another
important direction is the rebound attack by Mendel et al. [32,31] which is
particularly useful against hash functions based on the substitution-permutation
network (SPN). In short, it divides the computation into three parts (outbound,
inbound, and another outbound), and derives a differential trail such that the
probability of the differential propagation in the outbound parts is high. Then,
pairs of messages to satisfy the inbound part are found with average cost 1 and
those are propagated to outbound parts. Hence, the probability of the outbound
differential trail can be up to 2−n/2 to be faster than the birthday attack.

3

1.1 Our Contribution

This paper gives an observation that dedicated quantum collision attacks based
on differential cryptanalysis may break hash functions that are secure in the
classical setting, and shows that we can actually mount quantum versions of re-
bound attacks that find collisions of 7-round AES-MMO and 6-round Whirlpool,
on which there has not been found any dedicated collision attack that is faster
than the generic collision attack in the classical setting.

An observation on quantum differential cryptanalysis. In the classical
setting, if we mount an attack that uses a differential trail with differential
probability p, the attack requires at least 1/p operations. Thus, the trail cannot
be used to find hash collisions if p < 2−n/2. On the other hand, in the quantum
setting, Kaplan et al. [25] showed that we can find a message pair that satisfies
the differential in time around

√

1/p. Thus, if we have a differential trail with

probability p, we can mount a collision attack in time around
√

1/p. Such an

attack is faster than the generic attack (BHT) if
√

1/p < 2n/3, or equivalently
p > 2−2n/3 (in the quantum setting where a small quantum computer with
exponentially large qRAM is available). In particular, if we find a differential
trail for a hash function with probability 2−n/2 > p > 2−2n/3, we can make
a dedicated quantum collision attack that is faster than the quantum generic
attack.

Observations without qRAM. So far we have discussed the setting where
qRAM is available and the best generic attack is BHT. The generic attack
changes in other settings where qRAM of exponential size is not available. In
this paper we consider two settings in which qRAM is not available, and observe
that we can still use differential trails with smaller differential probabilities than
2−n/2 to find collisions: In the first setting, the efficiency of quantum algorithms
is measured by the tradeoff between time T and space S (the maximum of the
size of quantum computer and classical memory) and parallelizations are taken
into account. Since qubits for computation and qubits for quantum memory may
be realized in physically the same way, if a quantum algorithm requires lots of
qubits for quantum memory, it is plausible to compare the algorithm to other
algorithms that use the same amount of qubits for parallelization [19]. In the
second setting, a small quantum computer of polynomial size and exponentially
large classical memory are available (and we do not consider parallelizations).

In the first setting of time-space tradeoff, the generic collision finding algo-
rithm is the parallel rho method [37] that gives the tradeoff T = 2n/2/S even
in the quantum setting, as observed by Bernstein [4]. Thus, in this setting, we
have to compare the efficiency of dedicated quantum attacks to the parallel rho
method. As briefly introduced before, rebound attacks consist of inbound phase
and outbound phase. Intuitively, if we use a differential trail of probability pout
for the outbound phase, the time complexity for the outbound phase becomes
about

√

1/pout with the Grover search. The inbound phase can be done in a

4

constant time if large memory (and qRAM) is available, but here we aim to
construct space-efficient attacks since now we are in the setting without qRAM
where quantum memory is usually quite expensive. Suppose that we can con-
struct a quantum circuit of size S0 that performs the inbound phase in time Tin.
Then the rebound attack runs in time T = Tin ·

√

1/pout on a quantum computer
of size around S0. We observe that this attack is more efficient than the generic
attack (the parallel rho method) if pout > T 2

inS
2
02

−n holds. In addition, if a quan-
tum computer of size S(≥ S0) is available, by parallelizing the Grover search for
the outbound phase we obtain the tradeoff T = Tin ·

√

1/pout
√

S0/S, which is
better than the generic tradeoff T = 2n/2/S as long as S < 2n · pout/(T 2

in · S0).
In the second setting that a small computer of polynomial size and expo-

nentially large classical memory is available, the best collision-finding algorithm
is the one by Chailloux et al [13] that runs in time Õ(22n/5) with a quantum
computer of size Õ(1) and classical memory of size O(2n/5). We observe that
our rebound attack is faster than this algorithm if pout > T 2

in2
−4n/5 holds.

Rebound attacks on 7-round AES-MMO and 6-round Whirlpool.

Rebound attacks on 7-round AES-MMO. AES-MMO is an AES-based compres-
sion function that is widely considered for practical use. AES-MMO is stan-
dardized by Zigbee [1] and used to be standardized by IETF [12]. In addition,
due to its efficiency with a support by AES-NI, many multi-party computa-
tion protocols are implemented by using AES-MMO, e.g. [27,20]. Here, the
Matyas-Meyer-Oseas (MMO) construction [26, Section 9.4] makes a compres-
sion function hE : {0, 1}n × {0, 1}n → {0, 1} from an n-bit block cipher Ek(m)
as hE(iv,m) := Eiv(m)⊕m. The compression function can be used to construct
hash functions by using the Merkle-Damg̊ard construction [33,16].

In the classical setting, the best collision attacks on AES-MMO are for 6
rounds [17,30]. Here, the goal of collision attacks on the compression function is
to find messages m,m′ ∈ {0, 1}n such that hE(iv,m) = hE(iv,m′) (E is AES-
128), given iv ∈ {0, 1}n arbitrarily. If we can mount such a collision attack on
hE , we can extend it to the entire hash function.

In this paper, we give a new 7-round differential trail of AES with the dif-
ferential probability pout = 2−80(> 2−128·2/3) and show that it can be used to
mount rebound attacks in the quantum settings: In the setting that a small com-
puter with qRAM is available, we can mount a rebound attack that is slightly
faster than the generic attack (BHT) by using large classical and quantum mem-
ory. 3 In the setting that the efficiency of quantum algorithms is measured by

3 Our attack in this setting is just a demonstration that differential trails with such a
small probability can actually be used to mount rebound attacks that are comparable
to the generic attack. We assume that 1 memory access is faster than 1 execution
of the entire function, which allows a memory size (248) to be larger than the time
complexity (242.5) counted by the unit time (see also Table 1). Since some readers
may disagree this counting and the advantage of our attack over BHT is small, we
do not claim that 7-round AES-MMO is broken by our attack in this setting.

5

Table 1. Comparison of Dedicated Attacks against AES Hashing Modes and Whirlpool

AES-MMO and AES-MP

Attack Rounds Time Space Setting Model Ref.

collision 5 256 24 classic [32]
collision 6 256 232 classic [17,30]
collision 7 242.5 (248) quantum qRAM Ours

collision 7 259.5/
√

S/23 23 ≤ S < 26 quantum time-space Ours

preimage 7 2120 28 classic [38]

Whirlpool

Attack Rounds Time Space Setting Model Ref.

collision 4 2120 216 classic [32]
collision 5 2120 264 classic [17,30]

collision 6 2228/
√

S/28 28 ≤ S < 248 quantum time-space Ours

semi-free-start coll 5 2120 216 classic [32]
semi-free-start coll 7 2184 28 classic [30]
free-start collision 8 2120 28 classic [39]

preimage 5 2504 28 classic [38]
preimage 5 2481.5 264 classic [43]
preimage 6 2481 2256 classic [39]

distinguisher 9 2368 264 classic [23]
distinguisher 10 2188 28 classic [30]

Semi-free-start collisions, free-start collisions, and differential distinguishers are attacks
on the compression function and cannot be applied to real Whirlpool with fixed IV.

the tradeoff between time and space, we can also mount a rebound attack and its
time-tradeoff is better than the generic one. However, in the setting that a small
quantum computer of polynomial size and exponentially large classical memory
is available, our rebound attack is lower than the best attack by Chailloux et
al. See Table 1 for details on attack complexities and comparisons. As well as
the best classical attack, in which the Super-Sbox technique [17,30] is used to
perform inbound phases.

Our attacks are also valid for AES-MP, where the Miyaguchi-Preneel (MP)
construction [26, Section 9.4] makes a compression function hE : {0, 1}n ×
{0, 1}n → {0, 1}n from a block cipher Ek(m) as hE(iv,m) = Eiv(m)⊕m⊕ iv.

A Rebound Attack on 6-round Whirlpool. Whirlpool is a hash function of 512-
bit output designed by Barreto and Rijmen [3], which is recommended by the
NESSIE project and adopted by ISO/IEC 10118-3 standard [22]. Whirlpool is
a block cipher based hash function that uses a 10-round AES-like cipher as the
underlying block cipher. Both of the block and key lengths of the block cipher
are 512 bits. Unlike AES, it performs MixColumns in the last round.

In this paper, we show that a technique for the classical distinguishing at-
tack [23], which covers three full active rounds for the inbound phase can be
used to find collisions of 6-round Whirlpool in the quantum setting. The attack

6

on 6-round Whirlpool is only valid in the setting that the efficiency of quantum
algorithms is measured by the tradeoff between time and space, and the attack
is worse than generic attacks in other quantum settings. See Table 1 for details.

Optimality. We also show that our 7-round differential trail for AES and 6-
round differential trail for Whirlpool are optimal from the view point of rebound
attacks to find collisions. We show the optimality by using MILP.

Future work. An important future work is to search for more differential trails
of which differential probabilities are too small in the classical setting but large
enough in the quantum settings. The number of attacked rounds of other concrete
hash functions may be improved in the quantum settings.

1.2 Paper Outline

Section 2 gives preliminaries on AES-like block ciphers and quantum computa-
tions. Section 3 reviews generic quantum collision attacks in various settings.
Section 4 reviews the framework of classical rebound attacks. Section 5 gives our
main observation on quantum computation and differential trails with smaller
differential probabilities than the birthday bound. Sections 6 and 7 show our
rebound attacks in the quantum settings on 7-round AES-MMO and 6-round
Whirlpool, respectively. Section 8 shows optimality of our differential trails given
in Sections 6 and 7. Section 9 concludes the paper.

2 Preliminaries

2.1 AES-like Ciphers

An AES-like cipher is a (c·r2)-bit block cipher based on Substitution-Permutation
Network (SPN) such that its internal states consist of r× r c-bit cells (each cell
is regarded as an element in GF (2c)) and each round transformation consists
of the four operations SubBytes (SB), ShiftRows (SR), MixColumns (MC), and
AddRoundKey (AK). SubBytes is the non-linear operation that applies a c-bit
S-box to each cell. ShiftRows is the linear operation that rotates the i-th row by
i cells to the left. MixColumns is the linear operation that multiplies an r × r
matrix over GF (2c) to each column vector. AddRoundKey is the operation that
adds a round key to the state. Given an input message to encrypt, an AES-like
cipher first adds a pre-whitening key to message, and then applies the round
transformation iteratively.

In this paper, when we consider attacks on compression functions based on
AES-like ciphers, the keys of the ciphers are fixed to constants (initialization
vectors). Thus, we call the operation of adding a round key AddConstant instead
of AddRoundKey.

7

AES. The original AES is a 128-bit block cipher designed by Daemen and
Rijmen [14]. The parameters r and c are set as r = 4 and c = 8. The key length
k can be chosen from 128, 192, or 256, and the number of rounds r is specified
depending on k as r = 6 + (k/32). AES uses 4× r S-box applications in its key
schedules. Thus one encryption with AES requires 20× r S-box applications in
total. In particular, one encryption with AES-128 requires 200 S-box applications
in total. An important feature of the original AES is that MixColumns is skipped
in the last round. In our attacks in later sections, whether or not MixColumns
in the last round is skipped impacts to the number of attacked rounds.

Whirlpool. Whirlpool is a hash function designed by Barreto and Rijmen [3]. It
is constructed from an AES-like 512-bit block cipher E 4 with Merkle-Damg̊ard
and Miyaguchi-Preneel constructions [26, Section 9.4]. The parameters r and c
of the underlying block cipher E are set as r = 8 and c = 8. The key length k
and the number of rounds r are specified as k = 512 and r = 10, respectively.
The key schedule of E is the same as the round transformations for internal
states except that fixed constants are added instead of round keys. Thus, one
encryption with E requires (64+64)×r = 1280 S-box applications. Unlike AES,
E does not skip MixColumns in the last round.

2.2 Quantum Computation

We use the standard quantum circuit model [35] and adopt the basic gate set
{H,CNOT, T} (Clifford+T gates). Here, H is the single qubit Hadamard gate
H : |b〉 7→ 1√

2
(|0〉 + (−1)b |1〉), CNOT is the two-qubit CNOT gate CNOT :

|a〉 |b〉 7→ |a〉 |b⊕ a〉, and T is the π/8 gate defined as T : |0〉 7→ |0〉 and T : |1〉 7→
eiπ/4 |1〉. We denote the identity operator on n-qubit states by In. The quantum
oracle of a function f : {0, 1}m → {0, 1}n is modeled as the unitary operator Uf

defined by Uf : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 . We also use an alternative model for

the quantum oracle of f , which is the unitary operator defined as Ũf : |x〉 |y〉 7→
(−1)y·f(x) |x〉 |y〉 . When f is a Boolean function, Ũf = (In⊗H)Uf (In⊗H) holds.

Thus Ũf can be simulated with one application of Uf , and vice versa.
When we estimate time complexity of an attack on a primitive, we assume

unit of time to be the time required to run the primitive once (e.g., the time
required for one encryption if the primitive is a block cipher). The actual time
to run a quantum attack will depend on hardware architectures of quantum
computers, but we just consider the simple computational model that each pair
of qubits in a quantum computer can interact with one another. Based on this
model, we evaluate the time of dedicated attacks on a primitive to discuss if it
is more efficient than the generic attacks in this model. In addition, when we
estimate space complexity of a quantum attack on a primitive, we regard the
number of qubits to implement the target primitive as the unit of space size.

4 In the specification of Whirlpool [3] Shift“Columns” and Mix“Rows” operations are
used instead of ShiftRows and MixColumns, but they are mathematically equivalent
up to transposition of internal states.

8

Grover’s algorithm. Consider the following database search problem.

Problem 1. Let F : {0, 1}n → {0, 1} be a Boolean function. Suppose that F is
given as a black-box. Then, find x such that F (x) = 1.

Let a := |f−1(1)|/2n, which is the probability that we obtain x such that F (x) =
1 when we randomly choose x ∈ {0, 1}n. Suppose that a > 0. In the classical
setting, we have to make 1/a queries to find x such that F (x) = 1. On the other
hand, in the quantum setting, when F is given as a quantum black-box oracle
and a > 0, Grover’s algorithm finds x by making Θ(

√

1/a) quantum queries to
F [9,10,18]. That is, Grover’s algorithm achieves a quadratic speed up compared
to classical algorithms. Below we review Grover’s algorithm and its variants.

Let SF and S0 be the unitary operators that act on n-qubit states defined as
SF |x〉 = (−1)F (x) |x〉 for x ∈ {0, 1}n, and S0 |x〉 = |x〉 if x 6= 0n and S0 |0n〉 =
− |0n〉, respectively. (Note that SF can be simulated by using the operator ŨF

since (SF |x〉) ⊗ |1〉 = ŨF (|x〉 ⊗ |1〉) holds.) Let VF := −H⊗nS0H
⊗nSF . Then

the following proposition holds.

Proposition 1 (Grover’s algorithm [10,18]). Let θ be the parameter such
that 0 ≤ θ ≤ π/2 and sin2 θ = a. Set m := ⌊π/4θ⌋. When we compute V m

F H⊗n |0n〉
and measure the resulting state, we will obtain x ∈ {0, 1}n such that F (x) = 1
with a probability at least max{1− p, p}. 5

Grover’s algorithm with certainty. Grover’s algorithm can be modified so that it
will return the solution with certainty by slightly changing the last application
of VF and doing some rotations [10]. In this case we will obtain the superposi-
tion

∑

x∈f−1(1)
1√

|f−1(1)|
|x〉 before the final measurement. In particular, if there

exists only a single x0 such that f(x0) = 1, we will obtain the state |x0〉. 6

Parallelization. Suppose that P classical processors can be used for paralleliza-
tion to solve Problem 1. Then, by dividing {0, 1}n into P subspaces X1, . . . , XP

such that |Xi| = 2n/P for each i and using the i-th classical processor to search
in Xi, we can solve Problem 1 in time 1/(a · P) (provided a > 0). On the other
hand, when Q quantum processors (small quantum computers) can be used for
parallelization, by using the i-th quantum processor to run Grover search on Xi,
we can solve Problem 1 in time O(

√

1/(a · P)).

5 Here we are assuming that the probability a is known in advance. However, even if
we do not know the probability a in advance, we can find x such that F (x) = 1 with
O(

√

1/a) quantum queries by introducing some intermediate measurements.
6 To be more precise, in the real world, we will still have some small errors since we
can only approximate unitary operators by using Clifford + T gates. However, since
we can efficiently make such approximation errors sufficiently small, we ignore these
errors.

9

3 Generic Quantum Collision-Finding Algorithms

This section reviews generic quantum collision-finding algorithms and their com-
plexities in various settings. Here we consider finding collisions of a random
function with range {0, 1}n and sufficiently large domain (e.g., {0, 1}n).

The BHT algorithm (the setting with qRAM). The first important
generic quantum collision-finding algorithm is the BHT algorithm (BHT) de-
veloped by Brassard, Høyer, and Tapp [11]. It finds a collision in time Õ(2n/3)
by making O(2n/3) quantum queries when exponentially large quantum random
access memory (qRAM) is available.

Here, qRAM is a quantum analogue of random access memory (RAM), which
allows us to efficiently access stored data in quantum superpositions. Suppose
that there is a list of classical data L = (x0, . . . , x2m−1), where xi ∈ {0, 1}n
for each i. Then, the qRAM for L is modeled as an unitary operator UqRAM(L)
defined by

UqRAM(L) : |i〉 ⊗ |y〉 7→ |i〉 ⊗ |y ⊕ xi〉 (1)

for i ∈ {0, 1}m and y ∈ {0, 1}n. When we say that qRAM is available, we
assume that a quantum gate that realizes the unitary operation (1) (for a list L
of classical data) is available in addition to basic quantum gates.

BHT consists of two steps. Suppose that our current goal is to find a collision
of a random function f : {0, 1}n → {0, 1}n. The first step performs a classical
precomputation that chooses a subset X ⊂ {0, 1}n of size |X| = 2n/3 and com-
putes the value f(x) for all x ∈ X (which requires queries and time in O(2n/3)).
The 2n/3 pairs L = {(x, f(x))}x∈X are stored into qRAM so that they can be
accessed in quantum superpositions. Then, the second step performs the Grover
search to find x′ ∈ {0, 1}n \X such that (x, f(x)) ∈ L and f(x) = f(x′) for some
x ∈ X, which runs in time O(

√

2n/|L|) = O(2n/3) on average. If we find such
an x′ ∈ {0, 1}n \X (and x ∈ X), it implies that we find a collision for f since
f(x′) = f(x).

Consider the model that a small quantum computer of polynomial size and
a qRAM that allows us to access exponentially many classical data in quantum
superposition are available. Here we do not consider any parallelized computa-
tions. In this model, the best collision-finding algorithm is BHT since we can
implement it with qRAM (of size O(2n/3)) and its time complexity matches the
tight quantum query complexity Θ(2n/3).

Tradeoffs between time and space. BHT achieves time complexity Õ(2n/3),
however, it also uses a large qRAM of size Õ(2n/3). The model that each adver-
sary can use a small quantum computer with qRAM is simple and theoretically
worth studying since it generalizes the classical attack model that each adversary
can use a single processor and large memory, but it is not clear whether such
qRAM will be available in some future. Even if qRAM of size O(2n/3) is not
available, we can simulate it with a quantum circuit of size O(2n/3). However,

10

such a usage of exponentially large number of qubits causes discussions on par-
allelizations: When we evaluate the efficiency of a quantum algorithm that uses
exponentially many qubits to realize quantum memory, it is plausible to compare
the algorithm to other quantum algorithms that may use the same amount of
qubits for parallel computations.

As observed by Bernstein [4], from the view point of time-space complexity,
BHT is worse than the classical parallel rho method by Oorschot and Wiener [37]:
Roughly speaking, when P classical processors are available, the parallel rho
method finds a collision in time O(2n/2/P). Thus, if a quantum computer of
size 2n/3 is available but qRAM is not available, by just running the parallel rho
method on the quantum computer, we can find a collision in time 2n/6, which is
much faster than BHT. 7

In the classical setting, there exists a memory-less collision finding algorithm
that finds a collision in time O(2n/2), which matches the classical tight bound
for query complexity. On the other hand, in the quantum setting, there has not
been known any memory-less quantum collision finding algorithm such that its
time complexity matches the optimal query complexity 2n/3.

Let S denote the size of computational resources required for a quantum algo-
rithm (i.e., S is the maximum size of quantum computers and classical memory)
and T denote its time complexity. Then the tradeoff T · S = 2n/2 given by the
parallel rho method is the best one even in the quantum setting.

Small quantum computer with large classical memory. Next, suppose
that only a small quantum computer of polynomial size is available but we can
use a exponentially large classical memory. In this situation, Chailloux et al. [13]
showed that we can find a collision in time Õ(22n/5) with a quantum computer
of size Õ(1) and Õ(2n/5) classical memory. The product of T and S becomes
around 23n/5, which is larger than 2n/2, but it is quite usual to consider a classical
memory of size Õ(2n/5), which is usually available. The algorithm by Chailloux
et al. shows that we can obtain another better tradeoff between time and space
if we treat the sizes of quantum hardware and classical hardware separately.

Remark 1. To be precise, it is not clear what the term “quantum computer of
polynomial size” means in practical settings since the security parameter n is
usually fixed to a constant in concrete primitives. For convenience, by “quantum
computer of polynomial size” we arbitrarily denote a quantum computer of size
at most n2. (Note that we regard the space (the number of qubits) required to
implement the target primitive as the unit of space.)

4 Previous Works in the Classical Setting

In this section, we briefly review the previous work of collision attacks against
AES-like hash functions. Note that whether or not the MixColumns operation

7 Here we are considering the model that is called free communication model by Bane-
gas and Bernstein [2].

11

in the last round is omitted impacts on the number of attacked rounds with
respect to the collision attack, which is different from the number of attacked
rounds for differential distinguishers.

4.1 Framework of Collision Attacks

Our target constructions are the MMO and Miyaguchi-Preneel modes that com-
pute the output as Ek(p)⊕ p or Ek(p)⊕ p⊕ k respectively, where Ek is AES or
an AES-like cipher and p is a plaintext input to the cipher. Moreover, we assume
that the key input k is fixed to an initial value iv. Namely, for a 1-block message
m, the hash value is computed as Eiv(m)⊕m or Eiv(m)⊕m⊕ iv, respectively.

Given the above target, the attackers’ strategy is to inject a non-zero dif-
ference ∆ on the plaintext input m and to process m and m ⊕∆ with fixed iv
with zero difference. If the ciphertext difference matches the plaintext difference,
i.e. Eiv(m) ⊕ Eiv(m ⊕ ∆) = ∆, two hash values collide because the differences
are canceled through the feed-forward operation.

AES-like ciphers with r rows and r columns (with MixColumns in the last
round) is known to allow the 4-round differential propagation with the following
number of active S-boxes per round: 1 −→ r −→ r2 −→ r −→ 1, where the
second, third, and fourth rounds have r active bytes in a column, fully active,
and have r active bytes in a diagonal, respectively. If the active-byte positions
at the beginning and the end, as well as the actual difference, are identical,
collisions are obtained.

For AES (with r = 4, without MixColumns in the last round), one more
rounds can be attacked by the following pattern of the number of active S-boxes:
1 −→ 4 −→ 16 −→ 4 −→ 1 −→ 1.

The most interesting part of hash function analysis is to find the minimum
complexity to find a pair of values that satisfies such differential propagation
patterns. Owing to the nature of the keyless primitives, the attacker can first
choose pairs such that the most difficult part (unlikely to be satisfied by ran-
domly chosen pairs) is satisfied, and then the remaining propagation is satisfied
probabilistically. This strategy, in particular for AES-like ciphers, was explored
by Mendel et al. [32] as the “rebound attack” framework. Very intuitively, the
differential propagation is designed to be dense in the middle and sparse at the
beginning and the end. The attacker first efficiently collects paired values satis-
fying the middle part. This procedure is called “inbound phase” and the paired
values are called “starting points.” Then, starting points are simply propagated
to the beginning and the end to check if the sparse propagation is probabilisti-
cally satisfied or not. This procedure is called “outbound phase.”

Mendel et al. showed that a pair of values satisfying the 2-round transfor-
mation r −→ r2 −→ r can be generated with complexity 1 on average. Hence,
4-round collisions can be generated only by satisfying the differential transfor-
mation r −→ 1 twice and 1-byte cancellation for the feed-forward operation.

12

MC AC#𝑊𝑖#𝑍𝑖

SB SR MC AC#𝑊𝑖+1#𝑍𝑖+1#𝑌𝑖+1#𝑋𝑖+1

SB SR MC AC#𝑊𝑖+2#𝑍𝑖+2#𝑌𝑖+2#𝑋𝑖+2

Fig. 1. Inbound Phase of Super-Sbox Cryptanalysis.

4.2 Super-Sbox Cryptanalysis

There are many previous works that improve or extend the rebound attack. An
important improvement is the Super-Sbox cryptanalysis presented by Gilbert
and Peyrin [17] and independently observed by Lamberger et al. [30], which
generates a pair of values satisfying the 3-round transformation r −→ r2 −→
r2 −→ r with complexity 1 on average.

Inbound Phase. The involved states are depicted in Fig. 1 for the case of r = 4.
The procedure is iterated for all the choices of the difference at state #Zi. Hence
for each iteration, the difference at #Zi is fixed. Because MixColumns is a linear
operation, the corresponding difference at state #Xi+1 is uniquely computed.
From the opposite side, the number of possible differences at state #W i+2 is 2rc

and those are handled in parallel. The attacker computes the corresponding 2rc

differences at state #Y i+2 and stores them in a list L.
The attacker then searches for the paired values that connect #Xi+1 and

#Y i+2. The core observation is that this part can be computed independently
for each group of r bytes, which is known to the Super-Sbox. One of the r-byte
groups is highlighted by thick squares in Fig. 1. For each of 2rc input values to a
Super-Sbox at #Xi+1, the corresponding difference (along with paired values) at
#Y i+2 is computed. Each difference in L will be hit once on average because L
contains 2rc differences. The same analysis is applied for r Super-Sboxes. Then,
each of the 2rc difference in L can be produced once on average from all the
Super-Sboxes.

Complexity of the Inbound Phase. L requires a memory of size 2rc. Each
Super-Sbox is computed for 2rc distinct inputs. Considering that the size of
each Super-Sbox is 1/r of the entire state, computations of r Super-Sboxes are
regarded as a single computation for the entire construction. After the analysis,
the attacker obtains 2rc starting points, hence the average complexity to obtain

13

a starting point is 1. The inbound phase can be iterated up to 2rc times by
choosing 2rc differences at State #Zi. Hence the degrees of freedom to satisfy
the outbound phase is up to 22rc.

Outbound Phase. The extension of the inbound phase increases the number
of attacked rounds by one as follows.

1
2−(r−1)c

←− r — r2 — r2 — r
2−(r−1)c

−→ 1 for AES-like ciphers,

1
2−24

←− 4 — 16 — 16 — 4
2−24

−→ 1
1−→ 1 for AES.

The probability for the outbound phase stays unchanged from the original re-
bound attack, which is 2−2(r−1)c to satisfy the transformation r −→ 1 twice
and 2−c for the cancellation at the feed-forward operation. Hence, collisions of
5-round Whirlpool are generated with complexity 2120(= 22(8−1)8×28) and colli-
sions of 6-round AES-MMO are generated with complexity 256(= 22(4−1)8×28).

4.3 Covering Three Full Active Rounds on 8 × 8 State

Jean et al. presented another extension of the rebound attack, which covers one
more fully active state for the inbound phase [23], namely

r ←− 1
2−(r−1)c

←− r — r2 — r2 — r2 — r
2−(r−1)c

−→ 1 −→ r −→ L(r),

where L(r) is a linear subspace of dimension 2rc. However the drawback of this

analysis is that the amortized cost to find a starting point is 2r
2c/2, which reaches

the complexity of the birthday paradox. This is significantly more expensive than
the amortized cost 1 for the original rebound attack and the Super-Sbox analysis.
Owing to its complexity, the technique cannot be used for finding collisions, while
it is still sufficient to mount a differential distinguisher up to 9 rounds. Here
we briefly explain the procedure to satisfy the inbound phase with complexity
2r

2c/2 and omit the explanation of the outbound phase and advantages of the
distinguisher because our goal is to find collisions.

The involved states are depicted in Fig 2 for the case of r = 8. The analysis
of the inbound phase starts with a fixed pair of difference at state #Zi and
#W i+3. Similarly to the Super-Sbox cryptanalysis, the corresponding differences
at #Xi+1 and #Y i+3 are linearly computed. The attacker then computes r
Super-Sboxes that cover from #Xi+1 to #Y i+2. The results for the i-th Super-
Sbox are stored in a list Lf

j , where 0 ≤ j < r. To be precise, each Lf
j contains

2rc pairs of r-byte values (2r-byte values) at #Y i+2. Similarly, the attacker
computes r inverse Super-Sboxes from #Y i+3 to #Y i+2, and the results are
stored in a list Lb

j , where 0 ≤ j < r.
The attacker then finds a match of those 2r lists. The attacker exhaustively

tries r2/2-byte values at #Y i+2 that can be fixed by choosing the entries of

Lf
0 , L

f
1 , . . . , L

f
r/2−1 (a half of the Super-Sboxes). As shown in Fig. 2, this will

14

SB SR
#𝑊𝑖+1#𝑍𝑖+1#𝑌𝑖+1#𝑋𝑖+1

MC AC

#𝑊𝑖#𝑍𝑖
MC AC

SB SR
#𝑊𝑖+2#𝑍𝑖+2#𝑌𝑖+2#𝑋𝑖+2

MC AC
SB SR

#𝑊𝑖+3#𝑍𝑖+3#𝑌𝑖+3#𝑋𝑖+3
MC AC

Fig. 2. Inbound Phase for Covering Three Rounds with Fully Active States.

fix a pair of values for r2/2 bytes at #Y i+2, i.e. r2-byte values are fixed for
the left-half of #Y i+2. The attacker then checks if those fixed values can be
produced from Lb

j . For each Lb
j , r-byte values have already been fixed, and those

play a role of the rc-bit filter. Considering that the degrees of freedom in each
Lb
j is 2rc, the attacker can expect one match on average for each Lb

j , and the

state #Y i+2 is now fully fixed. The attacker finally checks if the paired values at
#Y i+2 for the remaining r2/2-byte value (right-half of #Y i+2) can be produced

from Lf
r/2, L

f
r/2+1, . . . , L

f
r−1. The number of the constraints is 2r

2c while the

total degrees of freedom in r/2 Super-Sboxes is 2r
2c/2. Therefore, a match will

be found with probability 2−r2c/2, and by exhaustively testing 2r
2c/2 choices of

Lf
0 , L

f
1 , . . . , L

f
r/2−1 at the beginning, a solution can be found.

The procedure of the inbound phase can be summarized as follows.

1. For exhaustive combinations of the values of Lf
0 , . . . , L

f
r/2−1, do as follows.

2. Find an entry of Lb
j for each 0 ≤ j < r.

3. Check if the fixed state can be produced by Lf
r/2, . . . , L

f
r−1.

The attacker can find a starting point after 2r
2c/2 iterations of the first step.

Note that the computation of each Lf
j and Lb

j only requires 2rc computations
and memory. The bottleneck is to find a match in the middle, which requires
2r

2c/2 computations, while the required memory is negligible in the context of
finding a match.

15

A memoryless variant. The technique for the inbound phase introduced above
can easily converted into a memoryless variant by increasing the running time
by a factor of 2rc (actually we use the memoryless variant in a later section
rather than the original technique). That is, given the differences at state #Zi

and #W i+3, we can find a starting point in time 2r
2c/2+rc by using negligible

memory by just doing the exhaustive search for inputs or outputs of the Super-
Sboxes corresponding to Lf

0 , . . . , L
f
r/2−1 (parallelly, which costs time 2r

2c/2) and

Lb
j for each 0 ≤ j < r (sequentially, which costs time 2rc). See Section A for

more details.

5 New Observation

This section gives a new observation: when quantum computers are available,
differential trails with probability even smaller than the birthday bound can be
used to find hash collisions faster than the generic quantum collision attacks.

Section 5.1 observes that the probability of differential trails that can be used
in classical rebound attacks is up to the birthday bound. Section 5.2 shows that
small quantum computers with qRAM can break the classical barrier. Section 5.3
shows that we can break the classical barrier even if qRAM is not available.

5.1 Birthday Bound Barrier for Classical Differential Probabilities

Recall that rebound attacks consist of inbound phase and outbound phase (see
Section 4). Roughly speaking, for an input difference ∆in and output difference
∆out for some intermediate rounds of E (∆in and ∆out correspond to the differ-
ences at state #Zi and #W i+2 in Fig. 1, respectively), firstly the inbound phase
searches for an input pair (M,M ′) and an output pair (M̃, M̃ ′) that satisfy the
differential propagation ∆in −→ ∆out (i.e., starting points). Then the outbound
phase checks whether the pairs (M,M ′) and (M̃, M̃ ′) satisfy differential trans-
formations for the remaining rounds (which implies that we find a collision of
the target compression function).

Let pout be the probability that the pairs (M,M ′) and (M̃, M̃ ′) satisfy the
differential transformations for the outbound phase (including the cancellation
for the feed-forward operation). Then, since the inbound phase can usually be
done in a constant time by doing some precomputations and using some classical
memory, the whole time complexity of the attack becomes T = 1/pout.

If pout > 2−n/2, T < 2n/2 holds and the rebound attack is faster than the
classical generic collision finding algorithm. However, the attack is worse than
the generic attack if 2−n/2 > pout. Thus, a differential trail for the outbound
phase can be used only if pout > 2−n/2 holds. In other words, 2−n/2 is the
barrier for differential probabilities to be used in classical rebound attacks.

5.2 Breaking the Barrier with Quantum Computers and qRAM

Below we explain how the attack complexity and the limitation for differential
probability pout changes in the quantum setting. To simplify explanations, here

16

we consider the theoretically simple setting that a small quantum computer of
polynomial size and exponentially large qRAM is available.

In the quantum setting, to implement rebound attacks on quantum comput-
ers, we use the Grover search on a Boolean function F (∆in, ∆out) defined as
F (∆in, ∆out) = 1 if and only if both of the following conditions hold.

1. In the inbound phase, there exists an input pair (M,M ′) and output pair
(M̃, M̃ ′) that satisfies the differential trail ∆in −→ ∆out (i.e., starting
points), and

2. The pairs (M,M ′) and (M̃, M̃ ′) satisfy the differential transformation in the
outbound phase.

(Here, without loss of generality we assume that M < M ′. We ignore the pos-
sibility that two or more starting points exist in the inbound phase, to sim-
plify explanations.) For each input (∆in, ∆out), we have to perform the inbound
and outbound phases to compute the value F (∆in, ∆out). Once we find a pair
(∆in, ∆out) such that F (∆in, ∆out) = 1, we can easily find a collision by per-
forming the inbound and outbound phases again.

Small quantum computer with qRAM. Recall that, the generic collision
finding attack in this setting (a small quantum computer of polynomial size and
exponentially large qRAM is available) is BHT that finds a collision in time
O(2n/3). (See Section 3. We do not consider any parallelized computations in
this setting.) Therefore, dedicated attacks that can find collisions in time less
than O(2n/3) with a small quantum computer of polynomial size and qRAM
are regarded to be valid. To mount rebound attacks, we perform some classical
precomputations and store the results into qRAM so that we can perform the
inbound phase in a constant time. Then the time complexity for the Grover
search becomes

√

1/pout. Let Tpre denote the time required for the classical
precomputation.

Recall that BHT performs 2n/3 classical precomputations and then does 2n/3

iterations in the Grover search. Suppose that the time for our classical precom-
putation Tpre satisfies Tpre ≤ 2n/3, for simplicity. Then, our rebound attack is

more efficient than the generic attack (BHT) if
√

1/pout < 2n/3, or equivalently
pout > 2−2n/3 holds. Thus, roughly speaking, even if a compression function is
secure in the classical setting, if there exists a differential trail for the outbound
phase with 2−n/2 > pout > 2−2n/3, there exists a collision attack for the function
that is more efficient than the generic attack in this setting. In other words, we
can break the birthday bound barrier 2−n/2 for the differential probability with
quantum computers and qRAM.

5.3 Breaking the Barrier without qRAM

Here we show that the barrier of the birthday bound can be broken even if
qRAM is not available.

17

If we perform heavy precomputations for the inbound phase, it may use huge
quantum memory. When qRAM is not available, quantum memory is usually
very expensive and sometimes only a small number of qubits can be used to store
data. To reduce the amount of quantum memory required, when we implement
rebound attacks on quantum computers without qRAM, we do not perform
heavy precomputations and increase the time to perform the inbound phase if
necessary. Let Tin denote the time to perform the inbound phase.

Tradeoffs between time and space. Consider the setting that efficiency of
a quantum algorithm is measured by the tradeoff between time T and space S
(S is the maximum of the size of quantum computer and the size of classical
memory), and parallelized computations are taken into account. In this setting,
the generic collision finding algorithm is the parallel rho method (see Section 3),
which gives the tradeoff T · S = 2n/2, or equivalently T = 2n/2/S.

Suppose that the inbound phase of a rebound attack can be done in time
Tin by using a quantum circuit of size S0, where S0 may be exponentially large.
Then the rebound attack runs in time T = Tin ·

√

1/pout. When we measure
the efficiency of a quantum algorithm by tradeoff between time and space, this
rebound attack is more efficient than the generic attack (that uses a quantum
computer and classical memory of size at most S0) if T = Tin ·

√

1/pout <
2n/2/S0, or equivalently pout > T 2

inS0
22−n holds.

In other words, even if a compression function is secure in the classical setting,
if we can construct a quantum algorithm that performs the inbound phase in time
Tin by using a quantum circuit of size S0 and there exists a differential trail for
the outbound phase with probability pout such that 2−n/2 > pout > T 2

inS0
22−n,

there exists a collision attack for the function that is more efficient than the
generic attack in this setting.

Parallelization of the rebound attack. If a quantum computer of size S(≥ S0) is
available, we can use it to parallelize the Grover search in the rebound attack,
which leads to the time-memory tradeoff T = Tin ·

√

1/pout ·
√

S0/S. Since the
time-memory tradeoff for the generic attack in this setting is T = 2n/2/S, our
rebound attack works if a quantum computer of size S ≥ S0 is available and it is
more efficient than the generic attack as long as Tin ·

√

1/pout ·
√

S0/S < 2n/2/S,
or equivalently S < 2n · pout/(T 2

in · S0).

Small quantum computer with large classical memory. Consider the
setting that a small quantum computer of polynomial size and exponentially
large classical memory are available (here we do not consider parallelization). In
this setting, the generic collision finding algorithm is the one by Chailloux et al.
that finds a collision in time Õ(22n/5) (see Section 3).

Suppose that the outbound phase can be done in time Tin by using a quantum
circuit of size S0, where S0 is relatively small (polynomial in n). When we are
in the situation that a quantum computer of polynomial size and large classical
memory is available, this rebound attack is more efficient than the generic attack

18

(the algorithm by Chailloux et al.) if T = Tin ·
√

1/pout < 22n/5, or equivalently
pout > T 2

in2
−4n/5 holds.

In other words, even if a compression function is secure in the classical setting,
if we can construct a quantum algorithm that performs the inbound phase in
time Tin with a quantum circuit of polynomial size and there exists a differential
trail for the outbound phase with probability pout such that 2−n/2 > pout >
T 2
in2

−4n/5, there exists a collision attack for the compression function that is
more efficient than the generic attack in this setting.

6 Finding Collisions for 7-Round AES-MMO

This section gives a new differential trail for 7-round AES and shows how to
use the trail to mount rebound attacks on 7-round AES-MMO in the quantum
settings.

6.1 New Differential trail for 7-Round AES

Here we give a new differential trail with the differential probability pout = 2−80

for 7-round AES that can be used to find collisions for 7-round AES-MMO: With
some effort, we can come up with a differential trail shown in Fig. 3. Here, each
4 × 4 square in Fig. 3 shows the active byte pattern at the beginning of each
round except for the square on the right hand side. The square on the right hand
side shows the active byte pattern at the end of the last round. (See Fig. 4 in
Section B.1 for more details on the differential transformations.) This trail gives

2−16 1 11
Fig. 3. A new differential trail for 7-round AES. The numbers over arrows are the
probabilities for differential transformations.

pout = 2−80 since the probability for the 8-byte cancellation for the feed-forward
operation is 2−64.

The cancellation probability 2−64 is too small to be used in classical rebound
attacks since it reaches the classical birthday bound barrier, but it can be used
when quantum computers are available. We use this trail to mount rebound
attacks on 7-round AES-MMO in the quantum settings.

In a later section (Section 8) we show that there exists no trail with pout >
2−80 for 7-round AES and there exist another trail with pout = 2−80.

6.2 Demonstration: an Attack with qRAM

Here we consider to use the above differential trail with probability 2−80 to
implement a rebound attack on a small quantum computer with qRAM. Note

19

that here we do not consider any parallelized computations. Our attack is based
on the framework in Section 5.2, but here we give more detailed discussions to
analyze attack complexities precisely. The attack in this section is just a demon-
stration that we can use very small differential probability (less than 2−n/2) to
mount attacks that are comparable to the generic collision-finding algorithm. In
particular, we do not intend to claim that 7-round AES-MMO is “broken” by
our attack.

Detailed settings and remarks. Since the S-box can be implemented by using
random access memory, we regard that 1 random access to a classical memory
or qRAM is equivalent to 1 application of the S-box, which is further equivalent
to 1/140 encryption with 7-round AES (recall that 7-round AES requires 140
S-box applications). We assume that the cost for sequential accesses to classical
data is negligible.

Let ∆in, ∆out ∈ {0, 1}128 be the input and output differences for the inbound
phase (i.e., the difference just after the SubBytes of the 3rd round (#Y 3 in
Fig. 4 in Section B.1) and at the beginning of the 6-th round (#X6 in Fig. 4
in Section B.1), respectively). Note that 4 cells (232 bits) and 8 cells (264 bits)
are active in ∆in and ∆out, respectively. Since now the differential probability is
2−80, we have to make 280 starting points. As well as classical rebound attacks,
we expect that one starting point exists for each pair (∆in, ∆out) on average.
Thus we check 216 values for ∆in and 264 values for ∆out. Then we can expect
that there exists 1 starting point that leads to a collision of 7-round AES-MMO
among the 280 pairs of (∆in, ∆out).

Recall that an initialization vector iv ∈ {0, 1}128 is given before we start at-
tacks on 7-round AES-MMO. We precompute and store all the round constants
that are derived from iv and added in the AddConstant phase in each round.
Since the cost to compute the round constants is negligible and we need the
constants only for sequential applications of AddConstant in our attack (in par-
ticular, we do not need random accesses to the round constants in quantum super
positions), we ignore the cost to precompute and store the round constants.

Precomputation for the inbound phase. We label the 4 Super-Sboxes in-
volved in the inbound phase as SSB(1), . . . , SSB(4). We perform the following
precomputations and store the results in qRAM so that the inbound phase can
be done efficiently.

1. For 1 ≤ i ≤ 4, do the following Steps 2 - 9.
2. Let Li and L′

i be empty lists.

3. Compute SSB(i)(x) for each x ∈ {0, 1}32 and store the pair (x, SSB(i)(x))
into L′

i.
4. For each x ∈ {0, 1}32, do Steps 5 - 9.

5. Compute y := SSB(i)(x) by accessing to the stored list L′
i.

6. For each value of ∆in (from 216 values), do the following Steps 7 - 9:

7. Compute the corresponding input difference δ
(i)
in for SSB(i).

20

8. If x ≤ x⊕ δ
(i)
in , do Step 9:

9. Compute y′ := SSB(i)(x⊕ δ
(i)
in) and δ

(i)
out := y⊕ y′ by accessing to the stored

list L′
i, and add ((δ

(i)
in , δ

(i)
out), {x, x⊕δ

(i)
in }, {y, y′}) into the list Li (each element

of Li is indexed by (δ
(i)
in , δ

(i)
out)).

Analysis for the precomputation for the inbound phase. Here we give an analysis
for the time Tpre required to perform the precomputation. First, we estimate the
cost of Steps 2 - 9 for each i: Step 3 requires 8·232 = 235 S-box applications. Each
iteration of Step 5 requires 1 random memory access. Each iteration of Step 9
requires around 1 random memory access (here we regard the combination of
reading data from L′

i and writing data into Li as a single random memory
access). Since there exists around 232 · 216/2 = 247 pairs of (x,∆in) such that

x ≤ x⊕ δ
(i)
in , Step 9 is performed 247 times in total for each i. In addition, Step

5 is performed 232 times in total. Therefore, Steps 5 - 9 require 232 + 247 ≈ 247

random memory accesses in total. This is equivalent to 247 S-box applications.
Thus the cost for Steps 2 - 8 is around (235 + 247) ≈ 247 S-box applications for
each i.

Since a single S-box application is equivalent to 1/140 single encryption by
7-round AES and we have to treat 4 Super-Sboxes, the total cost for these
precomputations is equal to the cost of 4×247/140 < 242 encryptions. 8 Therefore
we have Tpre < 242.

Precomputations for the outbound phase. We also perform some addi-
tional precomputations so that the outbound phase will run efficiently. We com-
pute input-output tables of the Super-Sboxes for the 2nd and 3rd rounds, and
6th and 7th rounds, in advance. We also precompute the entire table of the
4-parallel S-box applications (x, y, z, w) 7→ (SB(x), SB(y), SB(z), SB(w)) so that
the computation for the 1st round in the outbound phase can be done efficiently.
These computations require time 232×c for a small constant c, which is negligible
compared to Tpre.

Application of the Grover search. Recall that, when we mount rebound
attacks in the quantum setting, we define a function F (∆in, ∆out) so that F (∆in,
∆out) = 1 if and only if there exists a starting point corresponding to (∆in, ∆out)
that satisfies the differential transformations for the outbound phase, and we
apply the Grover search on F . Here ∆in and ∆out are chosen from 216 and 264

values, respectively.
Given a pair (∆in, ∆out), if there exists one input-output pair (x, x′) and

(y, y′) that satisfies the differential trail δ(i)in −→ δ
(i)
out for SSB

(i) for each 1 ≤ i ≤ 4,
there exist (2 · 2 · 2 · 2)/2 = 8 choices for starting points for each (∆in, ∆out).

8 Because the entire truth table of the Super-Sbox is computed and stored in qRAM
in the precomputation phase, we assume that the time for a single qRAM access is
equivalent to a single S-box evaluation.

21

To simplify the explanations, temporarily we assume that there exist exactly 8
starting points for each (∆in, ∆out) under the condition that at least one starting
point exists for (∆in, ∆out). We slightly modify the definition of F so that it will
take additional 3-bit input α as inputs that specify which starting point we
choose among 8 choices. Since here we check 216 values for ∆in and 264 values
for ∆out, the size of the domain of F (∆in, ∆out;α) becomes 216 · 264 · 23 = 283.

We implement the function F (∆in, ∆out;α) on quantum computers as fol-
lows:

1. (Inbound phase.) Given an input (∆in, ∆out) (in addition to the 3-bit addi-
tional input α), we obtain the corresponding starting point (pairs of messages
(M,M ′) and (M̃, M̃ ′) that satisfies the differential trail ∆in −→ ∆out) by
accessing the precomputed lists L1, . . . , L4 stored in qRAM.

2. (Outbound phase.) Propagate (M,M ′) and (M̃, M̃ ′) to the beginning and
the end of the cipher to check whether the differential transformations are
satisfied, and compute the value of F (∆in, ∆in;α).

3. Uncompute Steps 1 and 2.

Analysis for the Grover search. Step 1 (inbound phase) of F requires 4 qRAM
accesses. Step 2 (outbound phase) of F can be done with 2× ((4 + 4) + 4) = 24
random access to the precomputed tables (recall that we precomputed the tables
of the Super-Sboxes and the 4-parallel S-box applications). Then the computa-
tional cost for F is around 2×(4+24) = 56 qRAM accesses, which is equivalent to
56/140 = 2/5 7-round AES encryptions. Since we can expect there exists exactly
1 input (∆in, ∆out;α) such that F (∆in, ∆out;α) = 1, the Grover search requires

about π
4

√
283 = π

4 2
41.5 evaluations of F , of which cost is around π

4 · 25 ·241.5 ≤ 240

encryptions.
Even if there exist more than 8 starting points for some (∆in, ∆out), we can

still find collisions in time 241 by slightly modifying the definition of F . See
Section B.2 for details on how to find collisions in such a general setting.

Summary. Our rebound attack requires Tpre < 242(< 2128/3) classical precom-
putations and 241(< 2128/3) costs for the Grover search. On the other hand, the
generic collision finding attack in the current setting (BHT) performs 2128/3 clas-
sical precomputations and requires time 2128/3 for the Grover search on quantum
computers. Therefore, our rebound attack is slightly faster than the generic col-
lision finding attack in this setting and it runs in time around 242.5. It uses large
memory of size 248.

6.3 Attack without qRAM: A Time-Space Tradeoff

Here we show a rebound attack that is more efficient than the current generic
attack in the setting that efficiency of a quantum algorithm is measured by
tradeoff between time T and space S (S is the maximum of the size of quantum
computer and classical memory), and parallelized computations are taken into

22

account. We again use the differential trail of pout = 2−80 for the outbound
phase. Recall that the generic collision finding algorithm in this setting is the
parallel rho method (see Section 3), which gives the tradeoff T · S = 2n/2, or
equivalently T = 2n/2/S. Recall that we regard the size (the number of qubits)
required to implement the attack target (here, 7-round AES) as the unit of space
size.

Again, let ∆in, ∆out ∈ {0, 1}128 be the input and output differences for the
inbound phase. Unlike Section 6.2, here we check 232 values for ∆in and 248

values for ∆out. (Again we expect that there exists 1 starting point that leads
to a collision of 7-round AES-MMO among the 280 pairs of (∆in, ∆out).) As in
Section 6.2, we precompute and store all the round constants that are derived
from iv and added in the AddConstant phase in each round, and ignore the costs
related to those constants.

We again assume that there exist exactly 8 starting points for each (∆in,
∆out) under the condition that at least one starting point exists for (∆in, ∆out),
temporarily, to simplify explanations. We define the function F (∆in, ∆out;α) in
the same way as we did in Section 6.2, but here we implement the function F on
quantum computers without heavy precomputation. To reduce the amount of
quantum memory required, instead of doing heavy precomputation, we just use
the Grover search to find a starting point for each (∆in, ∆out;α) to perform the
inbound phase in F . Explanations on how to deal with pairs (∆in, ∆out) with
more than 8 starting points will be given later.

Implementation of F with the Grover search. Here we carefully explain
how to implement F on quantum computers, or equivalently, how to imple-
ment the unitary operator UF that is defined by UF : |∆in, ∆out;α〉 |y〉 7→
|∆in, ∆out;α〉 |y ⊕ F (∆in, ∆out;α)〉. First, to solve the equation SSB(i)(xi) ⊕
SSB(i)(xi ⊕ δ

(i)
in) = δ

(i)
out for xi in the inbound phase in F , we define additional

functions G(i) for 1 ≤ i ≤ 4.
For 1 ≤ i ≤ 3, let us define a Boolean function G(i)(δ

(i)
in , δ

(i)
out, αi;xi) (here

δ
(i)
in , δ

(i)
out, xi ∈ {0, 1}32 and αi ∈ {0, 1}) by G(i)(δ

(i)
in , δ

(i)
out, αi;xi) = 1 if and only if:

xi < xi⊕δ
(i)
in (if αi = 0) or xi > xi⊕δ

(i)
in (if αi = 1) and SSB(i)(xi)⊕SSB(i)(xi⊕

δ
(i)
in) = δ

(i)
out holds. In addition, we define a Boolean function G(4)(δ

(4)
in , δ

(4)
out;x4) by

G(4)(δ
(4)
in , δ

(4)
out;x4) = 1 if and only if xi < xi⊕ δ

(i)
in and SSB(4)(x4)⊕ SSB(4)(x4⊕

δ
(4)
in) = δ

(4)
out holds.

Note that the following unitary operator UF is defined regardless of whether
or not we assume there exists exactly 8 starting points for each (∆in, ∆out) under
the condition that there exists at least one starting point for (∆in, ∆out).

Implementation of UF .

1. Suppose that |∆in, ∆out;α〉 |y〉 is given as an input (α = α1‖α2‖α3 and
αi ∈ {0, 1}).

2. Compute the corresponding differences δ
(i)
in −→ δ

(i)
out for SSB

(i) for 1 ≤ i ≤ 4
from (∆in, ∆out).

23

3. Do Step 4 for 1 ≤ i ≤ 3.
4. Run the Grover search with certainty on the function G(i)(δ

(i)
in , δ

(i)
out, αi; ·) :

{0, 1}32 → {0, 1}. Let xi be the output and set x′
i := xi ⊕ δ

(i)
in .

5. Run the Grover search with certainty on the function G(4)(δ
(4)
in , δ

(4)
out, ·) :

{0, 1}32 → {0, 1}. Let x4 be the output and set x′
4 := x4 ⊕ δ

(4)
in .

6. Set M := x1‖ · · · ‖x4 and M ′ := x′
1‖ · · · ‖x′

4 (now (M,M ′) is chosen as a
candidate for the starting point for (∆in, ∆out;α)).

7. Check if the (M,M ′) is in fact a starting point for (∆in, ∆out) (i.e., it satisfies
the differential ∆in −→ ∆out). If so, set a 1-bit flag flag1 as flag1 := 1. If
not, set the flag as flag1 := 0.

8. Do the outbound phase with the starting point (M,M ′) to check whether
(M,M ′) leads to a collision. If so, set a 1-bit flag flag2 as flag2 := 1. If not,
set the flag as flag2 := 0.

9. Return 1 as the value for F (∆in, ∆out;α) (i.e., add the value 1 into the |y〉
register) if flag1 = flag2 = 1. Return 0 (i.e., do nothing for the |y〉 register)
otherwise.

10. Uncompute Steps 2 - 8.

Properties and the cost estimation for UF are summarized in the following
lemma.

Lemma 1. UF |∆in, ∆out;α〉 |y〉 = |∆in, ∆out;α〉 |y ⊕ F (∆in, ∆out;α)〉 holds for
all y if there does not exist any starting point for (∆in, ∆out) that leads to a col-
lision of 7-round AES-MMO. If (∆in, ∆out;α) is a tuple such that there exists
exactly 8 starting points for (∆in, ∆out) and (∆in, ∆out;α) leads to a collision of
7-round AES-MMO, UF |∆in, ∆out;α〉 |y〉 = |∆in, ∆out;α〉 |y ⊕ F (∆in, ∆out;α)〉
holds for all y. We can implement UF on a quantum circuit in such a way that
it runs in time around 216.5 encryptions with 7-round AES, by using ancillary
quantum register of size around 23.

See Section B.3 for a proof of Lemma 1.

Our rebound attack in the current setting. Finally we describe our re-
bound attack and give its complexity analysis in the current setting that effi-
ciency of a quantum algorithm is measured by the tradeoff between time T and
space S. Recall that 4 cells (232 bits) and 8 cells (264 bits) are active in ∆in and
∆out, respectively. In addition, recall that we consider to check 232 values and
248 values for ∆in and ∆out, respectively, when we perform the Grover search
on F . In particular, 248 values for ∆out are randomly chosen among 264 possible
values.

Description of the rebound attack.

1. Iterate the following Steps 2 and 3 until a collision of 7-round AES-MMO is
found (change the choice of 248 values for ∆out completely (among possible
264 values), for each iteration):

2. Apply the Grover search on F and let (∆in, ∆out;α) be the output.
3. Apply the inbound and outbound phases again for the obtained tuple (∆in,

∆out;α) and check if it leads to a collision of 7-round AES-MMO.

24

Analysis. First, assume that there exist exactly 8 starting points for each (∆in,
∆out). Then, there exists exactly one tuple (∆in, ∆out;α) such that F (∆in, ∆out;
α) = 1 holds, and thus we can find a collision with only one iteration of Steps 2
and 3, from Lemma 1.

Since the domain size of F is 283, it follows that Step 2 runs in time around
π
4 · 241.5 · 216.5 ≈ 258 encryptions with 7-round AES by using ancillary quantum
register of size around 23 from Lemma 1. The time required for Step 3 is negligible
compared to Step 2, and Step 3 can be done by using almost the same number
of qubits as used in Step 2. Thus each iteration of Steps 2 and 3 runs in time
around 258 encryptions with AES, and uses a quantum circuit of size around 23.

Even if we consider the the general case in which there exist more than 8
starting points for some (∆in, ∆out), we can show that only 3 iterations of Steps
2 and 3 find a collision with a high probability. (See Section B.4 for a detailed
proof.) Therefore our attack runs in time around 3 ·258 ≈ 259.5 encryptions with
AES-MMO, by using a quantum circuit of size 23. When a quantum computer
of size S (S ≥ 23) is available, by parallelizing the Grover search for F we can
mount the attack in time T = 259.5/

√

S/23.

Summary. When the efficiency of a quantum algorithm is measured by the
tradeoff between time T and space S, the generic attack gives time-space tradeoff
T = 264/S. On the other hand, when a quantum computer of size S is available,
our rebound attack runs in time around T = 259.5/

√

S/23 ≈ 261/
√
S. Therefore

our attack works for S ≥ 23 and it is more efficient than the generic attack as
long as S < 26.

6.4 Small Quantum Computer with Large Classical Memory

When a small (polynomial size) quantum computer and large (exponential size)
classical memory is available, the generic collision finding attack is the one by
Chailloux et al., which runs in time around 22n/5 = 251.2 encryptions with 7-
round AES when we apply the algorithm on 7-round AES-MMO. Since our
rebound attack in Section 6.3 requires time 259.5 (if it is not parallelized), it is
slower than the generic attack in this setting. We do not know whether we can
mount a quantum attack that is better than the generic attack in this setting.

7 Finding Collisions for 6-Round Whirlpool

This section shows a quantum rebound attack that finds collisions for 6-round
Whirlpool. Basically this section considers the setting that the efficiency of quan-
tum algorithms are measured by the tradeoff of time and space. (Our attack is
worse than the generic attack in other settings.)

Recall that there exists a 5-round differential propagation

1
2−(r−1)c

←− r — r2 — r2 — r
2−(r−1)c

−→ 1

25

for Whirlpool, which can be used to mount a classical rebound attack with
Super-Sboxes (see Section 4.2). Here we use the 6-round differential propagation

1
2−(r−1)c

←− r — r2 — r2 — r2 — r
2−(r−1)c

−→ 1

with the technique that covers three active rounds on 8× 8 state introduced in
Section 4.3, instead of usual Super-Sboxes (See Fig. 5 in Section C.1). We use
the memoryless variant rather than the original technique, which runs in time
2r

2c/2+rc. The technique can be used for classical distinguishing attacks but
cannot be used for classical collision attacks since its time complexity reaches
the birthday bound 2r

2c/2 = 2n/2. However, the power of quantum computation
enables us to use the technique. The optimality of the 6-round differential trail
trail is shown in Section 8.

When we implement the rebound attack with the above 6-round differential
propagation and the memoryless variant of the technique from Section 4.3 in
the classical setting, the attack time complexity becomes 2(r−1)c · 2(r−1)c · 2c ·
2r

2c/2+rc = 2(r
2+6r−2)c/2 = 2440 (here r = 8 and c = 8). This attack is essentially

a combination of an exhaustive search on differences in the two internal states
(the difference just after the SubBytes application in the 2nd round (#Y 2 in
Fig. 5 in Section C.1) and the difference at the beginning of the 6th round (#X6

in Fig. 5 in Section C.1)) with the exhaustive search for the inbound phase (the
memoryless variant introduced in Section 4.3). Since we can obtain the quadratic
speed up for exhaustive searches with Grover’s algorithm in the quantum setting,
roughly speaking, we can implement the attack so that it runs in time around 2220

on a small size quantum computer. Roughly speaking, if S quantum computers
are available, we will obtain a time-space tradeoff T = 2220/

√
S, which is better

than the generic time-space tradeoff T = 2n/2/S = 2256/S for S ≤ 272. Note that
this rough cost analysis gives just an underestimation since it ignores additional
costs such as uncomputations and ancilla qubits to implement Boolean functions
for the Grover search. The precise tradeoff will be somewhat worse than T =
2220/

√
S in practice, but T ≤ 2232/

√
S holds. (See Section C.2 for detailed

discussions on precise analysis.) We assume that our attack follows the worst-
case tradeoff T = 2232/

√
S.

Summary. Our rebound attack on 6-round Whirlpool runs in time T = 2228

on a quantum computer of size S0 = 28. When a large quantum computer of
size S (S ≥ 28) is available and we use them to parallelize the Grover search,
our rebound attack runs in time T = 2232/

√
S. It is better than the generic

attack in the setting where the efficiency of a quantum algorithm is measured
by the tradeoff between time T and space S as long as 28 ≤ S < 248, but it
is worse than the generic attack in other settings. (See Section C.3 for detailed
discussions in other settings.)

26

8 Optimality of Differential Trails

MILP Model. We checked the optimality of the differential trail by using the
Mixed Integer Linear Programming (MILP) based tool. The MILP model to
derive the minimum number of active S-boxes for AES was described by Mouha
et al. [34]. We modify the model by Mouha et al. to minimize the complexity
of the collision attack. The model by Mouha et al. describes valid differential
propagation patterns according to the AES diffusion. The model can simply be
converted to the collision search by adding the constraints such that the active
byte patterns of the first round input and the last round output are identical.

The objective function of the model by Mouha et al. is to minimize the num-
ber of active S-boxes, while we need a different objective function to minimize the
complexity of the collision attack in the rebound attack framework. Regarding
AES-MMO, we assume the usage of the Super-Sbox analysis, which generates a
pair of values satisfying MixColumns in three consecutive rounds by cost 1 per
starting point. For each model, we fix a position of the inbound phase. Namely
we fix the round index r in which MixColumns in rounds r, r+1, and r+2 are
satisfied with cost 1. Because the last round does not have MixColumns, we only
have 4 choices in the case of the 7-round attack: r ∈ {1, 2, 3, 4} by starting the
round counting from 1. For example, the 7-round trail introduced in Section 6.1
is the case with r = 3. The probability of the outbound phase is affected by two
factors.

1. the number of difference cancellation in MixColumns
2. the number of difference cancellation in the feed-forward

The latter can be simply counted by counting the number of active S-boxes in
the first round. Let x0, x1, . . . , x15 be 16 binary variables to denote whether the
ith byte of the initial state is active or not. Then, the number of canceling bytes
in the feed-forward is x0 + x1 + · · ·+ x15. The impact of the former is evaluated
by counting the number of inactive bytes in active columns in MixColumns.
Suppose that xi0, xi1, xi2, xi3 are 4 binary variables to denote whether each
of 4 input bytes to a MixColumns is active or not. Similarly yi0, yi1, yi2, yi3
denote the same for output bytes. Also let d be a binary variable to denote
whether the column is active or not. Note that the model proposed by Mouha
et al. satisfies this configuration. We introduce an integer variable b, 0 ≤ b ≤ 3
for each column to count the number of inactive bytes in active columns. Then,
proper relationships can be modeled in the following equality.

{

−xi0 − xi1 − xi2 − xi3 + 4d = b for backward outbound,
−yi0 − yi1 − yi2 − yi3 + 4d = b for forward outbound.

For the rounds located before the Super-Sbox (the first round to round r−1) we
compute in backwards, hence we use the first equation. For the rounds located
after the Super-Sbox (round r + 3 to the last round) we compute in forwards,
hence we use the second equation. When the column is inactive, all of xi, yi
and d are 0, thus b becomes 0. When column is active, b is set to 4 minus the

27

sum of the number active bytes, which is the number of bytes with difference
cancellation. In the end, the objective function can be to minimize the sum of
x0 to x15 for the feed-forward and b for all the columns.

Regarding the Whirlpool, the only difference from the AES-MMO is the num-
ber of rounds covered by the inbound phase (and the last round transformation).
The extension is straightforward and thus we omit the details.

Search Results. The resulted system of linear inequalities can be solved easily
by using a standard laptop in a few seconds. The result shows that the minimum
number of difference cancellation to derive 7-round collisions is 10, i.e. probability
2−80. Hence the trail introduced in Section 6.1 is one of the best.

As noted before, we generated different models depending on the starting
round of the Super-Sbox. An interesting result is that besides r = 3 (the trail
introduced in Section 6.1), r = 2 also achieves the trail with probability 2−80.
(No such trail for r = 1 and r = 4.) To the completeness, we show the detected
trail in Fig. 6 in Section D.

We also verified the optimality for Whirlpool and difficulty of attacking 1
more round with the approaches considered in this paper.

9 Concluding Remarks

This paper observed that there is a possibility that differential trails of which dif-
ferential probabilities are smaller than the birthday bound can be used to mount
collision attacks in the quantum settings and classically secure hash functions
may be broken in the quantum settings. In fact we showed the quantum versions
of rebound attacks on 7-round AES-MMO and 6-round Whirlpool, on which
there has not been found any dedicated collision attack that is faster than the
generic one in the classical setting.

An important future work is to find differential trails (that are suitable to
mount collision-finding attacks) such that the differential probabilities are too
small to be used for collision finding attacks in the classical setting but large
enough to be used in the quantum settings. Our observation suggests that dif-
ferential trail search should not stop with probability 2−n/2 but should consider
up to 2−2n/3 or more. By revisiting previous differential trail search activities,
we will be able to construct more and more dedicated quantum collision-finding
attacks.

References

1. Alliance, Z.: Zigbee-2007 specification. available at https://zigbee.org/ (2007),
document 053474r17

2. Banegas, G., Bernstein, D.J.: Low-communication parallel quantum multi-target
preimage search. In: SAC 2017. LNCS, vol. 10719, pp. 325–335. Springer (2018)

3. Barreto, P.S., Rijmen, V.: The WHIRLPOOL Hashing Function. Submitted to
NESSIE. (2000), revised on May 24, 2003

28

https://zigbee.org/

4. Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete? In: SHARCS (2009)

5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: ASIACRYPT 2011. LNCS, vol. 7073, pp.
41–69. Springer (2011)

6. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: The offline simon’s algorithm.
In: ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 552–583. Springer (2019)

7. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
In: SAC 2019. LNCS, vol. 11959, pp. 492–519. Springer (2019)

8. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol. 2019(2), 55–93 (2019)

9. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik: Progress of Physics 46(4-5), 493–505 (1998)

10. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53–74 (2002)

11. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer (1998)

12. Campagna, M., Zaverucha, G., Corp, C.: A Cryptographic Suite for Embedded
Systems (SuiteE). Internet-Draft (October 2012)

13. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: ASI-
ACRYPT 2017, Part II. LNCS, vol. 10625, pp. 211–240. Springer (2017)

14. Daemen, J., Rijmen, V.: The design of Rijndeal: AES – the Advanced Encryption
Standard (AES). Springer (2002)

15. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Mathematical Cryptology 1(3), 221–242 (2007)

16. Damg̊ard, I.: A design principle for hash functions. In: CRYPTO 1989. LNCS,
vol. 435, pp. 416–427. Springer (1989)

17. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: Improved attacks for AES-like
permutations. In: FSE 2010. LNCS, vol. 6147, pp. 365–383. Springer (2010)

18. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In:
ACM STOC 1996. pp. 212–219. ACM (1996)

19. Grover, L.K., Rudolph, T.: How significant are the known collision and element dis-
tinctness quantum algorithms? Quantum Information & Computation 4(3), 201–
206 (2004)

20. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. IACR Cryptology ePrint Archive 2019/74 (2019)

21. Hosoyamada, A., Sasaki, Y.: Quantum Demirci-Selçuk Meet-in-the-Middle At-
tacks: Applications to 6-Round Generic Feistel Constructions. In: SCN 2018.
LNCS, vol. 11035, pp. 386–403. Springer (2018)

22. ISO: IT Security techniques - Hash-functions - Part 3: Dedicated hash-functions,
ISO/IEC 10118-3:2018 (2018)

23. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist
Grøstl. In: FSE 2012. LNCS, vol. 7549, pp. 110–126. Springer (2012)

24. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: CRYPTO 2016, Part II. LNCS,
vol. 11693, pp. 207–237. Springer (2016)

25. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

29

26. Katz, J., Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of applied
cryptography. CRC press (1996)

27. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: ACM SIGSAC, 2016. pp. 830–842 (2016)

28. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel ci-
pher and the random permutation. In: ISIT 2010. pp. 2682–2685. IEEE (2010)

29. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In:
ISITA 2012. pp. 312–316. IEEE (2012)

30. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: Results on the full Whirlpool compression function. In: ASIACRYPT
2009. LNCS, vol. 5912, pp. 126–143. Springer (2009)

31. Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The rebound
attack and subspace distinguishers: Application to Whirlpool. J. Cryptology 28(2),
257–296 (2015)

32. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
Cryptanalysis of reduced whirlpool and grøstl. In: Dunkelman, O. (ed.) FSE 2009.
Lecture Notes in Computer Science, vol. 5665, pp. 260–276. Springer (2009)

33. Merkle, R.C.: A certified digital signature. In: CRYPTO 1989. LNCS, vol. 435, pp.
416–427. Springer (1989)

34. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Inscrypt 2011. LNCS, vol. 7537, pp.
57–76. Springer (2011)

35. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition (2010)

36. NIST: Post-quantum cryptography standardization, See
https://csrc.nist.gov/Projects/post-quantum-cryptography/

Post-Quantum-Cryptography-Standardization (2019/9/26)

37. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to hash
functions and discrete logarithms. In: ACM CCS 1994. pp. 210–218. ACM (1994)

38. Sasaki, Y.: Meet-in-the-Middle preimage attacks on AES hashing modes and an
application to Whirlpool. In: FSE 2011. LNCS, vol. 6733, pp. 378–396. Springer
(2011)

39. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating fundamental security require-
ments on whirlpool: Improved preimage and collision attacks. In: ASIACRYPT
2012. LNCS, vol. 7658, pp. 562–579. Springer (2012)

40. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

41. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: CRYPTO
2005. LNCS, vol. 3621, pp. 17–36. Springer (2005)

42. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: EUROCRYPT
2005. LNCS, vol. 3494, pp. 19–35. Springer (2005)

43. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (pseudo) preimage attack on
round-reduced Grøstl hash function and others. In: FSE 2012. LNCS, vol. 7549,
pp. 127–145. Springer (2012)

44. Xie, H., Yang, L.: Quantum impossible differential and truncated differential crypt-
analysis. CoRR abs/1712.06997 (2017)

45. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Info. Comput. 15(7-8), 557–567 (May 2015)

30

https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization

A Details on the Memoryless Variant of the Technique in

Section 4.3

Here we show details on the memoryless variant of the technique for the inbound
phase introduced in A. Our memoryless variant can find a starting point with
time 2r

2c/2+rc by using negligible memory. Let SSBf,(j) and SSBb,(j) denote the
Super Sboxes corresponding to the lists Lf

j and Lb
j , respectively, for 0 ≤ j < r.

First, note that we can perform Steps 1 and 3 in the inbound phase with-
out storing the lists Lf

j (0 ≤ j < r) and without increasing time complexity:
For Step 1, instead of checking the exhaustive combinations of the values of
Lf
0 , . . . , L

f
r/2−1, we can do the exhaustive search for the inputs to SSBf,(0), . . . ,

SSBf,(r/2−1). That is, we compute SSBf,(j)(xj) and SSBf,(j)(xj ⊕ δ
f,(j)
in) on the

fly for 1 ≤ j < r and we perform the exhaustive search on (x0, . . . , xr/2−1), where

δ
f,(j)
in is the input difference for SSBf,(j) computed from the fixed difference at
#Zi. Step 3 can be done by just propagating the value at #Y i+2 to #Xi+1

and #Y i+3. Below we consider that Steps 1 and 3 are done without storing the
lists Lf

j as above, and in Step 1, an input xj ∈ {0, 1}rc for SSBf,(j) is fixed for
0 ≤ j ≤ r/2− 1.

Second, Step 2 in the inbound phase can be performed without storing the
lists Lb

j (0 ≤ j < r) by increasing the time complexity by a factor of 2rc: At

the beginning of Step 2, a pair of r2/2 bytes (i.e., r2 bytes) at #Y i+2 are fixed.

What is done in Step 2 is essentially finding an input pair for SSBb,(j) that is
compatible with the fixed values at #Y i+2 and the fixed difference at #W i+3

for 0 ≤ j < r. This can be done without the lists Lb
j just by exhaustive search

(for inputs to SSBb,(j)) that runs in time 2rc.

31

B Detailed Discussions for Section 6

B.1 Details on the Differential Trail of Probability 2−80 for 7-round
AES in Section 6.1

SB SR MC AC#𝑊4#𝑍4#𝑌4#𝑋4

SB SR MC AC#𝑊5#𝑍5#𝑌5#𝑋5

MC AC#𝑊3#𝑍3#𝑌3#𝑋3 SB SR
MC AC#𝑊2#𝑍2#𝑌2#𝑋2 SB SR
MC AC#𝑊1#𝑍1#𝑌1#𝑋1 SB SR

MC AC#𝑊6#𝑍6#𝑌6#𝑋6 SB SR
AC#𝑊7#𝑌7#𝑋7 SB SR

Fig. 4. Details on the trail with pout = 2−80.

32

B.2 Finding Collisions in the General Setting with qRAM

Here we show that we can still find collisions in time 241 with qRAM by slightly
modifying the definition of F , even if there exist more than 8 starting points for
some (∆in, ∆out).

For a permutation and an input-output difference a −→ b, we call message
pairs that satisfies the differential solutions for the differential. We assume that
the permutation SSB(i) behaves in an ideal manner from the view point of differ-
ential distribution: First, we assume that, under the condition that there exists
at least one solution {x, x′} for a differential a −→ b for SSB(i) (a, b 6= 0), there
exists no other solution with a probability at least 3/4. 9 Second, we assume
that the differential distribution is sufficiently concentrated and the probability
that 3 or more solutions exist for a randomly given differential a −→ b (a, b 6= 0)

is negligible. Then, when a pair (∆in, ∆out) is randomly given and δ
(i)
in −→ δ

(i)
out

is the corresponding differential for SSB(i) (for 1 ≤ i ≤ 4), the probability that

there exists only one solution for the differential δ
(i)
in −→ δ

(i)
out for at least two

of i ∈ {1, 2, 3, 4} (which implies that there exists at most 32 starting points
for (∆in, ∆out)) under the condition that there exists at least one solution for
all i ∈ {1, 2, 3, 4} (which implies that there exists at least 1 starting point for
(∆in, ∆out)) is larger than 0.9.

From the above arguments, with a high probability (> 0.9) there exists at
most 25 = 32 starting points for the pair (∆in, ∆out) that leads to a collision for
7-round AES-MMO. Thus we modify the definition of F so that it will ignore
pairs (∆in, ∆out) that produce more than 32 starting points, and take 5-bit input
β ∈ {0, 1}5 to specify the choice of starting points instead of 3-bit input α. This
modification increases the number of the iterations of the Grover search by the
factor of

√

25/23 = 2. Eventually, the cost for the Grover search becomes around
240×2 = 241 encryptions with 7-round AES. Once we find a tuple (∆in, ∆out;β)
such that F (∆in, ∆out;β) = 1, we can produce a collision of the 7-round AES-
MMO with a cost that is negligible compared to 241, by performing inbound and
outbound phases again for (∆in, ∆out;β).

B.3 Proof of Lemma 1

This section proves Lemma 1. Before giving an analysis for UF , we give cost
estimations to implement G(i) (1 ≤ i ≤ 4). Recall that the unit of size is the size
(the number of qubits) required to implement 7-round AES.

Lemma 2. For each i, we can construct a quantum circuit that computes G(i)

and runs in time around 32 S-box applications, by using ancillary quantum reg-
ister of size around 1/4.

9 Let N be the the number of message pairs that satisfy a differential a −→ b (a, b 6= 0)
for a random permutation. Then N approximately follows the Poisson distribution
with the parameter λ = 1

2
[15], which implies that this assumption is true for a

random permutation.

33

Proof. We give an analysis for 1 ≤ i ≤ 3. The analysis for i = 4 can be done in
a similar way.

We consider to implement the unitary operator

ŨG(i) : |δ(i)in , δ
(i)
out, αi〉 |xi〉 7→ (−1)G(i)(δ

(i)
in

,δ
(i)
out

,αi;xi) |δ(i)in , δ
(i)
out, αi〉 |xi〉

as follows.

Implementation of G(i).

1. Let |δ(i)in , δ
(i)
out, αi〉 |xi〉 be a given input.

2. Compute SSB(i)(xi) and SSB(i)(xi ⊕ δ
(i)
in) to obtain the state

|δ(i)in , δ
(i)
out, αi〉 |xi〉 ⊗ |SSB(i)(xi)⊕ SSB(i)(xi ⊕ δ

(i)
in)〉

3. If SSB(i)(xi) ⊕ SSB(i)(xi ⊕ δ
(i)
in) = δ

(i)
out and xi < xi ⊕ δ

(i)
in (if αi = 0) or

xi > xi ⊕ δ
(i)
in (if αi = 1), multiply the phase (−1) to the state. Otherwise,

do nothing.
4. Uncompute Steps 1 and 2.

We need 2 Super-Sbox applications in Step 2, which is equivalent to 16 S-
box applications. Thus the time complexity is around 32 S-box applications in
total. Step 2 requires some ancillary quantum registers to compute SSB(i)(xi)⊕
SSB(i)(xi ⊕ δ

(i)
in), of which size is around 1/4 (the block size of Super-Sboxes is

1/4 of the internal state size of AES). Therefore, the claim of the lemma follows.
⊓⊔

Next, we show Lemma 1.

Proof (of Lemma 1). Suppose that there does not exist any starting point for
(∆in, ∆out) that leads to a collision of 7-round AES-MMO (then F (∆in, ∆out;α)
= 0 holds for all α). Then flag1∧flag2 = 0 always holds. Thus UF |∆in, ∆out;α〉 |y〉
= |∆in, ∆out;α〉 |y ⊕ F (∆in, ∆out;α)〉 holds for all y in this case.

Next, suppose that (∆in, ∆out;α) is a tuple such that there exists exactly 8
starting points for (∆in, ∆out) and (∆in, ∆out;α) leads to a collision of 7-round
AES-MMO (then F (∆in, ∆out;α) = 1 holds). Then, since we use the Grover
search with certainty to search for x1, . . . , x4, the quantum state after Step 9 is
exactly

|∆in, ∆out;α〉 |y ⊕ 1〉
⊗ |M = x1|| · · · ||x4〉 |M ′ = x′

1|| · · · ||x′
4〉 ⊗ |flag1 = 1〉 |flag2 = 1〉 ⊗ |z〉 (2)

without any error,10 for a classical bit string z used for intermediate computa-

tions (e.g., values for δ
(i)
in and δ

(i)
out). Thus UF |∆in, ∆out;α〉 |y〉 = |∆in, ∆out;α〉

|y ⊕ F (∆in, ∆out;α)〉 holds for all y in this case.

10 See the explanations below Proposition 1 in Section 2.2 for Grover’s algorithm with
certainty.

34

Next we analyze the running time. Step 2 of UF does not require any S-box
applications. For each i, to compute G(i), we need 32 S-box applications from
Lemma 2. Since we perform about π

4

√
232 = π

4 2
16 iterations in the Grover search

for G(i), Steps 3 - 5 requires 4× 32× π
4 2

16 = π · 221 S-box applications in total,
which is equivalent to π ·221/140 ≈ 215.5 encryption with 7-round AES. The cost
of Steps 7 and 8 is around 4 encryptions in total. Therefore, the cost of UF is
around 2× (215.5 + 4) ≈ 216.5 encryptions in total.

Finally we analyze the size of ancillary quantum register required to realize
UF . Recall that the unit of size is the size (the number of qubits) required to

implement 7-round AES. To compute and store the values (δ
(i)
in , δ

(i)
out) for 1 ≤ i ≤

4 in Step 2, we use ancillary quantum register of size around 4× (2× 1/4) = 2
(note that the block size of Super-Sboxes is 1/4 of the internal state size of AES).
In Steps 4 - 5, we have to use a quantum register of size around 1/4 to store xi

and another quantum register of size 1/4 to compute G(i), from Lemma 2. Thus
additional quantum register of size 4× (1/4 + 1/4) = 2 is required for Steps 3 -
5 in total. In Steps 7 and 8, we use additional quantum register of size around
4. The 2 qubits required for flag1 and flag2 are quite small and we ignore them.
In total, we use additional quantum register of size 2+2+4 = 23. Therefore the
claim of the lemma follows. ⊓⊔

B.4 Finding Collisions in the General Setting without qRAM

Here we show that, in the rebound attack on 7-round AES-MMO without qRAM
in Section 6.3, only 3 iterations of Steps 2 and 3 find a collision with a high
probability even in the the general case such that there exist more than 8 starting
points for some (∆in, ∆out).

Even in this case, we can still reasonably assume that Super-Sboxes behaves
ideally from the view point of differential distributions. In particular, as described
in Section B.2, we can reasonably assume that, under the condition that there
exists at least one solution (x, x′) for a differential a −→ b for SSB(i) (a, b 6=
0), there exists no other solution with a probability at least 3/4. Thus, the
probability that there exists exactly 8 starting points for the pair (∆in, ∆out)
that leads to a collision of AES-MMO when ∆in is chosen randomly from 232

values and ∆out is chosen from 248 values is about (3/4)4 ≈ 1/3. Hence, by
performing 3 iterations (of Steps 2 and 3) on average, we can find a collision
with a high probability. Therefore our attack runs in time around 3 · 258 ≈ 259.5

encryptions with AES-MMO, by using a quantum circuit of size 23.

C Detailed Discussions for Section 7

C.1 Details on the Differential Trail for 6-round Whirlpool in
Section 7

35

SB SR
#𝑊3#𝑍3#𝑌3#𝑋3

MC AC
SB SR

#𝑊4#𝑍4#𝑌4#𝑋4
MC AC

SB SR
#𝑊5#𝑍5#𝑌5#𝑋5

MC AC

#𝑊2#𝑍2
MC ACSB SR

#𝑌2#𝑋2

#𝑊1#𝑍1
MC ACSB SR

#𝑌1#𝑋1

SB SR
#𝑊6#𝑍6#𝑌6#𝑋6

MC AC
Fig. 5. 6-round differential propagation for Whirlpool.

C.2 Discussion on Precise Analysis

Here we observe that the precise time-space tradeoff of the attack on 6-round
Whirlpool will not be much different from the roughly estimated tradeoff T =
2220/

√
S.

First, we observe that the precise time complexity for the attack on 7-round
AES-MMO without qRAM in Section 6.3 is not far from a roughly estimated
time complexity: If we use the same notations and perform a rough estimations
as in Section 5.3 for the attack in Section 6.3, Tin =

√
232 = 216 holds since

here the time required for the inbound phase is dominated by the time for the
exhaustive search on inputs to Super-Sboxes. Thus, the rough estimation for the
total time complexity of the attack in Section 6.3 becomes T = Tin ·

√

1/pout =

36

216 · 240 = 256. This is not much different from the precise time complexity 259.5

in Section 6.3.
From this observation we see that, even if we give precise analysis for the time

complexity of the attack on 6-round Whirlpool, it will not be much different from
the roughly estimated time complexity 2220. In particular, the time complexity
will not exceed 28 · 2220 = 2228 even if we do not consider parallelization. In
addition, since we just perform simple exhaustive search on (∆in, ∆out) and
inputs to Super-Sboxes, the size of ancillary quantum register required will not
exceed 28 when we do not consider parallelization (Recall that the unit of space
size is the size (the number of qubits) required to implement Whirlpool). Thus,
our rebound attack runs in time T = 2228 on a quantum computer of size
S0 = 28. When a large quantum computer of size S (S ≥ 28) is available and
we use them to parallelize the Grover search, our rebound attack runs in time
T = 2228/(

√

S/28) = 2232/
√
S.

These discussions show that the time-space tradeoff for our rebound attack
on 6-round Whirlpool lies between T = 2220/

√
S and T = 2232/

√
S.

C.3 Comparison of the Attack on 6-round Whirlpool to the Generic
Attacks

Here we give detailed comparison of our rebound attack on 6-round Whirlpool
in Section 7 to the generic attack in various quantum settings.

Small quantum computer with qRAM. In the setting that a small quantum com-
puter with large qRAM is available (and parallelizations are not taken into ac-
count), the generic attack is BHT that runs in time 2n/3 = 2192. Since the time
complexity 2228 of our attack (non-parallelized version) exceeds 2192, our attack
is worse than the generic attack in this setting.

Tradeoff between time and space. In the setting that the efficiency of a quantum
algorithm is measured by the tradeoff between time T and space S where the
generic attack is the parallel rho method that achieves the tradeoff T = 2n/2/S =
2256/S, our algorithm is better than the generic attack as long as 28 ≤ S < 248

since our attack runs in time T = 2232/
√
S when S × n qubits are available.

Small quantum computer with large classical memory. In the setting that a small
quantum computer with large classical memory is available (and parallelizations
are not taken into account) where the generic attack is the one by Chailloux et
al. that runs in time 22n/5 = 2204.8, our attack is worse than the generic attack
since it requires time 2228 when it is not parallelized.

37

D Another Differential Trail for 7-round AES-MMO of

Type 2

SB SR MC AC#𝑊4#𝑍4#𝑌4#𝑋4

SB SR MC AC#𝑊5#𝑍5#𝑌5#𝑋5

MC AC#𝑊2#𝑍2#𝑌2#𝑋2 SB SR
MC AC#𝑊3#𝑍3#𝑌3#𝑋3 SB SR

MC AC#𝑊1#𝑍1#𝑌1#𝑋1 SB SR

MC AC#𝑊6#𝑍6#𝑌6#𝑋6 SB SR
AC#𝑊7#𝑌7#𝑋7 SB SR

Fig. 6. AES-MMO 7 Rounds (Type 2).

38

	Finding Hash Collisions with Quantum Computers by Using Differential Trails with Smaller Probability than Birthday Bound

