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Abstract

Association-rule mining has heretofore relied on the con-
ditionof high support to do its work efficiently. In particular,
the well-known a-priori algorithm is only effective when the
only rules of interest are relationships that occur very fre-
quently. However, there are a number of applications, such
as data mining, identification of similar web documents,
clustering, and collaborative filtering, where the rules of in-
terest have comparatively few instances in the data. In these
cases, we must look for highly correlated items, or possi-
bly even causal relationships between infrequent items. We
develop a family of algorithms for solving this problem,
employing a combination of random sampling and hashing
techniques. We provide analysis of the algorithms devel-
oped, and conduct experiments on real and synthetic data
to obtain a comparative performance analysis.

1 Introduction

A prevalent problem in large-scale data mining is that
of association-rule mining, first introduced by Agrawal,
Imielinski, and Swami [1]. This challenge is sometimes
referred to as the market-basket problem due to its origins
in the study of consumer purchasing patterns in retail stores,
although the applications extend far beyond this specific
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setting. Suppose we have a relation R containing n tu-
ples over a set of boolean attributes A�� A�� � � � � Am. Let
I � fAi� � Ai�� � � � � Aikg and J � fAj� � Aj�� � � � � Ajlg be
two sets of attributes. We say that I � J is an association
rule if the following two conditions are satisfied: support —
the set I � J appears in at least an s-fraction of the tuples;
and, confidence — amongst the tuples in which I appears,
at least a c-fraction also have J appearing in them. The goal
is to identify all valid association rules for a given relation.

To some extent, the relative popularity of this problem can
be attributed to its paradigmatic nature, the simplicity of the
problem statement, and its wide applicability in identifying
hidden patterns in data from more general applications than
the original market-basket motivation. Arguably though,
this success has as much to do with the availability of a sur-
prisingly efficient algorithm, the lack of which has stymied
other models of pattern-discovery in data mining. The al-
gorithmic efficiency derives from an idea due to Agrawal et
al [1, 2], called a-priori, which exploits the support require-
ment for association rules. The key observation is that if a
set of attributes S appears in a fraction s of the tuples, then
any subset of S also appears in a fraction s of the tuples.

This principle enables the following approach based on
pruning: to determine a listLk of all k-sets of attributes with
high support, first compute a list Lk�� of all �k � ��-sets
of attributes of high support, and consider as candidates for
Lk only those k-sets that have all their �k � ��-subsets in
Lk��. Variants and enhancements of this approach under-
lie essentially all known efficient algorithms for computing
association rules or their variants. Note that in the worst
case, the problem of computing association rules requires
time exponential in m, but the a-priori algorithm avoids
this pathology on real data sets. Observe also that the confi-
dence requirement plays no role in the algorithm, and indeed
is completely ignored until the end-game, when the high-
support sets are screened for high confidence.

Our work is motivated by the long-standing open ques-
tion of devising an efficient algorithm for finding rules that
have extremely high confidence, but for which there is no
(or extremely weak) support. For example, in market-basket
data the standard association-rule algorithms may be useful



for commonly-purchased (i.e., high-support) items such as
“beer and diapers,” but are essentially useless for discover-
ing rules such as that “Beluga caviar and Ketel vodka” are
always bought together, because there are only a few people
who purchase either of the two items. We develop a body of
techniques which rely on the confidence requirement alone
to obtain efficient algorithms.

There are two possible objections to removing the sup-
port requirement. First, this may increase the number of
rules that are produced and make it difficult for a user to
pin-point the rules of interest. But note that in most of the
applications described next, the output rules are not intended
for human analysis but rather for an automated analysis. In
any case, our intent is to seek low-support rules with confi-
dence extremely close to 100%; the latter will substantially
reduce the output size and yet leave in the rules that are of
interest. Second, it may be argued that rules of low support
are inherently uninteresting. While this may be true in the
classical market-basket applications, there are many appli-
cations where it is essential to discover rules of extremely
high confidence without regard for support. We discuss
these applications briefly and give some supporting experi-
mental evidence before turning to a detailed description of
our results.

One motivation for seeking such associations, of high
confidence but withoutany support requirement, is that most
rules with high support are obvious and well-known, and it
is the rules of low-support that provide interesting new in-
sights. Not only are the support-free associations a natural
class of patterns for data mining in their own right, they
also arise in a variety of applications such as: copy de-
tection — identifying identical or similar documents and
web pages [4, 13]; clustering — identifying similar vectors
in high-dimensional spaces for the purposes of clustering
data [6, 9]; and, collaborative filtering — tracking user be-
havior and making recommendations to individuals based on
similarity of their preferences to those of other users [8, 16].
Note that each of these applications can be formulated in
terms of a table whose columns tend to be sparse, and the
goal is to identify column pairs that appear to be similar,
withoutany support requirement. There are also other forms
of data mining, e.g., detecting causality [15], where it is
important to discover associated columns, but there is no
natural notion of support.

We describe some experimental results for one such ap-
plication: mining for pairs of words that occur together
in news articles obtained from Reuters. The goal was to
check whether low-support and high-confidence pairs pro-
vided any interesting information. Indeed the similar pairs
proved to be extremely interesting as illustratedby the repre-
sentative samples provided in Figure 1. A large majority of
the output pairs were names of famous international person-
alities, cities, terms from medicine and other fields, phrases

Category Examples

(Dalai, Lama)
Names (Meryl, Streep)

(Bertolt, Brecht)
(Buenos, Aires)
(Darth, Vader)
(pneumocystis, carinii)

Terminology (meseo, oceania)
(fibrosis, cystic)
(avant, garde)

Phrases (mache, papier)
(cosa, nostra)
(hors, oeuvres)
(presse, agence)
(encyclopedia, Britannica)

Misc Relations (Salman, Satanic)
(Mardi, Gras)
(emperor, Hirohito)

Figure 1. Examples of different types of simi-
lar pairs found in the news articles

from foreign languages and other miscellaneous items like
author-book pairs and organization names. We also ob-
tained clusters of words, i.e., groups of words in which most
pairs have high similarity. An example is the cluster (CHESS,
TIMMAN, KARPOV, SOVIET, IVANCHUK, POLGER) which rep-
resents a chess event. It should be noted that the pairs
discovered have very low support and would not be discov-
ered under the standard definition of association rules. Of
course, we can run the a-priori algorithm with very low sup-
port definition, but this would be really slow as indicated in
the running time comparison provided in Section 5.

2 Summary of Results

The notion of confidence is asymmetric or uni-
directional, and it will be convenient for our purpose to
work with a symmetric or bi-directional measure of interest.
At a conceptual level, we view the data as a 0/1 matrix M
with n rows and m columns. Typically, the matrix is fairly
sparse and we assume that the average number of 1s per
row is r and that r �� m. (For the applications we have
in mind, n could be as much as ���, m could be as large as
���, and r could be as small as ���). Define Ci as the set of
rows that have a � in column ci; also, define the density of
column ci as di � jCij�n. We define the similarity of two
columns ci and cj as

S�ci� cj� �
jCi �Cjj

jCi �Cjj
�



That is, the similarity of ci and cj is the fraction of rows,
amongst those containing a 1 in either ci or cj , that contain
a 1 in both ci and cj. Observe that the definition of similar-
ity is symmetric with respect to ci and cj; in contrast, the
confidence of the rule fcig � fcjg is given by

Conf�ci� cj� �
jCi �Cjj

jCij
�

To identify all pairs of columns with similarity exceeding a
prespecified threshold is easy when the matrix M is small
and fits in main memory, since a brute-force enumeration
algorithm requires O�m�n� time. We are more interested in
the case where M is large and the data is disk-resident.

In this paper, our primary focus is on the problem of
identifying all pairs of columns with similarity exceeding
a pre-specified threshold s�. Restricting ourselves to this
most basic version of the problem will enable us clearly to
showcase our techniques for dealing with the main issue of
achieving algorithmic efficiency in the absence of the sup-
port requirement. It is possible to generalize our techniques
to more complex settings, and we discuss this briefly before
moving on to the techniques themselves. It will be easy to
verify that our basic approach generalizes to the problem
of identifying high-confidence association rules on pairs of
columns, as discussed in Section 6. We omit the analysis
and experimental results from this version of the paper, as
the results are all practically the same as for high-similarity
pairs. It should be noted that several recent papers [3, 14, 15]
have expressed dissatisfaction with the use of confidence as
a measure of interest for association rules and have sug-
gested various alternate measures. Our ideas are applicable
to these new measures of interest as well. A major restric-
tion in our work is that we only deal with pairs of columns.
However, we believe that it should be possible to apply our
techniques to the identification of more complex rules; this
matter is discussed in more detail in Section 6.

All our algorithms for identifying pairs of similar
columns follow a very natural three-phase approach: com-
pute signatures, generate candidates, and prune candidates.
In the first phase, we make a pass over the table generating
a small hash-signature for each column. Our goal is to deal
with large-scale tables sitting in secondary memory, and this
phase produces a “summary” of the table that will fit into
main memory. In the second phase, we operate in main
memory, generating candidate pairs from the column sig-
natures. Finally, in the third phase, we make another pass
over the original table, determining for each candidate pair
whether it indeed has high similarity. The last phase is iden-
tical in all our algorithms: while scanning the table data,
maintain for each candidate column-pair �ci� cj� the counts
of the number of rows having a 1 in at least one of the two
columns and also the number of rows having a 1 in both
columns. Consequently, we limit the ensuing discussion to

the proper implementation of only the first two phases.
The key ingredient, of course, is the hashing scheme

for computing signatures. On the one hand, it needs to
be extremely fast, produce small signatures, and be able to
do so in a single pass over the data. Competing with this
goal is the requirement that there are not too many false-
positives, i.e., candidate pairs that are not really highly-
similar, since the time required for the third phase depends
on the number of candidates to be screened. A related
requirement is that there are extremely few (ideally, none)
false-negatives, i.e., highly-similar pairs that do not make it
to the list of candidates.

In Section 3 we present a family of schemes based on
a technique called Min-Hashing (MH) which is inspired by
an idea used by Cohen [5] to estimate the size of transitive
closure and reachability sets (see also Broder [4]). The idea
is to implicitly define a random order on the rows, selecting
for each column a signature that consists of the first row
index (under the ordering) in which the column has a 1. We
will show that the probability that two columns have the
same signature is proportional to their similarity. To reduce
the probabilityof false-positives and false-negatives, we can
collect k signatures by independently repeating the basic
process or by picking the first k rows in which the column
has 1’s. The main feature of the Min-Hashing scheme is
that, for a suitably large choice of k, the number of false-
positives is fairly small and the number of false-negatives
is essentially zero. A disadvantage is that as k rises, the
space and time required for the second phase (candidate
generation) increases.

Our second family of schemes, called Locality-Sensitive
Hashing (LSH), is presented in Section 4 and is inspired by
the ideas used by Gionis, Indyk, and Motwani [7] for high-
dimensional nearest neighbors (see also Indyk and Mot-
wani [11]). The basic idea here is to implicitly partition the
set of rows, computing a signature based on the pattern of
1’s of a column in each subtable; for example, we could
just compute a bit for each column in a subtable, denoting
whether the number of 1’s in the column is greater than zero
or not. This family of schemes suffers from the disadvan-
tage that reducing the number of false-positives increases
the number of false-negatives, and vice versa, unlike in the
previous scheme. While it tends to produce more false-
positives or false-negatives, it has the advantage of having
much lower space and time requirements than Min-Hashing.

We have conducted extensive experiments on both real
and synthetic data, and the results are presented in Section 5.
As expected, the experiments indicate that our schemes out-
perform the a-priori algorithm by nearly an order of mag-
nitude. They also illustrate the point made above about
the trade-off between accuracy and speed in our two al-
gorithms. If it is important to avoid any false-negatives,
than we recommend the use of the Min-Hashing schemes



which tend to be slower. However, if speed is more im-
portant than complete accuracy in generating rules, than the
Locality-Sensitive Hashing schemes are to be preferred. We
conclude in Section 6 by discussing the extensions of our
work alluded to earlier, and by providing some interesting
directions for future work.

3 Min-Hashing Schemes

The Min-Hashing scheme used an idea due to Cohen [5],
in the context of estimating transitive closure and reacha-
bility sets. The basic idea in the Min-Hashing scheme is to
randomly permute the rows and for each column ci compute
its hash value h�ci� as the index of the first row under the
permutation that has a 1 in that column. For reasons of ef-
ficiency, we do not wish to explicitly permute the rows, and
indeed would like to compute the hash value for each column
in a single pass over the table. To this end, while scanning
the rows, we will simply associate with each row a hash
value that is a number chosen independently and uniformly
at random from a range R. Assuming that the number of
rows is no more than ���, it will suffice to choose the hash
value as a random 32-bit integer, avoiding the “birthday
paradox” [12] of having two rows get identical hash value.
Furthermore, while scanning the table and assigning random
hash values to the rows, for each column ci we keep track
of the minimum hash value of the rows which contain a 1 in
that column. Thus, we obtain the Min-Hash value h�ci� for
each column ci in a single pass over the table, using O�m�
memory.

Proposition 1 For any column pair �ci� cj�, Pr�h�ci� �

h�cj�� � S�ci� cj� �
jCi � Cjj

jCi � Cjj
�

This is easy to see since two columns will have the same
Min-Hash value if and only if, in the random permutation
of rows defined by their hash values, the first row with a 1
in column ci is also the first row with a 1 in column cj. In
other words, h�ci� � h�cj� if and only if in restriction of
the permutation to the rows in Ci�Cj, the first row belongs
to Ci �Cj.

In order to be able to determine the degree of similarity
between column-pairs, it will be necessary to determine mul-
tiple (say k) independent Min-Hash values for each column.
To this end, in a single pass over the input table we select
(in parallel) k independent hash values for each row, defin-
ing k distinct permutations over the rows. Using O�mk�
memory, during the single pass we can also determine the
corresponding k Min-Hash values, say h��cj�� � � � � hk�cj�,
for each column cj under each of k row permutations. In
effect, we obtain a matrix cM with k rows, m columns, andcMij � hi�cj�, where the k entries in a column are the

Min-Hash values for it. The matrix cM can be viewed as a
compact representation of the matrix M . We will show in
Theorem 1 below that the similarity of column-pairs in M

is captured by their similarity in cM .

Definition 1 Let bS�ci� cj� be the fraction of Min-Hash val-
ues that are identical for ci and cj , i.e.,

bS�ci� cj� �
jfl j � � l � k and cMli � cMljgj

k

�
jfl j � � l � k and hl�ci� � hl�cj�gj

k
�

We have defined bS�ci� cj� as the fraction of rows of bS
in which the Min-Hash entries for columns ci and cj are
identical. We now show that bS�ci� cj� is a good estimator
of S�ci� cj�. Recall that we set a threshold s� such that
two columns are said to be highly-similar if S�ci� cj� �
s�. Assume that s� is lower bounded by some constant c.
The following theorem shows that we are unlikely to get
too many false-positives and false-negatives by using bS to
determine similarity of column-pairs in the original matrix
M .

Theorem 1 Let � � � � �, � � �, and k �
����c�� log ���. Then, for all pairs of columns ci and
cj, we have the following two properties.

a) If S�cj � cj� � s� � c, then bS�ci� cj� � �� � ��s� with
probability at least �� �.

b) If S�cj � cj� � c, then bS�ci� cj� � �� � ��c with proba-
bility at least �� �.

We sketch the proof of the first part of the theorem; the proof
of the second part is quite similar and is omitted. Fix any two
columns ci and cj having similarity S�cj � cj� � s�. Let Xl

be a random variable that takes on value 1 ifhl�ci� � hl�cj�,
and value 0 otherwise; define X � X� � � � � � Xk. By
Proposition 1, E�Xl� � S�ci� cj� � s�; therefore, E�X� �
ks�. Applying the Chernoff bound [12] with the random
variable X, we obtain that

Pr�X � ��� ��ks�� � Pr�X � ��� ��E�X��

� e�
��E�X�

� � e�
��ks�

� � e�
��kc
� � ��

To establish the first part of the theorem, simply notice thatbS�ci� cj� � X�k.
Theorem 1 establishes that for sufficiently large k, if two

columns have high similarity (at least s�) in M then they
agree on a correspondingly large fraction of the Min-Hash
values in cM ; conversely, if their similarity is low (at most
c) in M then they agree on a correspondingly small fraction
of the Min-Hash values in cM . Since cM can be computed



in a single pass over the data using O�km� space, we ob-
tain the desired implementation of the first phase (signature
computation). We now turn to the task of devising a suitable
implementation of the second phase (candidate generation).

3.1 Candidate Generation from Min-Hash Values

Having computed the signatures in the first phase as dis-
cussed in the previous section, we now wish to generate the
candidate column-pairs in the second phase. At this point,
we have a k �m matrix cM containing k Min-Hash values
for each column. Since k �� n, we assume thecM is much
smaller than the original data and fits in main memory. The
goal is to identify all column-pairs which agree in a large
enough fraction (at least to �����s�) of their Min-Hash val-
ues incM . A brute-force enumeration will requireO�k� time
for each column-pair, for a total ofO�km��. We present two
techniques that avoid the quadratic dependence on m and
are considerably faster when (as is typically the case) the
average similarity S �

P
��i�j�m S�ci� cj��m� is low.

Row-Sorting: For this algorithm, view the rows of cM as
a list of tuples containing a Min-Hash value and the corre-
sponding column number. We sort each row on the basis of
the Min-Hash values. This groups together identical Min-
Hash values into a sequence of “runs.” We maintain for each
column an index into the position of its Min-Hash value in
each sorted row. To estimate the similarity of column ci
with all other columns, we use the following algorithm: use
m counters for column ci where the jth counter stores the
number of rows in which the Min-Hash values of columns
ci and cj are identical; for each row �� � � � � k, index into
the run containing the Min-Hash value for ci, and for each
other column represented in this run, increment the corre-
sponding counter. To avoid O�m�� counter initializations,
we re-use the same O�m� counters when processing differ-
ent columns, and remember and re-initialize only counters
that were incremented at least once. We estimate the run-
ning time of this algorithm as follows. Sorting the rows
requires total time O�km logm�; thereafter, indexes on the
columns can be built in time O�km�. The remaining time
amounts to the total number of counter increments. When
processing a row with column ci, the number of counter
increments is in fact the length of a run. The expected
length of a run equals the sum of similarities

Pm

j�� S�ci� cj�.
Hence, the expected counter-increment cost when process-
ing ci is O�k

Pm

j�� S�ci� cj��, and the expected combined

increments cost is O�k
P

��i�j�m S�ci� cj�� � O�kSm��.
Thus, the expected total time required for this algorithm is
is O�km logm � km�S�. Note that the average similarity
S is typically a small fraction, and so the latter term in the
running time is not really quadratic in m as it appears to be.

Hash-Count: The next section introduces the K-Min-
Hashing algorithm where the signatures for each column
ci is a set SIGi of at most, but not exactly, k Min-Hash
values. The similarity of a column-pair �ci� cj� is then es-
timated by computing the size of SIGi � SIGj ; clearly, it
suffices to consider ordered pairs �cj � ci� such that j � i.
This task can be accomplished via the following hash-count
algorithm. We associate a bucket with each Min-Hash value.
Buckets are indexed using a hash function defined over the
Min-Hash values, and store column-indexes for all columns
ci with some element of SIGi hashing into that bucket. We
consider the columns c�� c�� � � � � cm in order, and for col-
umn ci we use i�� counters, of which the jth counter stores
SIGj � SIGi. For each Min-Hash value v � SIGi, we access
its hash-bucket and find the indexes of all columns cj (j � i)
which have v � SIGj . For each column cj in the bucket, we
increment the counter for �cj � ci�. Finally, we add ci itself
to the bucket.

Hash-Count can be easily adapted for use with the orig-
inal Min-Hash scheme where we instead want to compute
for each pair of columns the number ofcM rows in which the
two columns agree. To this end, we use a different hash table
(and set of buckets) for each row of the matrix cM , and ex-
ecute the same process as for K-Min-Hash. The argument
used for the row-sorting algorithm shows that hash-count
for Min-Hashing takes O�kSm�� time. The running time
of Hash-Count for K-Min-Hash amounts to the number of
counter increments. The number of increments made to a
counter �ci� cj�) is exactly the size of jSIGi � SIGjj. A sim-
ple argument (see Lemma 1) shows that the expected size
EfjSIGi � SIGjjg is between minfk� jCi � CjjgS�ci� cj�
and minf�k� jCi � CjjgS�ci� cj�. Thus, the expected total
running time of the hash-table scheme is O�kSm�� in both
cases.

3.2 The K-Min-Hashing Algorithm

One disadvantage of the Min-Hashing scheme outlined
above is that choosing k independent Min-Hash values for
each column entailed choosing k independent hash values
for each row. This has a negative effect on the efficiency of
the signature-computation phase. On the other hand, using
k Min-Hash values per column is essential for reducing
the number of false-positives and false-negatives. We now
present a modification called K-Min-Hashing (K-MH) in
which we use only a single hash value for each row, setting
the k Min-Hash values for each column to be the hash values
of the first k rows (under the induced row permutation)
containing a 1 in that column. (A similar approach was
also mentioned in [5] but without an analysis.) In other
words, for each column we pick the k smallest hash values
for the rows containing a one in that column. If a column
ci has fewer 1s than k, we assign as Min-Hash values all



hash values corresponding to rows with 1s in that column.
The resulting set of (at most) k Min-Hash values forms the
signature of the column ci and is denoted by SIGi.

Proposition 2 In the K-Min-Hashing scheme, for any col-
umn ci, the signature SIGi consists of the hash values for a
uniform random sample of distinct rows from Ci.

We remark that if the number of 1s in each column is signifi-
cantly larger than k, then the hash values may be considered
independent and the analysis from Min-Hashing applies.
The situation is slightly more complex when the columns
are sparse, which is the case of interest to us.

Let SIGi�j denote the k smallest elements of Ci �Cj; if
jCi �Cjj � k then SIGi�j � Ci �Cj. We can view SIGi�j
as the signature of the “column” that would correspond to
Ci�Cj. Observe that SIGi�j can be obtained (inO�k� time)
from SIGi and SIGj since it is in fact the set of the smallest
k elements from SIGi � SIGj. Since SIGi�j corresponds to a
set of rows selected uniformly at random from all elements
of Ci �Cj, the expected number of elements of SIGi�j that
belong to the subset Ci � Cj is exactly jSIGi�j j � jCi �
Cjj�jCi �Cjj � jSIGi�j j � S�ci� cj�. Also, SIGi�j �Ci �
Cj � SIGi�j � SIGi � SIGj , since the signatures are just
the smallest k elements. Hence, we obtain the following
theorem.

Theorem 2 An unbiasedestimator of the similarityS�ci� cj�
is given by the expression

jSIGi�j � SIGi � SIGj j

jSIGi�j j
�

Consider the computational cost of this algorithm. While
scanning the data, we generate one hash value per row, and
for each column we maintain the minimum k hash values
from those corresponding to rows that contain � in that
column. We maintain the k minimum hash values for each
column in a simple data structure that allows us to insert a
new value (smaller than the current maximum) and delete
the current maximum in O�logk� time. The data structure
also makes the maximum element amongst the k current
Min-Hash values of each column readily available. Hence,
the computation for each row is constant time for each 1
entry and additional log k time for each column with 1 entry
where the hash value of the row was amongst the k smallest
seen so far. A simple probabilistic argument shows that the
expected number of rows on which the k-Min-Hash list of
a column ci gets updated is O�k log jCij� � O�k logn�. It
follows that the total computation cost is a single scan of the
data andO�jM j�mk logn logk�, where jM j is the number
of 1s in the matrix M .

In the second phase, while generating candidates, we
need to compute the sets SIGi�j for each column-pair using
merge join (O�k� operations) and while we are merging we

can also find the elements that belong to SIGi�SIGj. Hence,
the total time for this phase is O�km��. The quadratic
dependence on the number of columns is prohibitive and
is caused by the need to compute SIGi�j for each column-
pair. Instead, we first apply a considerably more efficient
biased approximate estimator for the similarity. The biased
estimator is computed for all pairs of columns using Hash-
Count in O�kSm�� time. Next we perform a main-memory
candidate pruning phase, where the unbiased estimator of
Theorem 2 is explicitly computed for all pairs of columns
where the approximate biased estimator exceeds a threshold.

The choice of threshold for the biased estimator is guided
by the following lemma.

Lemma 1

EfjSIGi � SIGj jg�minf�k� jCi � Cjjg � S�ci� cj� �

� EfjSIGi � SIGjjg�minfk� jCi �Cjjg �

Alternatively, the biased estimator and choice of threshold
can be derived from the following analysis. Let �ci� cj� be
a column-pair with jCij � jCjj; define Cij � Ci � Cj.
As before, for each column ci, we choose a set SIGi
of k Min-Hash values. Let SIGij � SIGi � Cij and
SIGji � SIGj � Cij. Then, the expected sizes of SIGij
and SIGji are given by kjCijj�jCij and kjCijj�jCjj. Also,
jSIGi � SIGj j � min�jSIGijj� jSIGjij�. Hence can compute
the expected value as

E�jSIGi � SIGj j� �

kX
x��

kX
y��

Pr�jSIGijj � x�Pr�jSIGjij � y j jSIGijj � x�min�x� y��

Since jCij � jCjj, we haveE�jSIGijj� � E�jSIGjij�. We
assume that Pr�jSIGij j � jSIGjij� � � or

Pk

y�x P �jSIGjij �
y j jSIGijj � x� � �. Then, the above equation becomes

E�jSIGi � SIGj j�

�
kX

x��

kX
y�x

Pr�jSIGij j � x�Pr�jSIGjij � y j jSIGijj � x�x

�
kX

x��

Pr�jSIGij j � x�x
kX

y�x

Pr�jSIGjij � y j jSIGijj � x�

� E�SIGij��

Thus, we obtain the estimator E�jSIGi � SIGj j� �
kjCijj�jCij. We use this estimate to calculate jCijj and use
that to estimate the similarity since we know jCij and jCjj.
We compute jSIGi�SIGj j using the hash table technique that
we have described earlier in Section 3.1. The time required
to compute the hash values is O�jM j� mk logn logk� as
described earlier, and the time for computing jSIGi � SIGj j
is O�kSm��.



4 Locality-Sensitive Hashing Schemes

In this section we show how to obtain a significant im-
provement in the running time with respect to the previous
algorithms by resorting to Locality Sensitive Hashing (LSH)
technique introduced by Indyk and Motwani [11] in design-
ing main-memory algorithms for nearest neighbor search
in high-dimensional Euclidean spaces; it has been subse-
quently improved and tested in [7]. We apply the LSH
framework to the Min-Hash functions described in earlier
section, obtaining an algorithm for similar column-pairs.
This problem differs from nearest neighbor search in that
the data is known in advance. We exploit this property
by showing how to optimize the running time of the algo-
rithm given constraints on the quality of the output. Our
optimization is input-sensitive, i.e., takes into account the
characteristics of the input data set.

The key idea in LSH is to hash columns so as to ensure
that for each hash function, the probability of collision is
much higher for similar columns than for dissimilar ones.
Subsequently, the hash table is scanned and column-pairs
hashed to the same bucket are reported as similar. Since
the process is probabilistic, both false positives and false
negatives can occur. In order to reduce the former, LSH
amplifies the difference in collision probabilities for similar
and dissimilar pairs. In order to reduce false negatives,
the process is repeated a few times, and the union of pairs
found during all iterations are reported. The fraction of false
positives and false negatives can be analytically controlled
using the parameters of the algorithm.

Although not the main focus of this paper, we mention
that the LSH algorithm can be adapted to the on-line frame-
work of [10]. In particular, it follows from our analysis that
each iteration of our algorithm reduces the number of false
negatives by a fixed factor; it can also add new false pos-
itives, but they can be removed at a small additional cost.
Thus, the user can monitor the progress of the algorithm and
interrupt the process at any time if satisfied with the results
produce so far. Moreover, the higher the similarity, the ear-
lier the pair is likely to be discovered. Therefore, the user
can terminate the process when the output produced appears
to be less and less interesting.

4.1 The Min-LSH Scheme

We present now the Min-LSH (M-LSH) scheme for find-
ing similar column-pairs from the matrix cM of Min-Hash
values. The M-LSH algorithm splits the matrix cM into l

sub-matrices of dimension r � m. Recall that cM has di-
mension k �m, and here we assume that k � lr. Then, for
each of the l sub-matrices, we repeat the following. Each
column, represented by the rMin-Hash values in the current
sub-matrix, is hashed into a table using as hashing key the

concatenation of all r values. If two columns are similar,
there is a high probability that they agree in all r Min-Hash
values and so they hash into the same bucket. At the end
of the phase we scan the hash table and produce pairs of
columns that have been hashed to the same bucket. To am-
plify the probability that similar columns will hash to the
same bucket, we repeat the process l times. Let Pr�l�ci� cj�
be the probability that columns ci and cj will hash to the
same bucket at least once; since the value ofP depends only
upon s � S�ci� cj�, we simplify notation by writingP �s�.

Lemma 2 Assume that columns ci and cj have similarity s,
and also let s� be the similarity threshold. For any � �
�� � � �, we can choose the parameters r and l such that:

	 For any s � �� � ��s�, Pr�l�ci� cj� � �� �

	 For any s � ��� ��s�, Pr�l�ci� cj� � �

Proof: By Proposition 1, the probability that columns
ci, cj agree on one Min-Hash value is exactly s and the
probability that they agree in a group of r values is sr . If
we repeat the hashing process l times, the probability that
they will hash at least once to the same bucket would be
Pr�l�ci� cj� � � � �� � sr�l. The lemma follows from the
properties of the function P .

Lemma 2 states that for large values of r and l, the func-
tion P approximates the unit step function translated to the
point C � s�, which can be used to filter out all and only
the pairs with similarity at most s�. On the other hand, the
time/space requirements of the algorithm are proportional
to k � lr, so the increase in the values of r and l is sub-
ject to a quality-efficiency trade-off. In practice, if we are
willing to allow a number of false negatives (n�) and false
positives (n�), we can determine optimal values for r and l
that achieve this quality.

Specifically, assume that we are given (an estimate of) the
similarity distribution of the data, defined as d�si� to be the
number of pairs having similarity si. This is not an unreason-
able assumption, since we can approximate this distribution
by sampling a small fraction of columns and estimating all
pairwise similarity. The expected number of false negatives
would be

P
si�s�

d�si���� P �si��, and the expected num-
ber of false positives would be

P
si�s�

d�si�P �si�. There-
fore, the problem of estimating optimal parameters turns
into the following minimization problem:

minimize l 
 r

subject to

� P
si�s�

d�si���� P �si�� � n�P
si�s�

d�si�P �si� � n�

This is an easy problem since we have only two parame-
ters to optimize, and their feasible values are small integers.
Also, the histogramd�
� is typically quantified in 10-20 bins.



One approach is to solve the minimization problem by it-
erating on small values of r, finding a lower bound on the
value of l by solving the first inequality, and then perform-
ing binary search until the second inequality is satisfied. In
most experiments, the optimal value of r was between 5 and
20.

4.2 The Hamming-LSH Scheme

We now propose another scheme, Hamming-LSH (H-
LSH), for finding highly-similar column-pairs. The idea is
to reduce the problem to searching for column-pairs having
small Hamming distance. In order to solve the latter problem
we employ the techniques similar to those used in [7] to
solve the nearest neighbor problem. We start by establishing
the correspondence between the similarity and Hamming
distance (the proof is easy).

Lemma 3 S�Ci� Cj� �
jCij�jCjj�dH �ci�cj�
jCij�jCj j�dH �ci�cj�

�

It follows that when we consider pairs �ci� cj� such that
the sum � � jCij � jCjj is fixed, then the high value of
S�ci� cj� corresponds to small values of dH�ci� cj� and vice
versa. Hence, we partition columns into groups of similar
density and for each group we find pairs of columns that have
small Hamming distance. First, we briefly describe how to
search for pairs of columns with small Hamming distance.
This scheme is similar to to the technique from [7] and can
be analyzed using the tools developed in there. This scheme
finds highly-similarcolumns assuming that the density of all
columns is roughly the same. This is done by partitioning
the rows of database into p subsets. For each partition,
process as in the previous algorithm. We declare a pair of
columns as a candidate if they agree on any subset. Thus
this scheme is exactly similar to the earlier scheme, except
that we are dealing with the actual data instead of Min-Hash
values.

However there are two problems with this scheme. One
problem is that if the matrix is sparse, most of the subsets
just contain zeros and also the columns do not have similar
densities as assumed. The following algorithm (which we
call H-LSH) improves on the above basic algorithm.

The basic idea is as follows. We perform computation on
a sequence of matrices with increasing densities; we denote
them by M��M��M�� � � � . The matrix Mi�� is obtained
from the matrix Mi by randomly pairing all rows of Mi,
and placing in Mi�� the “OR” of each pair. 1 One can
see that for each i, Mi�� contains half the rows of Mi (for
illustration purposes we assume that the initial number of
rows is a power of 2). The algorithm is applied to all matrices

1Notice, that the “OR operation” gives similar results to hashing each
columns to a set of increasingly smaller hash table; this provides an alter-
native view of our algorithm.

in the set. A pair of columns can become a candidate only
on a matrix Mi in which they are both sufficiently dense
and both their densities belong to a certain range. False
negatives are controlled by repeating each sample l times,
and taking the union of the candidate sets across all l runs.
Hence, kr rows are extracted from each compressed matrix.
Note that this operation may increase false positives.

We now present the algorithm that was implemented.
Experiments show that this scheme is better than the Min-
Hashing algorithms in terms of running time, but the number
of false positives is much larger. Moreover, the number of
false positives is increases rapidly if we try to reduce the
number of false negatives. In the case of Min-Hashing
algorithms, if we decreased the number of false negatives
by increasing k, the number of false positives would also
decrease.

The Algorithm:

1. Set M� � M and generate M��M�� � � � as described
above.

2. For each i � �, select k sets of r sample rows from
Mi.

3. A column pair is a candidate if there exists an i, such
that (i) the column pair has density in ���t� �t� ���t�
in Mi, and (ii) has identical hash values (essentially,
identical r-bit representations) in at least one of the k
runs.

Note that t is a parameter that indicates the range of den-
sity for candidate pairs, and we use t � 	 in our experiments.

5 Experiments

We have conducted experiments to evaluate the perfor-
mance of the different algorithms. In this section we report
the results for the different experiments. We use two sets of
data namely synthetic data and real data.

Synthetic Data: The data contains ��	 columns and the
number of rows vary from ��	 to ���. The column densities
vary from �
 to �
 and for every 100 columns we have a
pair of similar columns. We have 20 pairs similar columns
whose similarity fall in the ranges (85, 95), (75, 85), (65,
75), (55, 65) and (45, 55).

Real Data: The real data set consists of the log of HTTP
requests made over a period of 9 days to the Sun Microsys-
tems Web server (www.sun.com). The columns in this
case are the URL’s and the rows represent distinct client IP
addresses that have recently accessed the server. An entry is
set to � if there has been at least one hit for that URL from
that particular client IP. The data set has about thirteen thou-
sand columns and more than 0.2 million rows. Most of the
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Figure 2. The first figure shows the similar-
ity distribution of the Sun data. The second
shows again the same distribution but it fo-
cuses on the region of similarities that we are
interested in.

columns are sparse and have density less than 0.01%. The
histogram in Figure 2 shows the number of column pairs for
different values of similarity. Typical examples of similar
columns that we extracted from this data were URLs corre-
sponding to gif images or Java applets which are loaded
automatically when a client IP accesses a parent URL.

To compare our algorithms with existing techniques, we
implemented and executed the a-priori algorithm [1, 2]. Of
course, the a-priori is not designed for this setting of low
support, but it is the only existing technique and gives us a
benchmark against which we can compare the improvements
afforded by our algorithms. The comparison was done for
the news articles data that we have mentioned in Section 1.

We conducted experiments on the news article data and
our results are summarized in Figure 3. The a-priori algo-
rithm cannot be run on the original data since it runs out
of memory. Therefore we performed support pruning to
remove columns that have very few ones in them. It is evi-
dent that our techniques give nearly an order of magnitude
improvement in running time; for support threshold below
���
, a-priori runs out of memory on our systems and does
a lot of thrashing. Note that although our algorithms are
probabilistic they report the same set of pairs as reported by
a-priori.

5.1 Results

We implemented the four algorithms described in the
previous section, namely MH, K-MH, H-LSH, and M-LSH.
All algorithms were compared in terms of the running time
and the quality of the output. Due to the lack of space
we report experiments and give graphs for the Sun data,
which in any case are more interesting, but we have also
performed tests for the synthetic data, and all algorithms
behave similarly.

The quality of the output is measured in terms of false

Support threshold ���
 ����
 ���

Number of columns

after pruning 15559 11568 9518
A-priori (sec) - 96.05 79.94

MH (sec) 71.4 44.8 25.8
K-MH (sec) 87.6 52.0 36.0
H-LSH (sec) 15.6 6.7 6.0
M-LSH (sec) 10.7 9.7 5.1

Figure 3. Running times for the news articles
data set

positives and false negatives generated by each algorithm.
To do that, we plot a curve that shows the ratio of the number
of pairs found by the algorithm over the real number of
pairs (computed once off-line) for a given similarity range
(e.g. Figure 7). The result is typically an “S”-shaped curve,
that gives a good visual picture for the false positives and
negatives of the algorithm. Intuitively, the area below the
curve and left to a given similarity cutoff corresponds to the
number of false positives, while the area above the curve
and right to the cutoff corresponds to the number of false
negatives.

We now describe the behavior of each algorithm as their
parameters are varied .
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Figure 4. Quality of output and total running
time for MH algorithm as k and s are varied

MH and K-MH algorithms have two parameters, s� the
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Figure 5. Quality of output and total running
time for K-MH algorithm as k and s are varied

user specified similarity cutoff, and k, the number of Min-
Hash values extracted to represent the signature of of each
column. Figures 4(a) and 5(a) plot “S”-curves for differ-
ent values of k for the MH and K-MH algorithms. As
the k value increases the curve gets sharper indicating bet-
ter quality. In Figures 4(c) and 5(c) we keep k fixed and
change the value s� of the similarity cutoff. As expected
the curves shift to the right as the cutoff value increases.
Figures 4(d) and 5(d) show that for a given value of k the
total running time decreases marginally since we generate
fewer candidates. Figure 4(b) shows that the total running
time for MH algorithm increases linearly with k. However
this is not the case for K-MH algorithm as depicted by Fig-
ure 5(b). The sub-linear increase of the running time is due
to the sparsity of the data. More specifically, the number of
hash values extracted from each column is upper bounded
by the number of ones of that column, and therefore, the
hash values extracted do not increase linearly with k.

We do a similar exploration of the parameter space for
the M-LSH and H-LSH algorithms. The parameters of this
algorithm are r, and l. Figures 7(a) and 6(a) illustrate the
fact that as r increases the probability that columns mapped
to the same bucked decreases, and therefore the number of
false positives decreases but as a trade-off consequence the
number of false negatives increases. On the other hand,
Figure 7(c) and 6(c) shows that an increase in l, corresponds
to an increase of the collision probability, and therefore the
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Figure 6. Quality of output and total running
time for H-LSH algorithm as r and l are varied

number of false negatives decrease but the number of false
positives increases. Figures 7(d) and 6(d) show that the
total running time increases with l since we hash each col-
umn more times and this also results in an increase in the
number of candidates. In our implementation of M-LSH,
the extraction of min hash values dominates the total com-
putation time, which increases linearly with the value of r.
This is shown in Figure 7(b). On the other hand, in the
implementation of H-LSH, checking for candidates domi-
nates the running times, and as a result the total running time
decreases as r increases since less candidates are produced.
This is shown in Figure 6(b).

We now compare the different algorithms that we have
implemented. When comparing the time requirements of
the algorithm we compare the CPU time for each algorithm
since the time spent in I/O is same for all the algorithms. It is
important to note that the for all the algorithms the number
of false negatives is very important and this is the quantity
that requires to be kept in control. As long as the number of
false positives is not too large (i.e. all of candidates can fit in
main memory) we can always eliminate them in the pruning
phase. To compare the algorithms we fix the percentage
of false negatives that can be tolerated. For each algorithm
we pick the set of parameters for which the number of false
negatives is within this threshold and the total running time
is minimum. We then plot the total running time and the
number of false positives against the false negative threshold.
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Figure 7. Quality of output and total running
time for M-LSH algorithm as r and l are varied

Consider Figures 8(a) and 8(c). The Figures show the
total running time against the false negative threshold. We
can see that the H-LSH algorithm requires a lot of time if
the false negative threshold is less while it does better if the
limit is high. In general the M-LSH and H-LSH algorithms
do better than the MH and K-MH algorithms. However it
should be noted that H-LSH algorithm cannot be used if we
are interested in similarity cutoffs that are low. The graph
shows that the best performance is shown by the M-LSH
algorithm.

Figure 8 gives the number of false positives generated by
the algorithms against the tolerance limit. The false positives
are plotted on a logarithmic scale. In case of H-LSH and
M-LSH algorithms the number of false positives decreases
if we are ready to tolerate more false negatives since in that
case we hash every column fewer times. However the false
positive graph for K-MH and MH is not monotonic. There
exists a tradeoff in the time spent in the candidate generation
stage and the pruning stage. To maintain the number of
false negatives less than the given threshold we could either
increase k and spend more time in the candidate generation
stage or else decrease the similarity cutoff s and spend more
time in the pruning stage as we get more false positives.
Hence the points on the graph correspond to different values
of similarity cutoff s� with which the algorithms are run to
get candidates with similarity above a certain threshold. As
a result we do not observe a monotonic behavior in case of
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Figure 8. Comparison of different algorithms
in terms of total running time and number of
false positives for different negative thresh-
olds.

these algorithms.
We would like to comment that the results provided

should be analyzed with caution. The reader should note
that whenever we refer to time we refer to only the CPU
time and we expect I/O time to dominate in the signature
generation phase and pruning phase. If we are aware about
the nature of the data then we can be smart in our choice
of algorithms. For instance the K-MH algorithm should
be used instead of MH for sparse data sets since it takes
advantage of sparsity.

6 Extensions and Further Work

We briefly discuss some extensions of the results pre-
sented here as well as directions for future work. First, note
that all the results presented here were for the discovery of
bi-directional similarity measures. However, the Min-Hash
technique can be extended to the discovery of column-pairs
�ci� cj�which form a high-confidence association rule of the
type fcig � fcjg but without any support requirements.
The basic idea is to generate a set of Min-Hash values for
each column, and to determine whether the fraction of these
values that are identical for ci and cj is proportional to the
ratio of their densities, di�dj. The analytical and the ex-
perimental results are qualitatively the same as for similar



column-pairs.
We can also use our Min-Hashing scheme to determine

more complex relationships, e.g., ci is highly-similar to cj �
cj�, since the hash values for the induced column cj�cj� can
be easily computed by taking the component-wise minimum
of the hash value signature for cj and cj�. Extending to
cj � cj� is more difficult. It works as follows. First, observe
that “ci implies cj � cj�” means that “ci implies cj” and “ci
implies cj�”. The latter two implications can be generated
as above. Now, we can conclude that “ci implies cj � cj�” if
(and only if) the cardinality of ci is roughly that of cj � cj� .
This presents problems when the cardinality of ci is really
small, but is not so difficult otherwise. The case of small
ci may not be very interesting anyway, since it is difficult
to associate any statistical significance to the similarity in
that case. It is also possible to define “anti-correlation,” or
mutual exclusion between a pair of columns. However, for
statistical validity, this would require imposing a support
requirement, since extremely sparse columns are likely to
be mutually exclusive by sheer chance. It is interesting to
note that our hashing techniques can be extended to deal with
this situation, unlike a-priori which will not be effective even
with support requirements. Extensions to more than three
columns and complex boolean expressions are possible but
will suffer from an exponential overhead in the number of
columns.
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