
1

Finding Invalid Signatures in
Pairing-based Batches†

Laurie Law
National Security Agency

ECC 2006
(Based on joint work with Brian Matt, SPARTA, Inc.) ‡

†The views and conclusions contained in this presentation are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the National Security Agency, the Army
Research Laboratory, or the U. S. Government.
‡Dr. Matt’s work through collaborative participation in the Communications and Networks Consortium sponsored
by the U. S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative
Agreement DAAD-19-01-2-0011.

2

Batch Verification of Digital
Signatures

A digital signature authenticates the source of
a message and that the message has not been
altered

Message is signed with signer’s private key
Signer’s public key is used to verify signature

If most signatures are valid, can save time by
verifying a “batch” of signatures together

What is the fastest way to verify the batch?
If the batch fails, how to quickly identify the bad
signatures?

3

Applications

Validating PKI
Certificate chains

CA1

B

CA3CA2

A SCA1(CertCA2),
SCA2(CertA)

Check processing
Bank

C1 C2 C3 C5C4

Routing security

Authenticating neighboring nodes

A DB C
Rep | SD | SCRep|SD|SC|SB

Route req

Rep | SD

Route req Route req

C

D
B

E AS(CertE)

S(CertD)

S(CertC)

S(CertB)

S(CertA)

4

Outline

Background
Faster identification of invalid
signatures
New techniques for pairing-based
signatures
Cost comparisons

5

Background

6

Batch Verification
G is a prime order group
xi∈Zp, yi∈G , g is a generator of G
Given (x1, y1) , (x2, y2) , … , (xN, yN)

Need to verify that gxi = yi for all i=1 to N
Small exponents test (Bellare et al. 1998)

Pick small random m-bit integers r1, r2, …, rN

Compute x = Σri xi , y = Πyi
ri

If gx = y then accept; otherwise reject
The probability that test accepts a bad batch
is at most 2-m

7

Identifying bad signatures

Verify each signature individually
Divide and conquer

Pastuzak et al. (PKC 2000)
Recursively divide into sub-batches

Applications to RSA signatures
Lee, Cho, Choi, Cho 2006
Problem found with this approach to batch
RSA (Stanek 2006)

8

1-8

1-4

1-2 3-4

5-8

1 2 3 4 5 6 7 8

Batch verify all 8 signatures

Signature 3 is invalid

5-6 7-8

Divide and Conquer:Divide and Conquer:
Simple Binary SearchSimple Binary Search

9

1-8

1-4

1-2 3-4

5-8

1 2 3 4 5 6 7 8

Batch verify 1-4
Batch verify 5-8

5-6 7-8

Simple Binary SearchSimple Binary Search

Signature 3 is invalid

10

1-8

1-4 5-8

1 2 3 4 5 6 7 8

Batch verify 1-2 Skip test on 3-4

Signature 3 is invalid

1-2 3-4 5-6 7-8

Simple Binary SearchSimple Binary Search

11

1-8

1-4

1-2 3-4

5-8

5-6 7-8

1 2 3 4 5 6 7 8

Verify 3 Verify 4

Signature 3 is invalid
5 verifications (beyond initial)
Maximum # verifications for N signatures (1 invalid): 2 lg(N)

Simple Binary SearchSimple Binary Search

12

Faster identification of invalid
signatures

13

Improvement to Simple Binary
Search

Batch verification typically asks “Is X=Y?”
Instead, compute A=XY-1

A=1 ⇔ batch is valid
For batch of signatures (Xi, Yi), i=1 to N

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

==

∏∏

∏

∈∈

=

2

2

1

1

21

,

*
1

Si
iS

Si
iS

SS

N

i
i

AAAA

AAAA

A ≠ 1 and AS1 = 1 AS2 ≠ 1, S2 bad (skip verify)
A ≠ 1 and AS1 ≠ 1 now do “Quick Test” on S2

A = AS1 AS2 = 1, S2 is good
A ≠ AS1 AS2 ≠ 1, S2 is bad

14

1 2 3 4 5 6 7 8

Batch verify all 8 signatures
A1-8 = 1? No

1-8

1-4 5-8

1-2 3-4 5-6 7-8

Quick Binary SearchQuick Binary Search

Signature 3 is invalid

15

1 2 3 4 5 6 7 8

Batch Verify 1-4
Is A1-4=1? No

Is A1-4=A1-8? (Quick test)
Yes, #5-8 pass

1-2 3-4 5-6 7-8

1-4 5-8

1-8

Quick Binary SearchQuick Binary Search

Signature 3 is invalid

16

1 2 3 4 5 6 7 8

Skip test on 3-4

1-2 3-4 5-6 7-8

1-4 5-8

1-8

Quick Binary SearchQuick Binary Search

Signature 3 is invalid

17

1 2 3 4 5 6 7 8

Is A3=1?
No, 3 is bad.

A4=A3-4? (Quick test)
Yes, 4 is good.

1-2 3-4 5-6 7-8

1-4 5-8

1-8

Quick Binary SearchQuick Binary Search

3 verifications (beyond initial)
verifications for N signatures (1 invalid): lg(N)

18

Cost (# verifications - worst case)

1 invalid signature
Simple Binary: 2 ⎡lg N⎤
Quick Binary: ⎡lg N ⎤

w bad signatures
Simple Binary:

2(2 ⎡lg w⎤ -1+w(⎡lg N ⎤ – ⎡lg w⎤))
Quick Binary:

2 ⎡lg w⎤ -1+w(⎡lg N ⎤ – ⎡lg w⎤)

19

New techniques for pairing-
based signatures

20

Pairing-based Signatures
Pairings have been used in identity-based and
short signatures
Identity-based: public key can be easily derived
from identity so certificates are not needed
Very efficient in wireless networks

Drawback – verification of many schemes
requires 2 expensive bilinear pairings per
signature

Sender ID Message Signature Sender’s Public Key Certificate (cert chain)

Not needed!

21

Bilinear pairings on elliptic curves

E is an elliptic curve defined over Fq, q prime
r is a prime divisor of #E(Fq)
Q and R are points of order r
<Q, R> maps Q and R into order r subgroup
of Fqd

<Q, R0+R1> = <Q, R0><Q, R1>
<Q0+Q1, R> = <Q0, R><Q1, R>
<kQ, R> = <Q, kR> = <Q, R>k

22

Cha-Cheon signature (2003)
System set-up

s = master key (secret integer)

R = order r point on E(Fqd) - E(Fq) (public)

P = sR (public)
Signer’s key pair

Public: Q is an order r point on E(Fq)
Private: D = sQ

Signing a message m:

U = tQ (t randomly generated by signer)

V = (t + hash(m,U))D
Verification:

Accept if received points are in the correct group and
<U+ hash(m,U)Q, P>=<V, R>

23

Batch Verification for Cha-Cheon
Apply small exponents test
For k = 1 to N, the verifier receives

mk: message
Qk: signer’s public key
Uk, Vk: signature of mk

Verifier validates received points and generates random
integers r1 = 1, r2, … , rN

Batch is valid ⇔ ∑∑
==

=
N

k
k

N

k
k RDPB

11
,,

()()
kkk

kkkkk

VrD
QUmhashUrB

=
+= ,

24

Finding the invalid signatures
Quick Binary Search

Rewrite initial verification:

∑∑
==

−=
N

k
k

N

k
k RDPBA

11
,,0

A0=1 batch is valid
Finding 1 bad signature requires 2lg N pairings
Can we reduce the number of pairings (for a

small # of bad signatures)?

25

Exponentiation Method

∑∑
==

−=
N

k
k

N

k
k RkDPkBA

11
1 ,,

If i is the only invalid signature, then

If A1 = A0
i then the ith signature is invalid

No match at least 2 bad signatures

If initial verification fails, compute

() ii
ii

N

k

k
k

k
k ARDPBRDPBA 0

1
1 ,,,, =−=−=∏

=

26

Identifying 2 bad signatures

Compute

() ()∑∑
==

−=
N

k
k

N

k
k RkDkPkBkA

11
2 ,,

Find i, j ∈ [1, N], i < j such that
ijji AAA −+= 012

Signatures i and j are invalid
No match at least 3 bad signatures

27

Identifying w bad signatures
Compute

() ()∑∑
=

−

=

− −=
N

k
k

w
N

k
k

w
w RDkkPBkkA

1

1

1

1 ,,

Find x1, …,xw ∈ [1, N], x1< … < xw such that

()() t
t

pw

t
tww AA ∏

=

−
−

−

=
1

1 1

where pt is the tth elementary symmetric
polynomial in x1, …,xw

(1)

Signatures x1, …,xw are invalid
No match at least w+1 bad signatures

28

Costs for Exponentiation Method
(To test for w bad signatures)

Compute A1 through Aw
2w pairings
2w (N-1) short elliptic scalar multiplies

Can be implemented with 2w(N-1)EC additions

w multiplies in Fqd

Find w-tuple (x0, x1, …, xw) to solve (1)
w-1 inverses in Fqd

To test all w-tuples: approx w(N choose w) < Nw

multiplies in Fqd

Square-root discrete log methods are faster for small w

29

Using discrete log methods to find
invalid signatures

To find a single bad signature, find i ∈
[1, N] such that A1 = A0

i

Using Shanks’ “baby-step giant-step”:

2N1/2 multiplies in Fqd

Ndc AAA

Ndc

Ndci

001

,1

=

≤≤

+=

−

30

Baby Step-Giant Step (2 invalid
signatures)

(2N)3/2 multiplies to find p1 and p2

NdNdcc

pp

AAAAA

NdcNdc

NdcpNdcp

NpNp

AAA

2121

21

0
2

1012

2211

222111

2
21

012

,1,2,1

,2

1,21

−−

−

=

≤≤≤≤

+=+=

≤≤≤≤

=

Find p1 = i+j and p2 = ij such that

31

Baby-Step Giant-Step (generalized)

4/)1(

2/1

1

2 +

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∏ ww
w

i

N
i
w

This is faster than testing all w-tuples when
w<3

w # multiplies

1 2N1/2

(2N)3/2

6N3

2
3

For w invalid signatures, the number of
multiplies are:

32

Exponentiation with sectors

Divide N signatures into S sectors of N/S signatures
Stage 1: Find the bad sectors using the exponentiation
method but with multipliers equal to the sector ID

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Stage 2: Find bad signatures using the original
exponentiation method (can reuse Ai’s from previous
tests) but test only signatures from bad sectors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

33

Cost comparisons

34

Approximate cost to identify w bad signatures in a
failed batch of N signatures

Method Pairings Inverses
in Fqd

EC
additions

Multiplies in Fqd

Simple Binary
(worst case)

4w lg N 0

0

Exponentiation 2w w-1 2w(N -1) min(Nw,
fwNw(w+1)/4)

Exponentiation
with S Sectors*

4w 1.5(w-1) 4w(N -1) <2 fwNw(w+1)/8

0 0

Quick Binary
(worst case)

2w lg N 0 0

* Assumes 1 bad signature per sector and S=N1/2 .

35

Costs
Parameter sizes

|r| = 160 bits
|q| ≅ 160 bits (signature length = 2*|q|)
d = 6 (embedding degree)

Estimates for relative costs of operations
(from Granger, Page and Smart, ANTS 2006)

1 pairing = 9120 multiplies in Fq

1 multiply in Fq6 = 15 multiplies in Fq

1 inverse in Fq6 = 274 multiplies in Fq

1 EC addition = 11 multiplies in Fq

36

Cost to find 1 invalid signature
(# multiplies in Fq)

N Simple
Binary

Quick
Binary

Exp N1/2

Sectors

10 145920 72960 18558 36996
100 255360 127680 20718 41076

1000 364800 182400 41178 80796
10000 510720 255360 241218 477036

100000 620160 310080 2227728 4437516

37

Cost to find 2 invalid signatures
(# multiplies in Fq)

N Simple
Binary

Quick
Binary

Exp N1/2

Sectors

10 255360 127680 38650 74780*
100 474240 237120 86110 84905

1000 693120 346560 1430710 176510
10000 984960 492480 43076710 1038275

100000 1203840 601920 1348436710 9350585

*Will be faster if both signatures fall in the same sector.

38

Cost to find 3 invalid signatures
(# multiplies in Fq)

N Simple
Binary

Quick
Binary

Exp N1/2

Sectors

10 328320 164160 63362 116861*
100 656640 328320 7561802 303056

1000 984960 492480 7.5*109 5933951
10000 1422720 711360 7.5*1012 1.8*108

100000 1751040 875520 7.5*1015 5.7*109

*Will be faster if some invalid signatures fall in the same sector.

39

Conclusions

New methods for finding invalid
signatures in failed batches

Improved general method
Other methods for pairing-based schemes
with small to medium-sized batches
One or more of these methods will beat
earlier techniques if # invalid signatures is
small
Combine methods for optimal results

	Finding Invalid Signatures in Pairing-based Batches†
	Batch Verification of Digital Signatures
	Applications
	Outline
	Background
	Batch Verification
	Identifying bad signatures
	Faster identification of invalid signatures
	Improvement to Simple Binary Search
	Cost (# verifications - worst case)
	New techniques for pairing-based signatures
	Pairing-based Signatures
	Bilinear pairings on elliptic curves
	Cha-Cheon signature (2003)
	Batch Verification for Cha-Cheon
	Finding the invalid signatures
	Exponentiation Method
	Identifying 2 bad signatures
	Identifying w bad signatures
	Costs for Exponentiation Method �(To test for w bad signatures)
	Using discrete log methods to find invalid signatures
	Baby Step-Giant Step (2 invalid signatures)
	Baby-Step Giant-Step (generalized)
	Exponentiation with sectors
	Cost comparisons
	Approximate cost to identify w bad signatures in a failed batch of N signatures
	Costs
	Cost to find 1 invalid signature�(# multiplies in Fq)
	Conclusions

