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Abstract

We demonstrate that it is possible to automatically find

representative example images of a specified object cate-

gory. These canonical examples are perhaps the kind of

images that one would show a child to teach them what,

for example a horse is – images with a large object clearly

separated from the background.

Given a large collection of images returned by a web

search for an object category, our approach proceeds with-

out any user supplied training data for the category. First

images are ranked according to a category independent

composition model that predicts whether they contain a

large clearly depicted object, and outputs an estimated lo-

cation of that object. Then local features calculated on the

proposed object regions are used to eliminate images not

distinctive to the category and to cluster images by simi-

larity of object appearance. We present results and a user

evaluation on a variety of object categories, demonstrating

the effectiveness of the approach.

1. Introduction
Our goal is to automatically find iconic images for object

categories by mining large collections of photographs pub-

licly available on the web. Here iconic means a clear and

distinctive depiction of an object category in an image – for

instance an image that might be used to teach a child about

a particular category such as “tiger” or “light house”.

That such iconic or canonical views of objects exist for

human perception has been demonstrated in Psychology. In

their seminal work [17] Rosch and Palmer find that humans

agree on canonical views of objects and that recognition is

faster for these views. In this paper we develop and evalu-

ate an algorithm to identify iconic images automatically by

sifting through millions of images from the web.

This algorithm takes a step toward building unsupervised

methods for accurate image organization, browsing, and

search – ideally the iconic images provide a small number

of relevant and representative images that are useful in each

of these applications. In addition, the output of the sys-

Figure 1. Input to our system is a large pool of images from the

web returned by an object category query. No ground truth labeled

data or prior idea of what the query object looks like are provided.

Despite the fact that most of the images do not show the query

object or are poor depictions, our method is able to sift through

thousands of images and automatically extract a small number of

iconic images that are highly representative of the category, as well

as sets of photographs with appearance similar to each iconic rep-

resentative. This selection is accomplished by considering both

image composition and object appearance. Example results for

the category “tiger” are shown with iconic images outlined in blue

on the left and similar images for each iconic representative shown

to the right. Note many people refer to their pet cats as tiger.

tem may be useful for providing an alternative to the human

labor intensive process of collecting datasets for recogni-

tion research. Such data sets have helped focus research

in recognition [8], but few are available due to the expense

of collection. The output of our approach while not per-

fect could reduce the effort required to collect similar and

potentially much larger datasets. This combination of the

good but not perfect output of an algorithm with human

“clean-up” has proven successful with the “labeled faces in

the wild” [13] dataset of faces labeled with names which is

a cleaned up version of the results from an automatic sys-

tem [4].

While the rich variety of images available on the web

makes it possible to find representative iconic images, a

number of substantial obstacles must be overcome. First

automatically finding images that actually depict an object
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category is difficult. Even with labeled training data (which

we do not have), category level object recognition in a gen-

eral setting is far from a solved problem in computer vision.

Furthermore many if not most of the images that show an

object category do not do so clearly. Once these challenges

have been overcome it is still necessary to find the canonical

representatives, the “iconic” images.

This paper presents a computer vision based approach

to address the above obstacles. While it might be possible

to find objects or iconic images by enlisting people to label

large amounts of data we explore the potential of an auto-

mated system based on the image content. Furthermore we

are interested in a generic approach that can address object

categories, large variations in how the categories are de-

picted, and even ambiguity in what constitutes a category –

for instance due to polysemy.

We aim to find representative iconic images of concrete

object categories, something that has not been addressed

in related work. This goal differs from that of Simon et

al. [20, 15] which relies on geometric constraints to find

representative images of specific instances of rigid objects

(building facades) instead of general object categories. Our

focus on concrete object categories (we explicitly look for

images with salient objects) separates our work from that of

Raguram and Lazebnik[18] which addresses finding repre-

sentative images of abstract categories such as “love”. The

goals of both these papers and our own differ significantly

from that of a body of related work on re-ranking the results

of a search engine (usually Google) [10, 9, 3, 19, 7]. The

goal there is building a model for re-ranking images of a

category, not finding good example images of the category.

In addition the data in our work (and [20, 18, 15]) comes

from flickr.com (Flickr) and has not been filtered by

the multitude of hyper-link and anchor text features Google

implements to rank it’s own image and web page search

results as used in [10, 9, 3, 19, 7]. In addition the Flickr im-

ages are usually photographs that depict objects in natural,

complex, and therefore challenging context.

Our approach uses multiple stages to first filter images

and then find representatives (fig 2 shows the processing

pipeline). First a simple text query for the name of a cate-

gory is used to retrieve 100,000 images for each of 17 cate-

gories from the very large photo sharing site flickr.com
(Flickr). This is a significant reduction from the billions of

photos available on Flickr.

It is important to note that although one might think the

problem is solved because humans specified the tags, this is

not at all true. In experiments, more than half of the images

with a category tag are not representative of the object cat-

egory, either because they do not depict the category at all

or because the depiction is poor or abstract. Note that the

criteria here is that an image be a “good representative” not

that it simply depicts the object category in any way. Fur-

thermore experiments show that there is too much noise in

these initial results for simple clustering to identify iconic

examples (fig 4).

The next stage is a novel aspect of our approach – start-

ing not by trying to recognize specific object categories,

but by trying to identify images that contain a large clearly

shown object of any sort. This is done using a model of

image composition based on cues often used for saliency

operators (sec 4). Only images that are highly ranked with

respect to this measure are considered for later processing.

To our knowledge this is the first use of a saliency-like mea-

sure for image retrieval, and for finding representative im-

ages for an object category. The highest ranked images of-

ten contain large clear depictions of objects. Features for

later appearance based processing are taken only from the

estimated object location.

The resulting images for each query are further automat-

ically filtered to eliminate those that are not distinctive to

that query. This is done using a simple k-nearest neighbor

test explained in Section 5.1.

The final stage consists of clustering the remaining im-

ages to produce results such as those shown in Figure 1. It

is important to note that without the preceding stages – fil-

tering out images without distinct object and further remov-

ing images that are not distinctive to a category – clustering

does not work nearly as well (fig 4).

A large user study evaluates the performance of the pro-

posed system showing favorable results on a set of 17 cat-

egories: small (bug), large (lighthouse), textured (tigers),

difficult to recognize (sheep, chair) etc. (fig 4).

2. Related Work
To our knowledge, finding iconic images of general ob-

ject categories has not been addressed in previous research.

At the same time there are several areas of related work.

Our approach begins by querying a search engine for im-

ages tagged with an object category name and then sifting

through the results to find iconic images and sets of similar

images. Previous work addressing clustering search results

in Content Based Image Retrieval (CBIR) clusters images

by content [6] but usually does so after a query by example

image (instead of text) and does not focus on an object re-

gion or emphasize images with a clear object as we do. Pre-

vious work on re-ranking angle image search results starts

with a text query and builds classifiers from the noisy re-

sults to perform the re-ranking [10, 9], but does not address

finding multiple clusters of appearance (polysymy) or stress

a clearly depicted object. Work on clustering art images [1]

clusters images based on content and associated text, but

does not deal with the type of very noisy data sets we collect

from Flickr photos. None of these works address choosing

a very small number of representative iconic images.

Recently a few papers have addressed finding a small



Figure 2. The flow of our system: Left: Large pools of images from the web are collected for a specified object category (a random set

returned for the query “horse” are shown here). Notice that many of these images do not show the object category or provide unsatisfactory

depictions. Center: In a single linear pass images are ranked according to a category independent composition model that predicts whether

they contain a large clearly delineated object of any category, and outputs an estimated location of that salient object (green boxes). Only

the most highly ranked images are retained for more expensive pairwise local feature comparisons. Right: Local features calculated on

the proposed object regions are used to eliminate objects not distinctive to the category, and to cluster images by similarity of object

appearance. Resulting iconic images are shown outlined in blue followed by images with similar object appearance to the right.

number of representative images of landmarks [20, 15].

These concern specific 3D objects (buildings or monu-

ments), and the techniques use constraints available for 3D

objects that do not exist for object categories. Related

work [18] arranges images returned by abstract queries in

a 2D embedding, but does not focus on finding clear pic-

tures of objects or on finding concrete objects at all.

One key aspect of our work is using a simple classifier

to find the likely locations of large objects in images and

subsequently rank the images themselves by this measure

in order to focus on images that may have a large clear

object. This is related to work on saliency. Most meth-

ods for computing saliency are based on bottom up ap-

proaches [5, 12, 14], our approach is more top down like

that of [16]. We incorporate features similar to their center-

surround histograms when computing composition proba-

bilities, but our use of the output for ranking images is sig-

nificantly different.

Work on object discovery attempts to identify repeated

objects in image collections [21, 22]. Kim et al [11] attack

this problem by constructing Visual Similarity Networks

and inferring information using link analysis techniques.

Our approach is more strongly focused on iconic images

and does not explicitly use feature correspondence. Gener-

ally image datasets for object discovery are less varied than

the data our algorithm obtains from Flickr for input.

3. Outline of Approach

We outline our approach for finding iconic images (fig 2

shows the processing pipeline). Numbers corresponding to

the experiments are included for clarity. Details for com-

puting composition scores are in section 4. The metric for

comparing images is discussed in Section 5. Experiments

and discussion are found in Section 6 including compar-

isons with a baseline technique where steps 2 and 3 are

skipped and a random sample of the IX are used as RX

for each category.1

1. For each object category X collect up to 100,000 im-

ages IX associated with X by a search engine (Flickr

tag search).

2. For each image i in IX compute the object/background

division with the best composition score. Take the

1000 images in IX with the highest composition

scores, call these selected images SX .

3. Compare each of the object regions in SX to each other

and to a random sample of 1000 images from all of the

other SY :Y 6=X . Throw away any images which have

more than 10 of their 20 nearest neighbors in SY :Y 6=X ,

leaving remaining images RX .

4. Cluster the images in RX into ≤ 20 clusters with

cluster centers cX1 . . . cX20 using k-medoids, throw-

ing out small clusters. These selected cluster centers

cX1 . . . cXr are the iconic images.

4. Ranking by Composition
The subject of interest in an iconic image should be large

and easily separated from its background. We have devel-

oped a class independent model of image composition to

1Specific numbers are given for clarity with the understanding that they

can be altered without fundamentally changing the algorithm.



Figure 3. Images ranked by our class independent composition model that predicts whether an image contains a large, clearly delineated

object of any category and outputs an estimate of where that object is located (green boxes). Rankings are shown top to bottom for the

beetle, butterfly, bread, and sphinx categories. Images containing a large salient object tend to be near the top of the rankings (left), while

images at the bottom of the rankings (right) tend not to contain any salient object or only contain small inferior depictions. Because our

composition model is class independent, the ranking is based only on image layout not object category. Thus, we are not guaranteed that

those images at the top of the ranking will contain the specified object. However, we exploit the fact that the images were collected because

they had been associated with the specified category keyword, making it likely that some of these highly ranked images will contain good

examples of the object category.

evaluate how well a particular image fits this criteria and

predict the object location.

This model is learned solely from a set of training im-

ages that do not overlap in subject (or image) with the test

categories. No category specific information is used and the

single learned model is applied to all object categories.

In this paper we consider layouts consisting of a fore-

ground rectangle with the remainder of the image as back-

ground. The model examines all possible layouts for an im-

age and the highest score for each image is used to re-rank

the images obtained for an object category. Only features

from the foreground rectangle that resulted in the highest

score are used for later processing (steps 4 & 5 above).

This stage of processing helps in several important ways:

• Percolates the good/interesting images up in the rank-

ing.

• Provides a rough division of the image into object and

background regions.

• Eliminates “junk” images that can confuse clustering.

• Can be performed efficiently on the enormous sets of

images available on the web because it is linear in the

number of images and independent of category.

4.1. Composition Model
We use Naive Bayes to model image composition. There

are factors in the model for object appearance, background

appearance, and appearance contrast between object and

background. Five of the features used are related to per-

ceptual contrast: hue (H), saturation (S), value (V), focus

(C), and texture (T). We also use two cues directly related

to the spatial nature of iconic compositions: object size and

location.

For any given layout cues are computed on the fore-

ground object rectangle and on the background region (re-

mainder of the image). Hue, saturation and value cues are

modeled as histograms with 11 uniformly spaced bins. Fo-

cus is computed as the ratio of high pass energy to low pass

energy. Texture is modeled as a histogram (with 11 uni-

formly spaced bins) of total response to a set of 5 oriented

bar filters and a spot filter (square-root of sum of squares of

filter responses).

Though there are many possible layouts for an image

(rows2 ∗ cols2/4 divisions into object and background), we

compute the features for all possible layouts efficiently us-

ing summed area tables, making the composition model

very fast to evaluate.

The probability of any given layout, L, with features, F:

P (L|F ) =
P (L)

∏
i P (Fi|L)

P (F1, F2, ...Fn)

=
P (L)

∏
i P (Fi|L)

P (L)
∏

i P (Fi|L) + P (L)
∏

i P (Fi|L)

For simplicity, we assume that P (L) and P (L) are equal.

Naive Bayes Features: We train 6 probability distribu-



tions for each type of image cue. These distributions de-

scribe, for both good and bad layouts: the distribution of

cue contrast computed using Chi-Squared distance, the dis-

tribution over object histograms, and the distribution over

background histograms.

For the contrast distributions we simply histogram the

observed Chi-squared distances (between object and back-

ground histograms) over the training images and learn the

distribution of values, for both correct and incorrect layouts.

This gives 5x2 features for our model: P (Hc|L), P (Hc|L),
. . . P (Tc|L), P (Tc|L).

For the object and background distributions, we learn

the distribution over histogram values for each bin indepen-

dently and then compute a final probability as the product

of probabilities over the bins. This gives us 5x2 features

for the object model: P (Ho|L), P (Ho|L), . . . P (To|L),
P (To|L), and 5x2 features for the background model:

P (Hb|L),P (Hb|L), . . . P (Tb|L),P (Tb|L).

For the distribution related to object size and location,

we bin the object region size and location from the training

images into a normalized 4-d histogram. The probability of

any given size and location of a layout, P (SizeLoc|L) can

then be computed by a lookup in this table. Because any

incorrect layout is equally likely, P (SizeLoc|L) is set to

one over the total number of possible layouts.

Training Data: We have trained the Naive Bayes com-

position model using a single set of 500 hand labeled im-

ages selected as examples of good compositional layout

from a set of random Flickr images uploaded in January

of 2007. For each of these training images we hand label

the correct layout and one random incorrect layout. For 100

of the images we also select a sky region as an extra in-

correct object region, because dividing an image into sky

vs everything else will often have high contrast, indicating

incorrectly a good layout.

4.2. Ranked Results
Though finding a division between foreground object

and background is in general an extremely challenging open

problem, our specific problem - finding this segmentation

for iconic images - is often somewhat easier because by def-

inition in an iconic image this division should be clear. By

ranking the images according to how well they separate into

object and background we have effectively percolated those

images most likely to be iconic to the top of the results, and

focused on those images where the segmentation is most

likely to be accurate.

Highly ranked images based on our compositional model

tend to contain good visual examples of some object clearly

delineated from its background (fig 3 left), while images at

the bottom of the ranking (fig 3 right) tend not to contain

any salient object or contain small or inferior depictions.

The predicted best layout for each image is shown in green

and tends to be quite effective at delineating the salient ob-

ject in each image. Since the model is category independent

these images are not guaranteed to contain any specific ob-

ject. However, we exploit the fact that the input images were

collected based on a shared tag, making it likely that these

highly ranked images will contain some good examples of

the object category (e.g. beetles or butterflies in fig 3).

5. Analyzing Object Appearance
For each category we select from the entire set of (up to

100,000) images, the 1000 most highly ranked images that

the composition model has predicted to consist of a large

object well separated from its background. In addition to

selecting images with potentially good object representa-

tions, this reduces the number of images to be considered

considerably. We can now afford to use more complex lo-

cal feature based methods for comparing object appearance

something which might have been too computationally in-

tensive to apply to the entire collection.

We would like to find modes in the distribution of object

appearances (appearances that occur frequently in the set)

as these are likely to correspond to representative examples

for the class. We would also like to be robust to changes

in background appearance. To accomplish these two goals

we first filter out images that are not distinctive to the cate-

gory, and then find sets of similar images using a k-medoids

clustering based on local features computed only within the

proposed object regions. The medoids of these clusters are

presented as the iconic images for the object category and

images with similar appearance to each iconic image can be

explored by accessing the corresponding cluster.

Geometric Blur Features: are shape descriptors [2] that

have been shown to perform quite well on object recogni-

tion tasks [24, 25]. We use these as our measure of local

appearance for clustering. The geometric blur descriptor

first produces sparse channels from the grey scale image, in

this case half-wave rectified oriented edge filter responses

at three orientations yielding six channels. Each channel

is blurred by a spatially varying Gaussian with a standard

deviation proportional to the distance to the feature center.

The descriptors are then sub-sampled and normalized.

Similarity Measure: We measure similarity between

two images using a spatially restricted feature match score.

For each feature in image i, fk
i , we find its best match in im-

age j, f l
j , where features can only match to features within

a radius of 30% of the diagonal of the estimated object re-

gion. The similarity between image i, and image j is then

the mean best match score over the set of features:

S(i, j) =
1

n

∑

k

maxl(sim(fk
i , f l

j))

where n is the number of features in image i, and feature

similarity is computed by normalized correlation. We fur-

ther symmetrize the similarity matrix, S, as (S + ST )/2.
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Figure 4. User evaluation results. For each object category, we

show users a random permutation of images from – our full

method, a “shape” only simplification that does not use layout, and

randomly selected images. We show each category to 20 users and

performance is reported as the number of users that selected each

image as a good representative divided by the number of iconic im-

ages output by the method (max score is 20 if every user selects ev-

ery image for a method). Our method performs quite favorably for

many of the object categories (e.g. horse, sheep, swan, bird, etc).

Notable exceptions include cup and baby where for instance Flickr

tags consistently denote sporting “cups” or pets called “baby” that

our human evaluators did not consider good representatives. Fig-

ure 5 shows that the iconic images are still quite reasonable, and

in fact indicates that the user evaluation probably under-estimates

the advantage of our full system over the shape only version. See

section 6.2 for more discussion of the evaluation.

5.1. Finding distinctive images

We want images that are distinctive with respect to the

specified object category. The composition based ranking

algorithm is category independent so some or many of the

highly ranked images will not depict the category. We re-

move many of these “junk” images with a simple density

estimate. Using the similarity measure on geometric blur

features just described, we compare each image to the 1000

most highly ranked images of the same query, and 1000

highly ranked images from the other object queries. If more

than 50% of the 20 nearest neighbors for an image are out

of class the image is removed.

5.2. Clustering

We use k-medoids clustering with k = 20 and the simi-

larity measure defined in section 5 to find representative im-

ages and their corresponding clusters for each object class.

Small clusters (≤ 10 images) are removed and clusters are

ordered for presentation by the mean similarity of images

within the cluster to the medoid image.

6. Results
For evaluation, we consider 17 object categories and

compare our method for selecting iconic images to two oth-

ers: 1. Images selected at random from the set of images for

each category. 2. Images selected by a baseline clustering.

The baseline clustering algorithm, referred to as “shape”

clustering in the experiments, is essentially a handicapping

of our method without the composition model or distinc-

tiveness filtering so that we can see how much these steps

contribute to the results – First 1000 images are selected at

random from the set for each category (instead of images

highly ranked by the composition model). Then geometric

blur features are computed across the whole image (instead

of just on the object regions). Finally k-medoids cluster-

ing is used to find the representative images with the same

similarity measure used by our system.

6.1. Qualitative Evaluation
The medoid images from each cluster form the iconic

images for a category see Figure 5 for examples. Notice that

these images show a variety of representations for each cat-

egory, including representative images for quite challeng-

ing categories like bird. Birds vary greatly between pho-

tographs with neither a distinctive texture (like tigers) nor a

very repeatable appearance (like horses). Despite this vari-

ation we are able to find good representative images includ-

ing: bird heads, birds in flight, perched birds and even a

cooked bird.

For categories where the tag is inherently ambiguous,

our method selects representative images showing com-

monly labeled senses. For example the selected images for

the tiger category include wild tigers as well as house cats

called tiger, representatives for the beetle category depict

insects as well as Volkswagens, and representatives for the

cup category show images from various sporting cups

Each representative image is the medoid of a cluster of

images with similar appearances that can be browsed for re-

lated images. A few of these clusters are shown in figures 1

and 2. In many cases the clusters show coherent object ap-

pearances.

6.2. Quantitative Evaluation
We evaluated the relevance of our iconic images using

Amazon’s Mechanical Turk service which provides access

to a large body of users for a small fee per task. Part of the

code for doing this evaluation was graciously provided by

Alex Sorokin [23]. For each of the 17 categories we cre-

ated a HIT (human intelligence task) consisting of a single

web page displaying all images output by: our method, the

baseline clustering method, and 10 images selected at ran-

dom from the input images. These images were randomly



ordered on the page and users were asked to evaluate them.

For example, for the category horse the instructions were:

Click on all images that show good representative examples

of the category “horse”. The horse should be:

• Large (covering at least 1

4
of the picture)

• Easily identified

• Near the center of the photo

Figure 4 shows the results of our user evaluation on the

17 object categories with 20 users evaluating each category.

For each method we plot the number of users that selected

each image as a good example divided by the number of

iconic images our algorithm produced for the category (max

score would be 20 if every user clicked on every image in

the category).

For many of the object categories (horse, sheep, tiger,

bird, swan, flower, butterfly, beetle, bug, seashell, light-

house) our method performs quite favorably compared to

both the randomly selected images and the baseline cluster-

ing method. This implies that our methods for analyzing

image composition and finding images distinctive to a cate-

gory are helpful for selecting representative images. These

methods work best when the object is self-contained and

has distinctive visual characteristics.

For some categories there is an inherent disconnect be-

tween what photographers label with an object category

and what users click on as representative photographs. For

example, many photograph owners tag their house cats as

“tiger”, but users evaluating an iconic image corresponding

to the house cat images will not label them as good exam-

ples of the category “tiger”. For “cup” many of the images

within the collection depict sporting events like the World

Cup, car racing or horse racing cups. For lemon many of

the images depict foods prepared with lemon. So, while

we produce coherent clusters and good representative iconic

images they are not always marked as relevant by the human

evaluators. As a result the quantitative evaluation may un-

derestimate the success of the approach, as can be seen in

the contrast between the representative images chosen by

the “shape”only method shown in Fig. 6 and the results of

our full method in Fig 5.

6.3. Conclusion
We presented an approach to automatically find iconic

images for object categories, with surprisingly good results.

A user study verifies this performance on a variety of object

categories despite variations in appearance, pose and pol-

ysemy (beetle can refer to either a bug or a Volkswagen).

This is a promising initial step toward building unsuper-

vised methods for accurate image organization, browsing,

and search. Another potential use of our system is to au-

tomatically build enormous labeled datasets of object cate-

gories for developing recognition systems. One key feature

is that our layout analysis is category independent so pro-

cessing is linear in the number of initially retrieved images.

Only a small fraction that are likely to contain large clear

objects need be clustered.

The full set of thousands of results is available online. 2
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Figure 5. Iconic images selected by our system. Many show canonical representatives of the object category (e.g. horse, tiger, bird, and

beetle images). In the selected images the specified object tends to be the main subject of the photograph and often nearly fills the entire

image. Even for object categories that vary widely in appearance such as bird the algorithm finds a variety of iconic representations – birds

in flight, bird heads, perched birds, and even cooked birds. For ambiguous object categories the output contains representatives depicting

the various senses (e.g. tiger images show wild cats and house cats, beetle images show insects and cars, cup images show representative

images from various sporting cups).

Figure 6. Images output by the “shape” version of our system that does not filter by layout. Note that the images selected often do not show

large clear objects. Compare to the results of our full system using layout in Fig. 5.


