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Abstract

We study a class of optimization problems in polygons
that seek to compute the “largest” subset of a pre-
scribed type, e.g., a longest line segment (“stick”) or
a maximum-area triangle or convex body (“potato”).
Exact polynomial-time algorithms are known for some
of these problems, but their time bounds are high (e.g.,
O(n7) for the largest convex polygon in a simple n-gon).
We devise efficient approximation algorithms for these
problems. In particular, we give near-linear time algo-
rithms for a (1−ǫ)-approximation of the biggest stick, an
O(1)-approximation of the maximum-area convex body,
and a (1 − ǫ)-approximation of the maximum-area fat
triangle or rectangle. In addition, we give efficient meth-
ods for computing large ellipses inside a polygon (whose
vertices are a dense sampling of a closed smooth curve).
Our algorithms include both deterministic and random-
ized methods, one of which has been implemented (for
computing large area ellipses in a well sampled closed
smooth curve).

1 Introduction

In many applications one wants to approximate a shape
by some other shape having special structure. For
a given input shape P , we are often interested in
approximations by a convex body. The tightest fitting
outer approximation of P is its convex hull, CH(P ).
For an inner approximation of P , a natural choice is
to use a largest (e.g., maximum-volume) convex body,
Q∗, that lies within P . The problem of computing
a largest convex body inside a given shape has been
called the “potato peelers problem” [11, 22]: How does
one optimally “peel” a nonconvex potato P , to obtain
a convex potato, while wasting as little as possible of
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the original potato? A related optimization problem is
to find the longest line segment (the biggest “stick”)
that lies within P . Both of these optimization problems
arise naturally in computational geometry and have
been studied previously from the point of view of
exact algorithms. The problems are also motivated by
computer graphics applications, in which one desires
good inner approximations of P by simple shapes, for
occlusion culling.

In this paper, we study the longest stick and biggest
potato optimization problems from the point of view
of approximation algorithms. We obtain substantially
more efficient algorithms than what was known for exact
solutions.

Overview of Results. Our results include:
(1) Approximation algorithms for the biggest stick

in a simple polygon: We give a simple O(n log n) 1/2-
approximation, as well as an O(n log2 n) polynomial-
time approximation scheme (PTAS), which computes
an (1 − ǫ)-approximation for any fixed ǫ > 0.

(2) Approximation algorithms for maximum-area
potatoes in polygons: In particular, we give an
O(n log n) O(1)-approximation for computing a largest
area triangle or convex polygon inside a simple n-gon.
We give an O(n)-time (1 − ǫ)-approximation algorithm
for computing a large fat triangle or rectangle in a sim-
ple polygon; in a polygon with holes, the algorithm runs
in time O(n log n). We also give randomized meth-
ods to compute approximations of maximum-area tri-
angles. Further, we give an approximation algorithm to
compute maximum-area ellipses in well-sampled smooth
closed curves in time O(n2); a variant of this algorithm
has been implemented. This approximation algorithm
produces better approximations as the density of the
sampling increases.

Related Work. Optimal inclusion problems have a
rich history in computational geometry. One can com-
pute a maximum area (or perimeter) convex k-gon in-
side a convex n-gon in time O(kn+n log n) [4]; see also
[9, 19]. The special case of maximum-area inscribed
equilateral triangles or squares within a simple polygon



was solved in time O(n3) [18] and was improved, for
similar copies of a convex k-gon, using motion planning
methods of Chew and Kedem [14]; see also [21]. Melis-
saratos and Souvaine [26] compute a maximum-area tri-
angle (of any shape) inside a simple polygon in time
O(n3). The best (and only) polynomial-time algorithm
for computing a maximum-area convex polygon inside a
simple polygon takes time O(n7) and space O(n5) [11].

The longest stick problem in a simple polygon was
first solved in subquadratic time (O(n1.99)) by Chazelle
and Sharir [13]. Improved randomized algorithms [1,
3, 2] eventually led to an expected running time of
O(n3/2+ǫ) given by Agarwal and Sharir [2].

On the practical side, graphics researchers have im-
plemented algorithms for finding good occluders in vis-
ibility preprocessing [25, 7]. Recent work by Daniel
Cohen-Or et al. [16] finds the inner cover of non-convex
polygons that function as occluders. Packing ellip-
soids [8] in three-dimensional shapes has been studied
by Bischoff and Kobbelt, who start with a sphere inside
the model and then gradually inflate and translate it un-
til it gets pinned. Non-convex occluders, called hoops,
have been studied by Brunet et al. [10]; they compute
polylines that have convex silhouettes when seen from
certain view points.

2 The Biggest Stick Problem

In this section, we study the problem of computing
an approximation of the “biggest stick” (longest line
segment) within a simple polygon P that has n vertices.
We consider P to be a closed region (i.e., it includes its
boundary) in the plane.

2.1 A Simple 1/2-Approximation
We begin with a standard divide-and-conquer approach.
Consider a hierarchical cutting of P using diagonals
(“Chazelle cuts”). Specifically, we initially determine
a cut ξ of P that gives a (roughly) balanced partition
of P into two simple polygons, each with at most 2n/3
vertices; then, recursively, we continue the partitioning
for each of the resulting subpolygons, until all subpoly-
gons are triangles. Such a hierarchical decomposition
of a simple polygon can be computed in O(n) time,
as a result of the linear-time triangulation algorithm
of Chazelle [12].

Consider an optimal solution, s∗, which is a segment
of length l∗ in P . Then, s∗ must intersect at least one
diagonal in the hierarchical decomposition; let ξ∗ denote
the diagonal having the smallest depth (i.e., the first one
to intersect s∗ in the recursive cutting), and let P (ξ∗)
denote the subpolygon that is partitioned by ξ∗ into
subpolygons P1(ξ

∗) and P2(ξ
∗). The segment s∗ is cut

into two subsegments by ξ∗, at least one of which is of

length at least l∗/2; let s∗1 ⊂ P1(ξ
∗) be a subsegment

of length at least l∗/2. Then, s∗1 has one endpoint
on an edge of P1(ξ

∗) (the edge corresponding to cut
ξ∗). Our goal, then, is to compute a longest anchored
stick, incident on a specified edge, for each face of the
hierarchical partitioning, at each of the O(logn) levels
of the hierarchy.

To find the biggest stick anchored on a given edge e
of a simple m-gon, we walk around the boundary of the
weakly visible polygon of e (which can be computed in
time O(m) [24]). This traversal divides the boundary
into O(m) segments, each of which has a fixed combina-
torial description (i.e., the pair of view-delimiting ver-
tices) of its visibility with respect to e. Let σ be such a
segment along the boundary of the weakly visible poly-
gon. The portion of e visible from each point along σ is
determined by the pair of view-delimiting vertices, and
this pair is the same for all points along σ. The variation
of the length of the longest anchored stick from a point
on σ to e can be described by an expression with either
one or two square roots; thus, the maximum length for
σ can be computed in constant time, making the overall
time O(m) for the anchored version of the longest stick
problem.

Since the sum of the face complexities at any one
level of the hierarchy is O(n) (each level corresponds to
a planar graph on n vertices), we get that the total time
bound for the algorithm is O(n log n).

2.2 A PTAS for Biggest Stick
Our goal now is to compute, for a given ǫ > 0, an
approximation of the biggest stick in P , with length at
least (1− ǫ) times the length, l∗, of the biggest stick, s∗.

We begin by applying the algorithm above for com-
puting a 1/2-approximation: we determine a segment
s0 ⊂ P with length l0 ≥ (1/2)l∗. Notice that we may
assume that l0 is at least the length of the longest edge
of P , since otherwise we can set s0 to be this edge.

A mega-square is an axis-parallel square of side
length 4l0. We say that a mega-square σ is good if one
can place a stick of length l∗ in σ ∩ P . We begin by
arguing that P can be covered by a linear number of
possibly overlapping mega-squares, such that at least
one of them is good.

Consider an infinite regular grid of mega-squares,
and make three additional copies of this grid by shifting
the bottom left corner of the grid cells by (2l0, 0),
(0, 2l0), and (2l0, 2l0), respectively. Now, mark those
grid cells (in the four copies) that are intersected by P ’s
boundary. Let C denote the set of all marked cells. It is
easy to verify that (i) C consists of O(n) mega-squares
that entirely cover P , (ii) each edge of P intersects only
a constant number of mega-squares in C, (iii) C contains



a mega-square that is good, and (iv) C can be computed
in O(n) time.

The combinatorial complexity of a mega-square σ ∈
C is the number nc of edges bounding the region σ ∩P .
Since an edge of P intersects only a constant number of
mega-squares in C, we have

∑

σ∈C
nσ = O(n). We now

consider each of the mega-squares σ ∈ C separately.
Let σ be one of the mega-squares in C. We tile

σ with a constant number of small squares, pixels,
whose side length is ǫl0/c0, where c0 is an appropriate
constant. Now for each pair of pixel sides s1, s2, we
check whether there exists a line segment in σ ∩ P
whose endpoints lie on s1 and s2, respectively. Before
we describe how this is done, we observe that if σ is
a good mega-square, then once the processing of σ is
finished, we have a (1 − ǫ)-approximation of l∗, since
“rounding” an optimal stick s∗ by clipping its ends at
the boundaries of the pixels containing them can result
in shortening it by only O(ǫl0), and all visible segments
between two pixels have approximately the same length
(within an additive term O(ǫl0)).

Let s1 and s2 be two pixel sides, and assume that
both are horizontal. (This assumption is made only to
simplify the exposition.) s1∩P is a sequence of intervals
a1, . . . , ak1

on s1, and s2 ∩ P is a sequence of intervals
b1, . . . , bk2

on s2. We need to determine whether there
exist intervals ai on s1 and bj on s2 such that ai and bj
see each other, i.e., there exist points p ∈ ai and q ∈ bj
such that the line segment pq is contained in σ ∩P ; see
Figure 1(a).

Consider the region that is formed by intersecting P
with the parallelogram defined by the two sides s1 and
s2. Each connected component of this intersection is a
simple polygon, and we can compute these polygons in
time linear in the combinatorial complexity of the mega-
square. We treat each of these polygonal components
separately. Consider a component, and let a1, . . . , ak1

and b1, . . . , bk2
now denote the two sequences of inter-

vals, on s1 and s2, respectively, of this component. The
portion of P ’s boundary between adjacent intervals, bj
and bj+1, along s2 defines a finger of the component;
there are fingers associated with s2 and also fingers as-
sociated with s1.

For an interval ai on s1, let R(ai) denote the range
on s2 that is seen from ai when ignoring the obstruction
that is caused by the fingers associated with s2. Sim-
ilarly define the range R(bj) of points on s1 seen from
bj , when ignoring the obstruction that is caused by the
fingers associated with s1. Refer to Figure 1(b). The
ranges R(ai) and R(bj) can be computed in logarith-
mic time, after linear-time preprocessing of the compo-
nent [23]. Also, given intervals ai on s1 and bj on s2,
one can determine in logarithmic time whether ai and bj

see each other, using standard visibility query methods
in simple polygons.

Notice that if R(ai) ⊇ bj and R(bj) ⊇ ai then
ai and bj must see each other. Moreover, if ai

and bj see each other, then clearly R(ai) ∩ bj 6= ∅ and
R(bj) ∩ ai 6= ∅. These simple observations allow us to
determine whether there exists a pair of intervals (one
from s1 and one from s2) that see each other in time
O((k1 + k2) log2 k2).
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Figure 1: (a). Visibility between interval ai on s1 and
interval bj on s2. (b). Using shortest path queries
in the connected component (which define the shaded
“hourglass”), we can compute the portion, R(ai), seen
by ai on the bottom of s2, ignoring the fingers (dashed)
associated with s2 when computing visibility.

First, for each interval t ∈ {a1, . . . , ak1
, b1, . . . , bk2

},
we compute the range R(t). If one or both of the
endpoints of R(t) lies in the interior of an interval, we
determine in logarithmic time whether t sees one of
these at most two intervals. At this point we shrink
each of the ranges R(t) so that only those intervals that
are fully contained in it remain. Thus we can represent
R(t) by the pair of indices corresponding to the leftmost
interval and rightmost interval that are contained in it.



In order to determine whether there is a pair of
intervals ai on s1 and bj on s2 such that R(ai) ⊇ bj
and R(bj) ⊇ ai, we construct a two-level data structure.
The first level of the data structure is a one-dimensional
range tree T , of height O(log k2), over the intervals on
s2 that are represented by their indices 1, . . . k2. As
usual, each node v of T is associated with a canonical
subset of indices Iv, and we attach to v an interval tree
over the ranges corresponding to the indices in Iv. The
total size of the data structure is O(k2 log k2) (O(k2)
per level of the range tree), and its construction time is
O(k2 log2 k2) (O(k2 log k2) per level of the range tree).
The data structure supports queries of the form: Given
a range R(ai) of an interval ai on s1, is there an interval
bj on s2, such that ai and bj satisfy the condition above.
The query time is O(log2 k2). We thus perform k1

queries, one per interval on s1. The total running time
of this stage is O((k1 +k2) log2 k2) per pixel pair. There
are O(1/ǫ4) pairs of pixels. Summing over all mega-
squares, and recalling that the sum of the individual
combinatorial complexities of the mega-squares is only
linear (

∑

σ∈C
nσ = O(n)), we get the complexity bound

of the following theorem:

Theorem 2.1. One can compute a (1 − ǫ)-
approximation of the largest stick inside a simple
polygon in time O((n/ǫ4) log2 n). A 1/2-approximation
can be computed in time O(n log n).

3 Approximating the Biggest Potato

In this section we give approximation algorithms for
computing largest convex bodies (“potatoes”) within a
body P .

3.1 Largest Triangle
Let ∆∗ be a maximum-area triangle in P with corners
A, B, and C; we write ∆∗ = ABC. We again apply a
recursive decomposition of the polygon using Chazelle
cuts. Let a (resp., b, c) be the midpoint of side AB
(resp., BC, CA). Let e be the first cut (diagonal)
in the hierarchical cutting that intersects the (small)
triangle abc. Note that e does not intersect any prior
cut of the recursive decomposition, so e must intersect
triangle ABC in a line segment, call it pq. Without loss
of generality, we can assume that p ∈ aA and q ∈ BC.
We now consider two cases; refer to Figure 2.

Case 1. If q ∈ Bb, then area(pqc) ≥ (1/4)area(ABC),
since we can slide p along segment AB to a,
reducing area(pqc) as we go, until area(pqc) =
area(abc) = (1/4)area(ABC).

Case 2. If q ∈ Cb, let us assume that area(pqa) ≥
area(pqb); otherwise, we relabel. We wish to show
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Figure 2: Illustration of (a). Case 1, and (b). Case 2.

that the larger of area(pqa) and area(pqc) is at
least 3/16 of the area(ABC). Moving p toward A
(or q toward C) reduces area(pqc) and increases
area(pqa). Moving p toward a (or q toward b)
has the opposite effect. By moving p and/or q
we reduce the larger area and increase the smaller,
until area(pqc) equals area(pqa). Let s be the
midpoint of ac. Note that area(pqa) = area(pqc) if
and only if the segment pq passes through the point
s, since the altitudes from base pq to a or c will be
equal. Now we continue to reduce area(pqa) by
rotating pq around s until area(pqa) = area(pqb),
namely when pq is parallel to AC. This triangle
has area equal to 3/16 of the area of ABC.

To solve the subproblem, we proceed as before,
traversing the boundary of the weakly visible polygon
of e in order to compute a largest area triangle having
one edge on e and having the opposite vertex on the
boundary of P . We can argue that this triangle is at
least a constant fraction (1/2) of the area of the largest
triangle within P having one edge a subset of e.

In conclusion, we have

Theorem 3.1. In a simple polygon P with n ver-
tices, one can compute an O(1)-approximation of the
maximum-area triangle within P in time O(n logn).

3.2 A PTAS for Largest Fat Triangles and
Rectangles
In this section we give an efficient algorithm to compute



a (1 − ǫ)-approximation to the largest fat triangle or
rectangle that can be placed in an n-vertex simple
polygon P .

A triangle is δ-fat if all three of its angles are at least
some specified constant, δ, the fatness parameter. Let
∆∗ = ABC be a maximum-area δ-fat triangle contained
in P , with angles α, β, γ at vertices A,B,C, respectively.
Our goal is to compute a δ-fat triangle ∆ ⊂ P such that
area(∆) ≥ (1 − ǫ)area(∆∗).

We will need the following two claims.

Claim 3.1. Assume that δ < 60 and that γ ≥ α, β.
Then, for any ǫ > 0, there exists ǫ0 > 0 such that one
can place a δ-fat triangle inside P with angles α+ǫ0, β+
ǫ0, γ − 2ǫ0 and whose area is at least (1 − ǫ)area(∆∗).

Proof. Draw two line segments CD and CE from C to
AB, such that CD creates an angle of ǫ0 with CA, and
CE creates an angle of ǫ0 with CB, for some 0 < ǫ0 <

γ
2 .

Let a, b, and c denote the lengths of sides BC, CA, and
AB, respectively. Let a′ denote the length of CE and
let b′ denote the length of CD. From the law of sines
we have a′ = a sin β

sin(β+ǫ0)
and b′ = b sin α

sin(α+ǫ0)
. We also

know that area(ABC) = 1
2ab sin γ and area(CDE) =

1
2a

′b′ sin(γ − 2ǫ0). Replacing a′ and b′ in the latter
equation and further developing the outcome we obtain
that area(CDE) is given by

1

2
ab sin γ(

sinα sinβ sin(α+ β + 2ǫ0)

sin(α+ ǫ0) sin(β + ǫ0) sin(α+ β)
) .

Thus, if one can pick ǫ0, such that (i) γ − 2ǫ0 ≥ δ,

and (ii) sin α sin β sin(α+β+2ǫ0)
sin(α+ǫ0) sin(β+ǫ0) sin(α+β) ≥ (1−ǫ), then triangle

CDE is δ-fat and its area is at least (1 − ǫ)area(∆∗).
The assumptions δ < 60 and γ ≥ α, β imply that

γ > 60 and that α + β < 120. We can therefore
strengthen the first condition above by requiring that
ǫ0 ≤ 60−δ

2 . Concerning the second condition above,
define

f(ǫ0) =
sinα sinβ sin(α+ β + 2ǫ0)

sin(α+ ǫ0) sin(β + ǫ0) sin(α+ β)
.

Now, the two conditions above can be replaced by (i)
ǫ0 ≤ 60−δ

2 , and (ii) f(ǫ0) ≥ (1 − ǫ).
Analyzing the function f(ǫ0), we observe that for

any α, β such that δ ≤ α, β < 90 and α+β ≤ 120, f(ǫ0)
tends to 1 as ǫ0 tends to 0. We conclude that there
exists an ǫ0 as required.

Claim 3.2. For any α′, β′ such that α ≤ α′ ≤ α + ǫ0
and β ≤ β′ ≤ β + ǫ0, one can place a δ-fat triangle
inside P such that two of its angles are α′, β′ and its
area is at least (1 − ǫ)area(∆∗).

Proof. Draw two line segments CF and CG from
C to AB, such that the angle CFB is α′, and the
angle CGA is β′. CFG is a δ-fat triangle. Since
α ≤ α′ ≤ α + ǫ0 and β ≤ β′ ≤ β + ǫ0, F must lie
between A and D and G must lie between B and E.
Now, CFG is contained in P , since it is contained in
ABC, and area(CFG) ≥ (1 − ǫ)area(∆∗), since CFG
contains CDE and the area of the latter triangle is at
least (1 − ǫ)area(∆∗) by Claim 3.1.

We now describe a first, less efficient, approxima-
tion algorithm for placing in P a δ-fat triangle of area
at least (1− ǫ)area(∆∗). Let find largest copy(Q,P) de-
note the algorithm of Chew and Kedem [14] for find-
ing the largest copy (allowing translation and rota-
tion) of a convex polygon Q within a simple polygon
P . Given δ and ǫ, we first compute the value of ǫ0
given by Claim 3.1. Let T (θ1, θ2, θ3) denote a unit-
diameter triangle with angles θ1, θ2, and θ3. We first call
find largest copy(T(60,60,60),P) to find a largest place-
ment of an equilateral triangle within P . We record the
area of the returned triangle. Now, for each i, j ≥ 0,
such that α′ = δ+ iǫ0, β

′ = δ+ jǫ0, and α′, β′ < 90 and
α′ +β′ < 120, call find largest copy(T (α′, β′, 180− (α′ +
β′)), P ) and record the area of the returned triangle. Fi-
nally, we return the triangle of maximum area among all
triangles that were found by calls to find largest copy.
We refer to this approximation algorithm as the CK-
algorithm, since it is based on the method of Chew and
Kedem.

The correctness of the CK-algorithm follows from
the two claims preceding it. If δ=60, then we find the
largest δ-fat triangle. If δ < 60, then one of the triangles
that is generated by the algorithm has angles α′, β′, such
that α ≤ α′ ≤ α + ǫ0 and β ≤ β′ ≤ β + ǫ0. According
to the second claim above, the call to find largest copy
with this triangle and P returns a δ-fat triangle of
area at least (1 − ǫ)area(∆∗). The running time of
the CK-algorithm is determined by the running time
of find largest copy, which is roughly O(n2 log n).

We now devise a more efficient approximation al-
gorithm, which uses the CK-algorithm as a subroutine.
We take an approach similar to the approach we took
in Section 2. Let a∗ be the length of the shortest side of
∆∗. Since ∆∗ is fat, it is easy to obtain a constant fac-
tor approximation a0 of a∗, such that a0 ≤ a∗ ≤ c1a0,
for some small constant c1. (This can be done by com-
puting a largest inscribed disk in P , using the Voronoi
diagram of P , which is computed in linear time for sim-
ple polygons [15].) A mega-square is an axis-parallel
square of side length O(a0). We say that a mega-square
m is good if one can place a δ-fat triangle in m ∩ P of
area area(∆∗).



Claim 3.3. There exists a constant c2, such that, for
at least one of the vertices pi of P , the mega-square of
side length c2a0 centered at pi is good.

Proof. The proof follows from the fatness of ∆∗.

For each vertex p ∈ P , draw a mega-square of side
length c2a0 around p. Let C be the set of these n
mega-squares. Consider each of the mega-squares in C
separately. Let m be one of the mega-squares in C. Tile
m with a constant number of pixels of side length ǫ0a0

c3
,

where ǫ0 is the minimum between ǫ0 as computed for the
previous algorithm and a value that will be computed
shortly, and c3 = (3 + 3

tan δ ). Now, for each pixel,
we check whether it is intersected by P ’s boundary or
whether it lies completely outside P . The remaining
pixels form a constant number of rectilinear polygons
(each of constant complexity) that are contained in the
interior of P . For each of these polygons, we apply
the CK-algorithm in O(1) time. Among all triangles
that were found during the above process, we return
the largest one.

Lemma 3.1. The area of the returned triangle is at least
(1 − ǫ0)

3area(∆∗).

Proof. Consider a good mega-square m; then, ∆∗ ⊆
m ∩ P . Let Q be the set of pixels of m that intersect
∆∗. A pixel in Q can be intersected by the boundary of
P only if it is also intersected by the boundary of ∆∗.
Let Q′ denote the set Q of pixels, minus those pixels
that are intersected by the boundary of ∆∗. We claim
that the union of the set Q′ of empty pixels forms a
(single) rectilinear polygon that contains a triangle of
area (1− ǫ0)

2area(∆∗). Indeed, it can easily be checked
that the triangle that is obtained from ∆∗ by shrinking
∆∗ towards the center of its inscribed circle, with sides
parallel to those of ∆∗ and of lengths (1− ǫ0) times the
corresponding original lengths, is contained within the
union of pixels Q′. Since there exists a triangle of area
at least (1− ǫ0)

2area(∆∗), and since the CK-algorithm
returns a fat triangle within factor (1−ǫ0) of the largest
possible, we have proved the claim.

It remains to calculate ǫ0. Let h be the length of the
height of ∆∗ that is perpendicular to the shortest side
of ∆∗ (whose length is a∗). ∆∗’s area is a∗h

2 , and from
the claim above the area of the triangle that is returned
by the algorithm is (1 − ǫ0)

3∆∗. Therefore we choose
ǫ0, such that (1 − ǫ0)

3 = (1 − ǫ), or ǫ0 = 1 − 3
√

(1 − ǫ).

Theorem 3.2. One can compute a (1 − ǫ)-
approximation of the largest fat triangle inside a
simple polygon P in time O(n).

Remark 1: The algorithm above also applies to
polygons with holes. However, the running time in this
case becomes O(n log n), which is the time needed to
compute the Voronoi diagram of P .
Remark 2: Instead of using the mega-squares/pixels
approach, one can consider a constant number of orien-
tations, and compute, for each of these orientations ρ,
an approximation of the largest δ-fat triangle of orien-
tation ρ that can be placed inside P .
Remark 3: Using similar ideas, one can obtain a PTAS
for the largest fat rectangle problem (where a rectangle
is c-fat if its aspect ratio is at most c, for some constant
c). Details will appear in the full paper.

3.3 A Sampling Method for Maximum-Area
Triangles

We give a randomized fully polynomial time approx-
imation scheme (FPTAS) for finding a maximum-area
empty triangle in a simple polygon, assuming that the
area of the largest triangle is at least a constant frac-
tion, δ, of the area of the polygon P . In the full paper
we prove the following result:

Theorem 3.3. Let P be a simple polygon with n ver-
tices, and assume that a maximum-area triangle, τ∗,
in P has area at least δ times the area of P , for fixed
δ > 0. Then, for any fixed ǫ > 0, a (1−ǫ)-approximation
of τ∗ can be computed, with high probability, in time

O(n + min(k
2ω

ω+1 , sω) + s log s log ns), where k denotes
the size of the visibility graph of s = O

(

1
δǫ2 log 1

ǫ log 1
δ

)

uniform random samples of P , and ω ≤ 2.36 is the ex-
ponent for fast matrix multiplication [17].

4 Maximum-Area Ellipses

In this section we study the problem of finding
a maximum-area inscribed ellipse in a well-sampled
smooth closed curve. We show that, as the sampling
rate increases, our solution converges to an exact solu-
tion. We also show implementation results of a simpli-
fied version of the algorithm.

Let E∗ denote a maximum-area empty ellipse con-
tained in the smooth closed curve S. Let a (resp., b)
denote the length of the major (resp., minor) axis of
E∗. The feature size of a point on the curve is defined
to be the distance from the point to the closest point
of the medial axis [5]. Let φ be the minimum feature
size of S. Without loss of generality, assume that S lies
inside a circle of diameter 1; hence, φ < 1. Let ǫ1, ǫ2 > 0
be positive constants that are very small compared to 1.

A curve S is said to be ǫ-sampled if the length of the
curve between any two consecutive sample points is no



(a). (b). (c).

Figure 3: (a) The set of all feasible ellipses for a given sampling of the boundary curve. The (dark) black ellipse
is the maximum-area ellipse inside the sampled curve. (b) The maximum-area ellipse drawn inside the sampling.
(c) A maximum-area ellipse inside a projection of the stanford bunny.

more than ǫ1. To make the sampling sufficiently dense,
we assume that ǫ ≤ min{ǫ1b, ǫ2φ}.

Let EB be the ellipse obtained from E∗ by doing the
following transformation: Scale (enlarge) E∗ until it hits
a sample point p1. Continue scaling the ellipse, but now
impose the constraint that it passes through point p1;
let p2 be the next sample point it hits. Now, keeping
the ellipse in contact with both p1 and p2, continue
enlarging the ellipse, while increasing both of its axes,
until the ellipse hits a third point, p3. If the triangle
∆p1p2p3 contains the center of the current ellipse, then
we output EB . Otherwise, the current ellipse can be
translated away from its contact with the three points
p1, p2, and p3. We then restart the enlarging process
again, and continue until we find an ellipse EB that is
supported by three sample points, p1, p2, and p3, with
∆p1p2p3 containing the center of the ellipse. The main
idea of the algorithm is to determine an ellipse that is
close in some sense to EB ; then, by lemma 4.1, this
implies that the ellipse is also close to E∗.

Lemma 4.1. Let Ein = (1 − ǫ
b )EB. Then area(Ein) ≤

area(E∗) ≤ area( b
b−ǫEin).

Proof. The process of inflating E∗ to EB means
that area(EB) ≥ area(E∗) and hence area(E∗) ≤
area( b

b−ǫEin). Let the radii of EB be a′ > a and
b′ > b. Now, using the definition of sampling, S cannot

1In this section, ǫ is not an approximation factor.

S

EB

a
′

E in

b
′

(a).

4c1ǫ

l1

l2

O(ǫ)

(b).

Figure 4: (a) The Kepler circle of EB . (b) An illustration
for the proof of Lemma 4.3.



penetrate EB more than ǫ, since EB is free of sample
points. Scale the space such that EB becomes a circle
with radius a′. (Such a circle is also known as the Kepler
circle of EB ; see Figure 4(a).) Hence, in the rescaled
space, S cannot penetrate the Kepler circle of EB by
more than a′ǫ

b′ . Let E ′
in =

(

1 − ǫ
b′

)

EB . By the above
argument, E ′

in ⊆ S and hence area(E ′
in) ≤ area(E∗).

Also, b′ ≥ b implies that
(

1 − ǫ
b

)

<
(

1 − ǫ
b′

)

, which
means that Ein ⊆ E ′

in, completing the proof.

Next, we bound the angle between the normal of EB

and the normal to the curve S at each of the three points
p1, p2, p3. Towards this goal, we prove the following
lemma about an arbitrary sample point pi:

Lemma 4.2. If EB and S both pass through the sample
point pi, then the angle between their normals at pi is
O(ǫ).

Proof. Let pi−1 and pi+1 be the sample points before
and after pi. It can be shown using our sampling
criterion that the angle spanned by pi−1pipi+1 is greater
than π − 4 arcsin(ǫ/2) (see Lemma 10, [5]). A simple
calculation shows that the normal to S at pi and the
normal to the edge pi−1pi make an angle of at mostO(ǫ).
If EB were arbitrarily large, then this would already
prove that the angle between the normals to S and to
EB at pi is O(ǫ); however, the curvature of EB adds a
small angle to the deviation, so we now show that this
deviation is small.

We need to bound the angle between the normal
to the ellipse EB and the normal to the segment pi−1pi

given |pi−1pi| ≤ ǫ. Without loss of generality, assume
that EB is axis-aligned for this proof. Then the equation

of EB is x2

a′2 + y2

b′2 = 1. Note that as ǫ decreases, the angle
between the normal to EB at pi and the normal to the
segment pi−1pi decreases. The maximum deviation of
the normal occurs when the ellipse passes through either
pi−1pi or pi+1pi; thus, assume that EB passes throuh
pi−1pi. We now need to calculate the maximum angle
between the normal of the ellipse at pi and the normal
to pi−1pi. Let tan(θ′) be the slope of the line passing
through the center of the ellipse and pi. Let 2δ be the
angle subtended by pi−1pi with respet to the center of
the ellipse, so that pi−1 subtends an angle θ′ + 2δ on
the x-axis. It is not hard to show that the maximum
angle subtended by pi−1pi is achieved at θ′ = π/2. A
simple calculation shows that δmax = O( ǫ

b ). Let us
sweep the ellipse EB with a sector of angle δmax. Let
the chord subtended by δmax be pi−1pi. Note that this
only enlarges pi−1pi and hence increases the deviation in
the normal. Since we want to bound the deviation from
above, we can afford to do this. It is not hard to show
that the slope of such a chord is − b′

a′
cot(θ′ +δmax), and

the slope of the tangent at pi is − b′

a′
cot(θ′). Using the

fact that b′ ≫ ǫ and cos δ ≥ 0.5, one can show that the
angle between the slopes above is bounded by O(δmax).
Hence, the total deviation added by the curvature of the
ellipse is O(ǫ). This implies that the the angle between
the normals of EB and S at pi is O(ǫ). See Figure 3(b)
for an illustration.

The following lemma is proved in the full version of
the paper:

Lemma 4.3. Let p, q, and r be three sample points on
the boundary of EB. Any ellipse passing through p, q,
and r whose center is contained in triangle ∆pqr, whose
normals at p, q, and r are close to EB, and whose area
is greater than area(EB) cannot have its smaller radius
of O(ǫ).

Consider the conic defined by the equation

f(x) = q11x
2 + 2q12xy + q22y

2 + r1x+ r2y + f

= xtQx +Rx + 1 = 0.
(4.1)

Without loss of generality, f = 1. Note that
Q is symmetric and that f(x) represents an ellipse
if and only if Q is positive definite. The area of
the ellipse is directly proportional to detQ−1. Now
we are ready to present the approximation algorithm;
refer to Algorithm 1. The first step in the algorithm
is linearization [20]. In general, an ellipsoid in d
dimensions admits a linearization of dimension d +
d(d+1)

2 ; thus, for our purposes, we lift to R
5. The

complexity of the convex hull C of the linearization L′ is,
in the worst case, O(n2) (Step 2). Note that any conic
in R

2 in the form of equation 4.1 becomes a hyperplane
in R

5 after linearization. Also note that a half-space in
R

2 maps to a half-space in R
5 after linearization.

After the linearization step, the next step (Step 3)
of the algorithm is to examine each 2-simplex (triangle)
of C to determine if there is an ellipse through its
three vertices that is almost contained in S; we want
to maximize the area among such ellipses2. Note that
each 2-simplex is adjacent to two 3-simplices and at
most five 4-simplices; each 3-simplex is adjacent to two
4-simplices. Each of the neighbors of a 2-simplex can
be obtained in constant time, assuming we have any
standard adjacency representation of the simplices in C.

2Note that EB linearizes to a plane in the linearization which
passes through three points and supports C since it is empty of
sample points. By convexity arguments, the three points that EB

passes through in the linearization define a simplex subset of C.
Algorithm 1 tries to find this 2-simplex in the linearization or a

simplex that corresponds to an ellipse that is larger than EB and
follows all the constraints of EB .



Once we fix a τ to process, we know that the ellipse
we seek passes through the vertices of τ (in R

2). Let the
vertices be p, q, and r. Then we have the relations in
Step 4 of the algorithm. These three relations help us
map the problem in 2-dimensional space, (r1, r2). We
can now represent the equation of a conic in terms of
R = (r1, r2). Now we solve the optimization problem in
Step 5, which computes an ellipse Eτp,q,r

passing through
p, q and r, whose normals at p, q, r each make a small
angle with the corresponding normals of S, whose center
is contained in the triangle ∆pqr, and whose small
radius is at least cǫ for some constant much larger than
1. But since the ellipse has to match the normal and
the triangle condition, its not hard to see that the ellipse
cannot have any sample points inside it; otherwise, the
normal condition is violated. Hence, we have an ellipse
Eτp,q,r

, which has all points of L outside or on it, passes
through p, q, and r, and has maximal area (Step 5).

Algorithm 1 Algorithm for computing an approximate
maximum-area inscribed ellipse.

Require: A point set L = {p[1], p[2], ..., p[n]} ∈ R
2

1: L′ = {(x2, y2, 1
2xy, x, y)|(x, y) ∈ L}

2: C = ConvexHull(L′)
3: for all τp,q,r ∈ C such that τp,q,r is a 2-simplex. do
4: Using the relations

ptQp+Rp+ f = 0(4.2)

qtQq +Rq + f = 0(4.3)

rtQr +Rr + f = 0(4.4)

represent q11 = ψ11(R), q22 = ψ22(R) and q12 =
ψ12(R). Note that ψ11(R), ψ22(R) and ψ12(R) are
all linear in R =

(

r1 r2
)

.
5: Solve the following optimization problem

min Aτp,q,r
= ψ11(R)ψ22(R) − ψ2

12(R)

subject to
ψ11(R)ψ22(R) − ψ2

12(R) > 0
ψ11(R) > 0
ψ22(R) > 0
The ellipse hyperplane supports C

The center of the ellipse lies inside ∆pqr.
The small radius of the ellipse ≥ cǫ.
Ellipse satisfies the normal constraints at p, q, r

6: if The problem is infeasible then
7: Aτp,q,r

= ∞
8: else
9: Let Eτp,q,r

be the ellipse corresponding to the
solution of the optimization problem.

10: end if
11: end for
12: Return Ealg = Max area Eτp,q,r

found in step 3.

The algorithm returns the area that is maximum
over all areas computed for feasible ellipses. We will
need the following lemma to bound the running time of
our algorithm (whose proof is deferred to the full paper):

Lemma 4.4. Given τp,q,r, the optimization problem in
Step 5, Alg 1 can be solved in O(1) time.

We are ready to prove the following theorem:

Theorem 4.1. In O(n2) time, Algorithm 1 returns an
ellipse Ealg such that

(1−
1

2c
)area(Ealg) ≤ area(E∗) ≤ area(EB) ≤ area(Ealg).

Proof. Note that Ealg passes though three points
of L and has no sample points inside it. Its small
radius is at least cǫ, where c is a constant much larger
than 1. (The existence of such a c is guaranteed by
Lemma 4.3.) We also know that EB is a feasible
solution of the optimization problem that we solve
using the algorithm, and the algorithm maximizes the
area; hence, area(Ealg) ≥ area(EB) ≥ area(E∗). Since
Ealg is free of sample points, S can penetrate it by a
distance of at most ǫ

2 , and hence if we shrink Ealg by a
factor of (1 − 1

2c ), it will be totally inside S and hence
(1 − 1

2c )area(Ealg) ≤ area(E∗), proving the inequality.
The main time taken by the algorithm is to examine

each 2-simplex of C and solve the optimization problem.
Lemma 4.4 readily implies that the running time of the
algorithm is O(n2).

Implementation. We have recently implemented a
variant of Algorithm 13. The algorithm we implemented
can be made to fail on contrived examples but usually
works well in practice for most input datasets. It re-
lies on the observation that for a dense enough sam-
pling, usually there exists an ellipse comparable in area
to EB passing through 5 sample points. In this case
we can just linearize the problem, and then for each el-
lipse passing through the 4-simplices, check feasibility
by testing (1) the normal condition, (b) the condition
that the ellipse center lies inside the convex hull of the
supporting points, and (3) the fatness of the ellipse. The
implementation outputs the ellipse that has maximum
area over all feasible ellipses. Two example runs of the
implementation are shown in Figure 3. The implemen-
tation is written in C++ and uses qhull for the convex
hull computation in R

5 [6].
We have seen how to use a linearization of 2-

dimensional ellipses to find the largest area ellipse inside

3See http://www.compgeom.com/˜piyush/potato/



a well-sampled smooth curve. Although one could try
to generalize this algorithm to higher dimensions, its
running time would be exponential in the dimension d.
Even for d = 3, it seems that the linearization step is
too slow to be practical.
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