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T
he network, or graph in discrete mathematics, is a common 
data structure to describe numerous types of interactive sys-
tems1,2, such as the Internet, social media, transportation net-

works, power grids, food webs and biomolecular networks. Such 
systems are greatly affected by a small fraction of important nodes, 
whose activation/removal would significantly improve/degrade cer-
tain network functionality. Such important nodes have been named 
differently depending on their roles in different application scenar-
ios, for example, influential nodes3,4, vital nodes5, key player nodes6 
or critical nodes7. Hereafter we will simply call them key players.

Finding an optimal set of key players in complex networks 
has been a long-standing problem in network science, with many 
real-world applications. Representative examples include (1) 
destroying communications in a criminal or terrorist network by 
arresting critical suspects8, (2) destroying certain critical proteins 
and neutralizing the corresponding harmful protein complexes for 
rational drug design9, (3) planning resource allocation during an 
evacuation or reestablishing critical traffic routers in transportation 
networks10 after a disaster and (4) handling various diffusion phe-
nomena on networks, including both the optimal spreading prob-
lem (that is, maximizing the diffusion for influence spreading or 
viral marketing11) and the optimal immunization problem (that is, 
minimizing diffusion via epidemic control12, rumour control11 and 
network immunization13).

Depending on the specific application scenario, we need to define 
the corresponding measure to quantify the network functionality 
appropriately. Without loss of generality, hereafter we consider net-
work connectivity as a key proxy for network functionality. After all, 
almost all network applications are typically designed to be run in 
a connected environment7. Commonly used network connectivity 
measures include the number of connected components, pairwise 
connectivity, the size of the giant connected component (GCC), the 
length of the shortest paths between two certain nodes and so on. 
In particular, the size of the GCC is a heavily studied connectivity 

measure3,14, because it is relevant to both the optimal attack problem 
and optimal spreading problem (Supplementary Fig. 14). In fact, the 
optimal attack problem with the objective of minimizing the GCC 
size is exactly dual to the optimal spreading problem with linear 
threshold spreading dynamics3. (Note that, in general, the optimal 
attack and spreading problems are not dual to each other.)

Finding an optimal set of key players in general graphs that 
optimizes nontrivial and hereditary connectivity measures is typi-
cally NP-hard7 (NP, non-deterministic polynomial time). This pro-
hibits exact and scalable solutions of such problems for large-scale 
networks. Traditional heuristic or approximate algorithms3,8,14–18 
either require substantial problem-specific search or suffer from 
deteriorated performances. It is often hard to provide a satisfy-
ing balance between effectiveness and efficiency. Moreover, most 
existing methods are ad hoc for specific application scenarios. 
Those designed for one particular application often fail on many 
other applications.

Inspired by the recent advances in deep learning techniques for 
solving combinatorial optimization problems19–24, here we intro-
duce FINDER (FInding key players in Networks through DEep 
Reinforcement learning), a generic and scalable deep reinforce-
ment learning framework to find key players in complex networks  
(see Fig. 1 for a demonstration of its superior performance over 
existing methods). In particular, FINDER incorporates induc-
tive graph representation learning25 to represent graph states and 
actions, and employs a deep Q (action quality score) network that 
combines reinforcement learning and deep neural networks26–28 
to automatically learn the strategy that optimizes the objective. 
Extensive experiments on various problem settings demonstrate 
that FINDER significantly outperforms handcrafted heuristics or 
approximate methods in terms of both solution quality and time 
complexity. Given that FINDER is trained purely on synthetic 
graphs generated by toy network models, the learned superior 
ability in solving complicated real-world problems suggests a new 

Finding key players in complex networks through 
deep reinforcement learning

Changjun Fan1,2, Li Zeng1, Yizhou Sun   2 ✉ and Yang-Yu Liu   3,4 ✉

Finding an optimal set of nodes, called key players, whose activation (or removal) would maximally enhance (or degrade) a 
certain network functionality, is a fundamental class of problems in network science. Potential applications include network 
immunization, epidemic control, drug design and viral marketing. Due to their general NP-hard nature, these problems typi-
cally cannot be solved by exact algorithms with polynomial time complexity. Many approximate and heuristic strategies have 
been proposed to deal with specific application scenarios. Yet, we still lack a unified framework to efficiently solve this class of 
problems. Here, we introduce a deep reinforcement learning framework FINDER, which can be trained purely on small synthetic 
networks generated by toy models and then applied to a wide spectrum of application scenarios. Extensive experiments under 
various problem settings demonstrate that FINDER significantly outperforms existing methods in terms of solution quality. 
Moreover, it is several orders of magnitude faster than existing methods for large networks. The presented framework opens 
up a new direction of using deep learning techniques to understand the organizing principle of complex networks, which enables 
us to design more robust networks against both attacks and failures.

Nature MaChiNe iNteLLigeNCe | www.nature.com/natmachintell

mailto:yzsun@cs.ucla.edu
mailto:yyl@channing.harvard.edu
http://orcid.org/0000-0003-1812-6843
http://orcid.org/0000-0003-2728-4907
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-020-0177-2&domain=pdf
http://www.nature.com/natmachintell


ARTICLES NATURE MACHINE INTELLIGENCE

promising perspective to understand the organizing principles of 
complex networked systems.

Problem formalization. Formally, given a network G ¼ ðV; EÞ
I

, 
with a node set V

I

 and an edge set E, and a predefined connectiv-
ity measure σ, our learning objective is to design a node removal 
strategy, that is, a sequence of nodes (v1, v2, ..., vN) to be removed, 
which minimizes the following accumulated normalized connectiv-
ity (ANC)29:

Rðv1; v2; :::; vNÞ ¼
1

N

X
N

k¼1

σðGnfv1; v2; :::; vkgÞ

σðGÞ
ð1Þ

Here, N is the total number of nodes in G, vi 2 V

I

 denotes the ith 
node to be removed, σðGnfv1; v2;    ; vkgÞ

I

 is the connectivity of the 
residual graph after removing nodes in the set K ¼ fv1; v2; :::; vkg

I

 
sequentially from G, and σðGÞ

I

 is the initial connectivity of G before 
any node removal. The value of R can be viewed as an estimation of 
the area under the ANC curve, which is plotted with the horizontal 
axis being k/N and the vertical axis being σðGnfv1; v2; :::; vkgÞ=σðGÞ

I

. 
In Fig. 2, we show examples associated with two different connec-
tivity measures, where we apply FINDER to a small real network 
and plot the ANC curves with three network snapshots highlighted 
during the node removal procedures.

In certain application scenarios, different nodes are associated 
with different ‘weights’, that is, removal costs. We can define a 
weighted ANC as follows:

Rcostðv1; v2; :::; vNÞ ¼
X

N

k¼1

σðGnfv1; v2; :::; vkgÞ

σðGÞ
cðvkÞ ð2Þ

Here, c(vk) denotes the normalized removal cost associated with 
node vk, and 

P
N

k¼1
cðvkÞ ¼ 1

I

. Note that equation (1) is a special  
case of equation (2), where c(vk) = 1/N. The range of both R and Rcost 
lies between 0 and 1 (Supplementary Section IV.B).

In principle, our framework can deal with any well-defined 
connectivity measure σ : fGg ! R

þ

I

, which maps a graph into a 
non-negative real number. To demonstrate the power of our frame-
work, here we consider two most commonly used measures: (1) 
pairwise connectivity σpairðGÞ ¼

P
Ci2G

δiðδi�1Þ
2

I

, where Ci is the ith 
connected component in the current graph G, and δi is the size of 
Ci, which corresponds to the critical node (CN) problem8; (2) the 
size of the GCC, σgccðGÞ ¼ maxfδi;Ci 2 Gg

I

, corresponding to the 
network dismantling (ND) problem14, which is also equivalent to 
the optimal immunization/spreading problem with linear threshold 
spreading dynamics3.

Model
Framework. Fundamentally different from traditional methods, 
FINDER takes a purely data-driven approach without using any 
domain-specific heuristic. As illustrated in Fig. 3 (top), FINDER 
is trained offline on small synthetic random graphs generated 
from classic network models. For each graph, FINDER considers 
the finding of key players as a Markov decision process: interact-
ing with the environment through a sequence of states, actions and 
rewards. Here, the environment is the network being analysed, the 
state is defined as the residual network, the action is to remove or 
activate the identified key player, and the reward is the decrease 
of the ANC (equation (1) or equation (2)) after taking the action. 
During this process, FINDER collects the trial-and-error samples to 
update its parameters (Supplementary equation (27)) and becomes 

a

c

b

d

Original network HD: remove 16 nodes, residual GCC size = 14

CI: remove 16 nodes, residual GCC size = 18 FINDER: remove 14 nodes, residual GCC size = 9

Fig. 1 | Finding key players in a network. a, The 9/11 terrorist network8, which contains 62 nodes and 159 edges. Nodes represent terrorists involved in the 

9/11 attack and edges represent their social communications. Node size is proportional to its degree. b, Removing 16 nodes (cyan) with the highest degree 

(HD) causes considerable damage, rendering a remaining GCC (purple) of 14 nodes. c, Removing 16 nodes (cyan) with the highest collective influence 

(CI) results in fragmentation and the remaining GCC (purple) contains 18 nodes. d, FINDER removes only 14 nodes (cyan), but leads to a more fragmented 

network and the remaining GCC (purple) contains only nine nodes. Note that, in the application of maximizing spreading (under linear threshold spreading 

dynamics with each node's threshold being di − 1, where di is its degree), those key players are not removed but are activated, and the remaining GCC 

represents inactivated nodes. By minimizing this inactivated GCC in spreading we are effectively maximizing the spreading of information3.
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increasingly intelligent to solve the task (Fig. 3, top). When this 
offline training phase is over, the well-trained FINDER is able to 
learn a long-term policy that can select an action to accumulate 
the maximum rewards from the current state. When applied to a 
real-world network, FINDER will simply repeat a greedy procedure 
(Supplementary Section II.D.1) to return the optimal sequence of 
key players (Fig. 3, bottom).

To ensure success, we still face several challenges. First, how can 
we represent the states and actions in our setting? Second, how can 
we leverage these representations to form a score function that tells 
us the right action for a state? We refer to these two questions as an 
encoding problem and a decoding problem, respectively.

Encoding. For encoding, traditional methods often use handcrafted 
features to represent nodes and graphs30, such as global or local 
degree distribution, motif counts and so on. However, these features 
are usually ad hoc and may lead to unsatisfactory performance. Here, 
we leverage graph representation learning (a.k.a. graph embedding) 
based on graph neural networks19,25,31 to characterize the network 
structural information into a low-dimensional embedding space. 
In particular, we employ an inductive graph representation learn-
ing technique similar to GraphSAGE25 to iteratively aggregate node 
embedding vectors, which are initialized as node features (for exam-
ple, node degree or node removal cost), from the neighbourhood, 
followed by a nonlinear transformation operator with learnable 
parameters. After several rounds of recursion, each node obtains an 
embedding vector that captures both the node’s structural location 
on the graph and the long-range interactions between node features. 
To capture more complex graph information, we introduce a virtual 
node that considers all real nodes as neighbours to represent the 
entire graph32 and repeat the same embedding propagation process 
to obtain its representation (see Supplementary Section II.D.1 and 
Supplementary algorithm 2 for details on encoding).

Decoding. For the decoding, we designed a deep parameteriza-
tion for the score function, that is, the Q function. The Q function 
leverages the embeddings of states and actions from the encoder 
to calculate a score that evaluates the quality of potential actions. 
Specifically, we apply the outer product operation on embeddings of 
state and action to model finer state–action dependencies. A mul-
tilayer perceptron with rectified linear unit activation is then uti-
lized to map the outer product to a scalar value (see Supplementary 
Section II.D.1 for decoding details).

Offline training. FINDER was trained over 200,000 randomly 
generated small synthetic graphs of 30–50 nodes. To perform 
end-to-end learning of the parameters in the encoder and decoder, 
we combine the n-step Q-learning loss19 and the graph reconstruc-
tion loss33 (Supplementary equation (7)) and use Adam gradient 
descent updates on mini-batch samples, drawn uniformly at ran-
dom from the pool of stored experiences. The n-step Q-learning 
loss minimizes the gap between the predicted Q values and target Q 
values, and the graph reconstruction loss preserves the original net-
work structure in the embedding space. Supplementary algorithm 2 
describes the complete training procedure.

Online application. We evaluated FINDER on both synthetic  
graphs and various real-world networks. During the applica-
tion phase, we remove a finite fraction of nodes at each adaptive 
step, instead of the one-by-one removal as in the training phase. 
We find the performance to be practically unaffected by the 
removal of up to a 1% fraction (Supplementary Figs. 2 and 3 and 
Supplementary Tables 6 and 7). This batch nodes selection strat-
egy enables FINDER to scale with  OðjEj þ jVj þ jVjlogjVjÞ

I
 time 

complexity (Supplementary Section II.D.3, Supplementary Fig. 4 
and Supplementary Table 5), which is very efficient for handling 
large-scale real-world problems.

a b 4 key players , 67.5%

residual CN connectivity

c 10 key players, 13.1%

residual CN connectivity

d 17 key players, 4.7% 

residual CN connectivity

e f 4 key players, 87.1% 

residual ND connectivity

g 10 key players, 29.0%

residual ND connectivity

h 17 key players, 9.7% 

residual ND connectivity
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Fig. 2 | the process of finding key players in a network using FiNDer. FINDER seeks to design a node removal sequence to minimize the ANC (equation 

(1) or equation (2)) or, equivalently, minimize the area under the ANC curve, which is generated by sequentially removing the key players identified by 

FINDER, with the horizontal axis being the fraction of key players and the vertical axis being the network connectivity of the residual graph after removing 

these key players. a,e, We consider two connectivity measures for the 9/11 terrorist network (Fig. 1): pairwise connectivity for the critical node (CN) 

problem (a) and GCC size for the network dismantling (ND) problem (e). b–d,f–h, Residual graphs after removing 4 (b,f), 10 (c,g) or 17 (d,h) key players 

(cyan) determined by FINDER at the different time points marked in the ANC curves in a (b–d) and e (f–h), respectively.
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Flexibility. We created four FINDER agents to handle two connec-
tivity measures, σpair( ⋅ ) and σgcc( ⋅ ) (corresponding to CN and ND 
problems, respectively), under two scenarios: node-unweighted 
and node-weighted. All the agents share the same architecture 
(Supplementary Section II.D.1 and Fig. 3), and training proce-
dure (Supplementary algorithm 3), except for the reward function, 
which is determined by the respective ANC. Extensive experi-
ments demonstrate that our framework is universally effective 

on these application scenarios, and all FINDER variants that are 
designed for different problems under different scenarios can con-
verge very well on the validation data (Supplementary Fig. 11).  
Thanks to its flexible architecture, we anticipate that this frame-
work can be applied to even more complex scenarios as well 
(see Supplementary Section IV.F, Supplementary Fig. 13 and 
Supplementary Table 18 for FINDER’s adaptation to the minimal 
percolation threshold problem).
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Fig. 3 | Overview of the FiNDer framework. The framework consists of two phases: phase 1 (top; offline training, during which the agent FINDER is trained 

to perform well on synthetic graphs) and phase 2 (bottom; a real-world application, during which the well-trained agent is applied to a real-world network 

to find the key players). In the offline training, we first generate a batch of synthetic graphs. We then randomly sample one (or mini-batch) of them, and 

let the FINDER agent ‘play the game’ on the graph, that is, complete a whole key-player finding process (denoted as an episode), as illustrated in Fig. 2. 

Specifically, the agent interacts with the graph through a sequence of states, actions and rewards. Here, the state is defined as the residual network, the 

action is to remove (or activate) the identified key player (node), and the reward is the decrease of ANC after taking the action. To determine the right 

action for a state, we first encode the current graph and obtain each node's embedding vector (shown as a colour bar), which captures its structure 

information and long-range interactions between node features (for example, removal cost). We then decode these embedding vectors to scalar Q 

values (shown as green bars, with heights proportional to the Q values) for all the nodes to predict the long-term gains if taking this action. Based on 

the calculated Q values, we adopt an ϵ-greedy action strategy; that is, we select the highest-Q node with probability (1 − ϵ) and take a random action 

otherwise. To balance between exploration and exploitation, ϵ is linearly annealed from 1.0 to 0.05 over 10,000 episodes. When a game (or an episode) is 

over (for example, the residual graph becomes completely disconnected), we collect the n-step transitions, that is, 4-tuples in the form (Si, Ai, R(i, i + n), S(i + n)), 

where Rði;iþnÞ ¼
P

iþn

k¼i
Rk

I

, from the above sequence, and store them into the experience replay buffer—a queue that maintains the most recent M 4-tuples. 

In our calculations, we choose M = 50,000. Meanwhile, the agent is updated (that is, parameters ΘE and ΘD for its encoder and decoder are updated) by 

performing mini-batch gradient descents over the loss (Supplementary equation (7)). As the episodes and updates repeat, the agent becomes increasingly 

intelligent and powerful in finding key players on complex networks. In the real-world application, once the offline training phase finishes, we can apply the 

well-trained agent to a real-world network. Here we use the raccoon contact network39 as an example, and we test on its largest connected component, 

which contains 14 nodes and 20 edges. Similar to the offline training phase, in the application phase the agent first encodes the current network into 

low-dimensional embedding vectors, and then leverages these embedding vectors to decode Q values for each node. Unlike the ϵ-greedy action strategy 

during training, here we exploit the ‘batch nodes selection’ strategy, which picks a finite fraction (for example, 1%) of highest-Q nodes at each adaptive 

step, and avoids the one-by-one iterative select-and-recompute of the embedding vectors and Q values. This strategy does not affect the final result,  

but it renders several orders of magnitude reduction in the time complexity (Supplementary Figs. 2 and 3 and Supplementary Tables 6 and 7).  

Repeating this process until the network reaches the user-defined terminal state (for example, maximum budget nodes or minimum connectivity 

threshold), the sequentially removed nodes constitute the optimal set of key players. See Supplementary Section II.D.1 for more details about the 

framework. Credit: Shutterstock.
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results
Results on synthetic graphs. Figure 4 shows FINDER’s perfor-
mance on synthetic graphs that are significantly larger than those on 
which it was trained. We first explore the effects of different training 
graph types. Three classic network models, the Erdős–Rényi (ER) 
model34, the Watts–Strogatz (WS)35 model and the Barabási–Albert 
(BA) model36, were used to generate both training and test graphs. 
As shown in Supplementary Table 20, FINDER performs the best 
when test and training graphs are generated from the same model. 
Note that most of the real networks analysed in this work exhibit 
power-law or fat-tailed degree distributions (Supplementary Fig. 1). 
Such a high degree heterogeneity is also a key feature of random 
graphs generated by the BA model. Hence, the agents trained on BA 
graphs perform consistently better than those trained on ER or WS 
graphs when tested on various real-world networks (Supplementary 
Table 21). To empower better generalizations, the agents that were 
later utilized for different application scenarios were all trained on 
BA graphs. As shown in Fig. 4, comparing with the state-of-the-art 
baselines (see Supplementary Section I for details), FINDER trained 
on small BA graphs consistently achieved better results for both CN 
and ND problems under different node-weight scenarios in syn-
thetic graphs of much larger sizes.

Results on real-world networks. We then evaluated FINDER on var-
ious real-world networks from diverse domains (see Supplementary 
Section III and Supplementary Table 3 for descriptions). As shown 

in Fig. 5, FINDER consistently outperforms other methods on 
most networks in different application scenarios. Especially for 
node-weighted scenarios, which are more practical and challenging, 
FINDER excels to a large extent. For the ND node-degree-weighted 
scenario (Fig. 5k), if we are asked to dismantle Gnutella31 such 
that the remaining GCC is half of the original size, the current best 
method (HDA) requires about 40.3% total cost, while our model 
only needs 14.1%, a reduction of nearly 26.2% cost. If given the same 
dismantling cost 0.2, the best available method (GND) fragments 
the network to 80.8% GCC size, while FINDER can achieve up to 
35.3%, which is 45.5% better. In addition to the effectiveness advan-
tage, FINDER is also remarkably efficient (Supplementary Tables 
10–17), especially on large networks. For example, on the Flickr net-
work, with millions of nodes and tens of millions of edges, FINDER 
is over 20 times faster than the best performing baseline (GND) for 
the ND node-degree-weighted scenario (7,734 s versus 174,363 s) 
and ~890 times faster than the best performing baseline (RatioCut) 
for the CN node-unweighted scenario (915 s versus 815,411 s). Note 
that most existing baseline methods do not have GPU implemen-
tations, while FINDER can easily be GPU-accelerated. To obtain 
a fair comparison with baseline methods, we did not deploy GPU 
acceleration for FINDER in the application phase. (We only utilized 
GPU to speed up the offline training phase.) Hence, the scalability 
or efficiency of FINDER presented here is rather conservative.

To further understand the effectiveness of FINDER under 
node-weighted scenarios, we calculated the cost distributions of the 
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Fig. 4 | Performance of FiNDer on synthetic graphs. In all cases, FINDER is trained on BA graphs of 30–50 nodes. We then evaluate the well-trained 

FINDER on synthetic BA graphs of different scales: 30–50, 50–100, 100–200, 200–300, 300–400 and 400–500 nodes. For each scale, we randomly 

generated 100 instances, and reported the average results over them. To obtain node-weighted graphs, we assign each node a normalized weight, which 

is proportional to its degree (degree-weighted) or a random non-negative number (random-weighted). a–c, Comparison of the results of HDA, CI, 

RatioCut and FINDER on node-unweighted (a), degree-weighted (b) and random-weighted (c) graphs, respectively, for the CN problem. The results are 

the averaged ANC determined by the pairwise connectivity over 100 instances. We also compared with other heuristic methods, including HBA, HCA 

and HPRA (see Supplementary Tables 7–9 for details). d–f, The results of competing methods and FINDER for the ND problem, on node-unweighted 

(d), degree-weighted (e) and random-weighted (f) graphs, respectively. The results are the averaged ANC determined by GCC size, over 100 random 

instances. Comparisons with other baselines, including HBA, HCA, HPRA, BPD and CoreHD, are reported in Supplementary Tables 13–15. It is obvious that 

FINDER consistently outperforms other methods in different node-weight scenarios for both CN and ND problems. Error bars are the standard deviations 

over 100 random instances.
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key players identified by different strategies on the crime network 
with randomly assigned node weights (removal costs). As shown in 
Fig. 6, FINDER tends to avoid choosing those ‘expensive’ key play-
ers, which naturally leads to a more cost-effective strategy.

Conclusion
In summary, FINDER achieves superior performances in terms 
of both effectiveness and efficiency in finding key players in com-
plex networks. It represents a paradigm shift in solving challenging  
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Fig. 5 | Performance of FiNDer on real-world networks. We evaluated FINDER on nine real-world networks of five different types—criminal network, 

biological network, communication network, infrastructure network and social network—representing different applications of key-player finding 

in these domains. These networks cover a wide range of scales, with node set size ranging from hundreds to millions. The original networks are all 

node-unweighted. To obtain node-weighted networks, we assigned each node a normalized weight, which is proportional to its degree (degree-weighted) 

or a random non-negative number (random-weighted). We evaluated FINDER for both CN and ND problems on these networks. a–c, ANC results specified 

by pairwise connectivity for HDA, CI, RatioCut and FINDER in solving CN problems on node-unweighted (a), degree-weighted (b) and random-weighted 

(c) networks, respectively. d–f, ANC curves of these methods on the crime network with different node weights (node-unweighted (d), degree-weighted 

(e) and random-weighted (f)). For ANC curves for the remaining networks see Supplementary Figs. 5–7. g–i, Comparison of the ANC results determined 

by GCC size, for competing methods with FINDER on the ND problem (node-unweighted (g), degree-weighted (h) and random-weighted (i)). j–l, 

ANC curves of these methods on the Gnutella31 network with node-unweighted (j), degree-weighted (k) and random-weighted (l), respectively. See 

Supplementary Figs. 8–10 for ANC curves of other real networks on the ND problem. Note that the FINDER utilized here is the same as in Fig. 4 (that is, 

trained with synthetic BA graphs of 30–50 nodes). All ANC numerical values shown in heatmaps are multiplied by 100 for visualization purposes. We 

can clearly see that FINDER always produces the best results on these real networks for both CN and ND problems with different node-weight scenarios. 

Especially for the node-weighted scenario, FINDER shows significant superiority over conventional methods. Running time comparisons on these networks 

are shown in Supplementary Tables 13 and 17, where we demonstrated the remarkable efficiency advantage of FINDER, especially for large networks.
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optimization problems on complex networks. Requiring no 
domain-specific knowledge but just the degree heterogeneity of 
real networks, FINDER achieves this goal by offline self-training 
on small synthetic graphs only once for a particular application 
scenario, and then generalizes surprisingly well across diverse 
domains of real-world networks with much larger sizes. Thanks to 
the highly flexible framework of FINDER, for different application 
scenarios one just needs to replace the rewards with the respective 
connectivity measures. One can further improve FINDER’s per-
formance by tailoring the training data towards the target network 
with the configuration model (CM)37 (Supplementary Tables 19 and 
22), or by employing the reinsertion technique38 (Supplementary  
Fig. 12 and Supplementary Table 9) (see Supplementary Section 
IV.D for more details about different ways to refine FINDER). 
Finally, FINDER opens up a new direction of using deep learning 
techniques to understand the organizing principle of complex net-
worked systems, which enables us to design networks that are more 
robust against both attacks and failures. The presented results also 
highlight the importance of classic network models, such as the BA 
model. Although extremely simple, it captures the key feature, that 
is, degree heterogeneity, of many real-world networks, which turns 
out to be extremely useful in solving very challenging optimization 
problems on complex networks.

Data availability
All the data analysed in this paper, including synthetic graphs and 
real-world networks, can be accessed through our Code Ocean 
compute capsule (https://doi.org/10.24433/CO.3005605.v1).

Code availability
All source codes and models (including those that can repro-
duce all figures and tables analysed in this work) are publicly 
available through our Code Ocean compute capsule (https://doi.
org/10.24433/CO.3005605.v1) or on GitHub (https://github.com/
FFrankyy/FINDER).
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