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Abstract In this paper, we propose a multivariate time series model for sales count
data. Based on the fact that setting an independent Poisson distribution to each brand’s
sales produces the Poisson distribution for their total number, characterized as market
sales, and then, conditional on market sales, the brand sales follow a multinomial dis-
tribution, we first extend this Poisson–multinomial modeling to a dynamic model in
terms of a generalized linear model. We further extend the model to contain nesting
hierarchical structures in order to apply it to find the market structure in the field of
marketing. As an application using point of sales time series in a store, we compare
several possible hypotheses on market structure and choose the most plausible struc-
ture by using several model selection criteria, including in-sample fit, out-of-sample
forecasting errors, and information criterion.

Keywords Count data · Generalized linear model · Hierarchical market structure ·
MCMC · Poisson–multinomial distribution · Predictive density · POS time series

1 Introduction

Harvey and Fernandes (1989) proposed a univariate structural time series model
for count data—non-negative integer—to follow Poisson distribution, and Ord et al.
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92 N. Terui et al.

(1993) extended it to a multivariate time series model. They both applied a forecasting
method based on the exponentially weighted moving average with maximum likeli-
hood estimation. On the other hand, West et al. (1985) and Cargnoni et al. (1997)
developed time series models for variates following multinomial distribution by intro-
ducing dynamic linear models in terms of the Bayesian approach.

On the other hand, the stochastic models for count data have an interesting distribu-
tional property that the sum of independent Poisson variables produces the Poisson dis-
tribution and then, conditional on the sum, the Poisson variables follow a multinomial
distribution. In this paper, we propose a multivariate time series model based on this
Poisson–multinomial relationship in terms of a dynamic generalized linear model.

The model is directly built on the natural distributional assumption for discrete out-
comes of amount of sales, and it describes the possible market structures with nesting
hierarchical submarkets. Setting a Poisson distribution independently to each brand’s
sales produces the Poisson distribution for their total number, characterized as market
sales, and then, conditional on the market sales, we obtain multinomial distribution for
brand sales. Then the competitive relations of brand sales inside market are expressed
by the correlation of multinomial variables. Extending this Poisson–multinomial mod-
eling to a dynamic model in terms of a generalized linear model, we specify the market
structure based on the brand’s sales dynamics. We use “market structure” in terms of
which we can classify the brands into several submarkets, so that the brands are com-
petitive inside a submarket but not competitive outside it. We also forecast the several
levels of sales amounts, that is, brand sales, submarket sales and market sales.

Our modeling contributes to the literature in two ways. The first contribution is
through the modeling. West et al. (1985) proposed a dynamic model with multinomial
distribution, which forecasts the amount of brand sales relative to competitive brands,
i.e., market share among brands, because it models multinomial outcomes, when the
number of total counts is given as constant. Cargnoni et al. (1997) deal with several
sets of multinomial distributions in the same way; however, they share the properties
with West et al. (1985).

On the other hand, our proposed model makes it possible to accommodate not only
the market share but also the total amount of brand sales in the market or submarket.
That is, it describes not only the competitive relations between brands but also the
market and category expansions. Moreover, assuming the existence of different sub-
markets in the market, we jointly deal with several Poisson–multinomial distributions
by means of a nesting hierarchical structure. In this paper, we deal with a three-layer
hierarchical structure for the subjects focusing on marketing applications to our data-
set; however, our method can be extended to higher-order layers structures. As for
the model estimation, compared with Cargnoni et al. (1997), our modeling utilizes
an updated MCMC algorithm for computational efficiency to estimate the model and
constitute predictive density.

The second contribution is to marketing literature. Finding a particular structure
of market is an important step for marketers to consider not only when they try
to start up a new business, but also when they face the need to modify their strat-
egy in the existing markets. As shown in Lilien et al. (1992), Kamakura and Wedel
(2000), Hanssen et al. (2001) and Lilien and Rangaswamy (2003), numerous models
have been developed to define the market structure in the literature, for example,
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Finding market structure by sales count dynamics 93

Fig. 1 Market with no specific structure
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Urban et al. (1984), Grover and Dillon (1985), Grover and Srinivasan (1987) and
Colombo and Morrison (1989). The standard methods contain the perceptual map by
factor analysis of consumer survey data with ratings on the brand evaluations at a
specified time point, the segmentation by the clustering and mixture models of survey
or panel data, and the use of econometric models to estimate time invariant elasticity
across brands.

Most of previous methods typically use static models; however, every market should
continue to change over time, and thus it is desirable to incorporate dynamics in the
method for finding a market structure. Besides, the market is typically expressed as a
tree structure with several orders of hierarchy to define the submarkets. The preceding
models do not always reflect these hierarchies. Thus, the model needs to accommodate
hierarchical structures together with dynamics. The proposed model utilizes dynam-
ics of sales count time series to classify the brands into homogeneous submarkets in
nesting hierarchical structures. In addition, we can conduct sales forecasting at any
level (i.e., brand, submarket, and market) by extending the time horizon of model to
the future.

2 Models for defining market structure

We assume that there are I brands in the market and denote yi t by the amount of
sales for the brand i at time t (t = 1, . . . , T ) and yi t follows the Poisson distribution
independently with a time varying parameter λi t for i = 1, . . . , I . Then we obtain
the Poisson distribution for market sales, defined as the aggregate of brand sales,
nt = ∑I

i=1 yi t under the assumption that there is no specific structure between brands
in the market, as shown in Fig. 1.

That is, we have marginal distributions,

yi t ∼ Poisson (λi t ), nt ∼ Poisson

(
I∑

i=1

λi t

)

. (1)

Using the distributional property that when total number nt is given, the conditional
distribution of a respective brand’s sales ỹt = {yi t , i = 1, . . . , I } is derived as the
multinomial distribution with parameters (nt , {πi t = λi t/

∑I
i t λi , i = 2, . . . , I }),
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94 N. Terui et al.

ỹt |nt ∼ Multinomial (yi t |nt , πi t ). (2)

The sequential use of (1) and (2) produces the joint distribution for market and brand
sales,

p (nt , ỹt ) = p (nt ) p (ỹt |nt ). (3)

As is common in marketing, we assume that there are submarkets, implying that the
brands inside each submarket are correlated with each other in the sense that they are
engaged in competition; on the other hand, no substantial correlations are expected
between the brands outside their submarkets because their competitive relations should
be quite weak.

Extending the framework of the Poisson–multinomial relation in the above manner,
we decompose the market structure into L submarkets Mk so that ỹt = ⋃L

k=1 ỹ[k]
i t ,

where ỹ[k]
t = (y j t , j ∈ Mk)

′ means the vector of the brands that are grouped in the

Mk, k = 1, . . . , L . Then the aggregated sales at submarket level, m[k]
t = ∑

i∈Mk
ỹ[i]

i t ,

k = 1, . . . , L , follow independent Poisson distributions.
Conditional on m[k]

t , each of ỹ[k]
t |m[k]

t , k = 1, . . . , L , respectively, follow a multi-
nomial distribution, and ỹ[k]

t ’s are orthogonal each other, i.e.,(ỹ[l]
t |m[l]

t )⊥(ỹ[k]
t |m[k]

t )

for l �= k. From the definition of submarket, the brands outside submarkets should not
be competitive with each other, and this is consistent with the orthogonal property.

Next, let m̃t = (m[1]
t , . . . , m[L]

t )′ denote the L dimensional vector of submarket
sales. Then, m̃t |nt follows a multinomial distribution conditional on the sum of sub-
market sales, i.e. market sales nt = ∑L

k=1 m[k]
t . In all, we have the three layer hierar-

chical market structure model. We note that {ỹt } and {nt } are independent conditional
on {m̃t }.

Figure 2 illustrates the structure of this model. At the bottom layer, brands sales
follow independent Poisson distribution as an unconditional distribution. They are
aggregated up to submarket level at the middle layer, and further aggregated to mar-
ket level of top layer. Both kinds of aggregated sales counts unconditionally follow
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Fig. 2 Three-layer hierarchical market structure
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Poisson distributions with corresponding parameters. In the case of bottom layer,
conditional on the submarket sales, the brands under each submarket are correlated
through multinomial distribution. Then, by aggregating three submarket sales at the
market level, conditional on the market sales, the three submarket sales follow a
multinomial distribution, which represents a competitive relation between submarkets
through correlation between multinomial variables.

In the following, we first formally define the data distribution for variables in the
model and specify dynamic structure of generalized linear models. Then we express
the induced likelihood function, prior and posterior densities for Bayesian MCMC
inference.

Data distribution We consider the three-layer model with L number of submarket
Mk, k = 1, . . . , L . Suppose that each submarket Mk is composed of Nk brands, then
the total number of brands in the market can be connected by the sum of the number
of brands attributed to each submarket I = ∑L

j=1 N j .
In terms of these notations, the joint density function of I brand sales (bottom

layer), L submarket sales (middle layer), and market sales (top layer) are decomposed
into

p (nt , m̃t , ỹt ) = p (nt ) p (m̃t |nt ) p (ỹt |m̃t )

= p (nt )

L∏

k=1

⎡

⎣p
(

m[k]
t |nt

)
⎧
⎨

⎩

∏

j∈Mk

p
(

y j t |m[k]
t

)
⎫
⎬

⎭

⎤

⎦

= p (nt )

L∏

k=1

[
p

(
m[k]

t |nt

)
p

(
ỹ[k]

t |m[k]
t

)]
, (4)

where m̃t = (m[1]
t , . . . , m[L]

t )′ and ỹ[k]
t = {y j t , j ∈ Mk}. We then obtain the marginal

and conditional data distributions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nt ∼ Poisson
(∑I

i t λi t

)

m̃t |nt ∼ Multinomial
(
nt ,

{
π j t

})

ỹ[k]
t |m[k]

t ∼ Multinomial
(

m[k]
t ,

{
π

[k]
j t

})
, k = 1, . . . , L ,

(5)

where πi t = ∑Ni
j=1 λ

[i]
j t /

∑L
k=1

∑Nk
j=1 λ

[k]
j t , i = 1, . . . , L −1, and λ

[k]
j t is the parameter

of variable classified to the submarket Mk , and π
[k]
j t = λ

[k]
j t /

∑Nk
j=1 λ

[k]
j t ,

j = 1, . . . , Nk − 1.
That is, we have a Poisson distribution for market sales {nt } and L multinomial

distributions, i.e., a multinomial distribution for submarkets m̃t = (m[1]
t , . . . , m[L]

t )′
conditional on nt , and L multinomial distributions for brand sales {y j t , j ∈ Mk} when

the submarket sales {m[k]
t } are given.
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Next, we set a generalized linear model to have a structural equation and system
equation for the parameters in each layer distribution. Below, we define the structure
for three kinds of data distribution for 1:p(nt ), 2 : p(m̃t |nt ), and 3: p(ỹt |m̃t ).

Structural equation We define the structural equation for the parameters of each
layer’s data distribution, which is denoted using subscript s = 1, 2, and 3, as

η̃s
t = Fs

t θ̃ s
t + ṽs

t ; ṽs
t ∼ N

(
0, V s), (6)

where we assume that V s’s are uncorrelated each other. η̃s
t = {ηs

i t } are linked with the
parameters of data distribution;
s = 1 : {nt }

η̃1
t ≡ ηt = log

(
I∑

i=1

λi t

)

and
I∑

i=1

λi t ≡ λ̄t = exp (ηt ) , (7)

s = 2 : m̃t = (m[1]
t , . . . , m[L]

t )′.
The i th element of η̃2

t , η
2
i t = f (π2

i t ), is connected to the multinomial parameters
πi t by the relation

πi t = exp (ηi t )/(exp (η1t ) + · · · + exp (ηL−1t ) + 1) for i = 1, . . . , L − 1, (8)

s = 3 : ỹ[k]
t for k = 1, . . . , L − 1.

The multinomial parameter inside the submarket Mk is related to the link parameter
as

π
[k]
i t =exp

(
η

[k]
i t

) /(
exp

(
η

[k]
1t

)
+· · ·+exp

(
η

[k]
Nk−1t

)
+ 1

)
for i =1, . . . , Nk − 1.

(9)

The structural equation (6) is formulated by

ηs
i t = µs

i t + Xs′
i t β̃

s
i t + νs

i t for i = 1, . . . , P, (10)

where P refers to the number of independent parameters for each layer’s distribution.
That is, P = 1 for s = 1, P = L −1 for s = 2, and P = N j −1 for s = 3. Xs

it means
the vector of exogeneous marketing mix variables, and µs

i t represents the trend term
with local trend slope κs

i t and β̃s
i t is the response parameter vector.

System equation We define the dynamics on these parameters as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

µs
i t = µs

i t−1 + κs
i t−1 + ws

1i t

κs
i t = κs

i t−1 + ws
2i t

β̃s
i t = β̃s

i t−1 + w̃s
3i t .

(11)
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Then, the state vector θ̃ s
t is composed of a time varying trend (µ̃s′

t , κ̃s′
t ) = ({µs

i t }, {κs
i t })

and market response parameter vectors β̃s′
t = {βs

i t }, denoted as θ s
t = (µ̃s′

t , κ̃s′
t , β̃s′

t )′.
Fs

t of (6) is constituted from an explanatory variable matrix of constant and marketing
mix variables. We set w̃s

t = (ws′
1t , w

s′
2t , w̃

s′
3t )

′; then model (11) constitutes the system
equation with constant matrix Hs

t

θ̃ s
t = Hs

t θ̃ s
t−1 + w̃s

t ; w̃s
t ∼ N (0, W s). (12)

We note that, from the Bayesian viewpoint, this model is composed of two-stage
hierarchical models; that is, (6) represents the structure of the first stage prior on the
parameter η̃s

t with hyper-parameter θ̃ s
t , and (12) implies the second stage prior for θ̃ s

t .
In all, our model has non-Gaussian likelihood and two-stage hierarchical Gaussian
prior distributions on the parameters.

Likelihood function, prior and posterior densities The likelihood function is
expressed from data distributions [1] for t = 1, . . . , T as

p({nt }, {m̃t }, {ỹt }|{η̃1
t }, {η̃2

t }, {η̃3
t })

=
T∏

t=1

p(nt , m̃t , ỹt |η̃1
t , η̃

2
t , η̃

3
t )

=
T∏

t=1

p(nt |η̃1
t )p(m̃t |nt , η̃

2
t )p(ỹt |m̃t , η̃

3
t ). (13)

Assuming the prior density for covariance matrix of structural and system equations
for each layer p(V s, W s) = p(V s)p(W s) to be independent of other parameters, we
can express the prior distribution from (6) and (12) as

p({η̃s
t }, {θ̃ s

t }, V s, W s, s = 1, 2, 3)

=
3∏

s=1

p({η̃s
t }, {θ̃ s

t }, V s, W s)

=
3∏

s=1

{
T∏

t=1

p(η̃s
t |Xs

t , θ̃
s
t , V s)p(θ̃ s

t |θ̃ s
t−1, W s)p(V s)p(W s)

}

. (14)

Finally, combined with the likelihood (13) and the prior (14), we obtain the posterior
density for our model

p({η̃s
t }, {θ̃ s

t }, V s, W s |{nt }, {m̃t }, {ỹt }, {Xt })

=
3∏

s=1

{
T∏

t=1

p(zs
t |η̃s

t )p(η̃s
t |Xs

t , θ̃
s
t , V s)p(θ̃ s

t |θ̃ s
t−1, W s)p(V s)p(W s)

}

, (15)

123
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where

p
(
zs

t |η̃s
t

) =

⎧
⎪⎨

⎪⎩

p
(
nt |η̃s

t

)
if s = 1

p
(
m̃t |nt , η̃

s
t

)
if s = 2

p
(
ỹt |m̃t , η̃

s
t

)
if s = 3.

(16)

3 Estimation and forecasting

In addition to the standard Bayesian inference on state space modeling by DLM
(dynamic linear models) by West and Harrison (1989), we employ the MCMC approach
to estimate the model, in particular, using Metropolis–Hastings sampling for the con-
ditional posterior density of link functions

p(η̃s
t |Xs

t , θ̃
s
t , V s, {ỹt }) ∝ p(zs

t |η̃s
t )p(η̃s

t |Xs
t , θ̃

s
t , V s). (17)

Once the value of η̃
s(k)
t is given, the structural equation (6) coupled with the system

equation (12) constitute a conventional Gaussian state space model. The multi-move
sampler by Carter and Kohn (1994) is employed to sample the state vectors. We
assume that the initial values of state vector θ̃

s
0 follows a multivariate normal distri-

bution N (θ̄
s
0, d × I ). The mean vector θ̄

s
0 was set as the estimate of coefficient on

the static regression, that is, the regression with time invariant coefficient, and we set
d = 0.1 for empirical application.

As for forecasting, we evaluate the predictive density p(zs
T +1|data) of one-

step- ahead forecast, which is defined as

∫

p(zs
T +1| η̃s

T +1, data)p(η̃s
T +1 |θ̃ s

T +1, V s, data)

p(θ̃ s
T +1|θ̃ s

T , W s, data)P(V s)P(W s)dθ̃ s
T dV sdW s, (18)

where “data” means the observed data ({ỹt }, {Xt }). The computationally efficient
Monte–Carlo integration can be applied to evaluate this predictive density. The details
are described in the Appendix. Extending the one-step-ahead prediction, we obtain
the joint predictive density p(zs

T +1, zs
T +2, . . . , zs

T +h |data).
As an application, we can make an inference on future events. For example, if we

are interested in the brand level relationship between brand 1 and 2 of submarket Mk

in the h step ahead, we can evaluate the posterior probability

Pr{y[k]
1,T +h > y[k]

2,T +h |data}

=
∫∫∫

�={y[k]
1,T +h>y[k]

2,T +h}
p(ỹ[k]

T +1, ỹ[k]
T +2, . . . , ỹ[k]

T +h |data)d ỹ[k]
T +1

× d ỹ[k]
T +2, . . . , d ỹ[k]

T +h . (19)

in the process of evaluating joint predictive density as the by-products.
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Finding market structure by sales count dynamics 99

Table 1 Summary of data

Brand Average Average Average Average
weekly sales weekly price (/100g) weekly display weekly feature

A1 33.74 90.04 2.09 0.40

B1 74.11 90.33 2.10 0.40

C1 51.29 89.59 2.09 0.40

A2 61.54 87.29 1.52 0.23

B2 87.00 83.71 2.73 0.23

C2 49.67 80.62 3.39 0.20

A3 27.22 101.22 0.69 0.19

B3 48.13 99.31 0.73 0.19

C3 24.42 99.03 0.72 0.18

4 Analysis of POS data

Data and variables The store level scanner—point of sales (POS)—time series in the
curry roux category are applied to our model. The weekly series comprises three mak-
ers that produce three brands each, a total of nine brands during 110 weeks. The first
100 weeks are used for estimation and the last 10 weeks are reserved for validation of
forecasting. The data contain the amount of brand sales for {yi t }, and “prices”, display
(in-store promotion)” and “features (advertising in newspaper)” for marketing mix
variables {Xit }. The display and feature are binary data taking one when it was on,
and zero when it was off. Table 1 displays the summary statistics of these variables.

As for the explanatory variable Xs
it in the structural equation (10) for the case of

s = 3 : brand sales, in addition to the second-order stochastic trend term, we use its
own price, displays, and features as well as those of all competitive brands inside the
corresponding submarket. In case of the s = 2 : submarket sales, its average price
and number of displays and features aggregated over the brands in its own submarket,
and those of competitive submarkets, are used. Xs

it contains a second-order stochastic
trend with no explanatory variables for s = 1 : market sales. Hence, the matrix Fs

t in
the structural equation is composed of known constants constructed by these variables.
The matrix Hs

t of system equation (12) is also defined by known constants from the
relationship (11).

Each of three makers, A, B, and C, produces three categories of products according
to the level of spiciness to accommodate the difference in consumer tastes (product
category 1: Not spicy, 2: Medium spicy, 3: Spicy). Thus, we can easily consider that
these brands are competitive between product categories as well as between makers,
and thus we employ the hypotheses of two kinds of market structure induced by the
competitive relations between product categories and between makers. In addition to
these, after looking at the data, we can classify the brands by the usage of the product,
that is, “ordinary” or “luxury” use. In fact, as shown in Table 1, the brands produced
by makers 1 and 2 are not considered too expensive for frequent ordinary use. On
the other hand, maker 3 is selling products targeted toward luxury use. In fact, the
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A C 
1 A1 B1 C1 
2 A2 B2 C2 
3 A3 B3 C3 2 

1 
Maker Usage 

Product Category 

B

Fig. 3 Market structures—instant curry data

Table 2 Model specification

brands of maker 3 have higher prices and fewer promotions than those of the other
makers. We refer to this criterion as “usage” to define the market. In all, we have three
possible market structures: (1) product category, (2) makers, and (3) usage, as shown
in Fig. 3.

Model specification The top of Table 2 shows the log of marginal likelihood (ML) as
an in-sample fit criterion, and two kinds of predictive measure, i.e. the deviance infor-
mation criteria (DIC) by Spiegelhalter et al. (2002) and the root mean squared errors
(RMSE) of 10-step-ahead forecasts of hold-out samples as out-of-sample criteria.

Based on expected deviance as a measure of predictive accuracy for Bayes model-
ing, DIC for data y and parameter θ is defined by,

DIC = 2
1

M

M∑

l=1

D(y, θ(m)) − D(y, θ̃ ), (20)

where D(y, θ̃ ) = −2 log p(y|θ) and p(y|θ) means the likelihood of (13), and θ(m) is
the mth draw of MCMC and θ̃ is posterior mean through M times iterations.
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Market (Market sales)
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Fig. 4 In-sample performance and forecasting—market a in-sample fit, b forecasting

As for the RMSE, there are three levels for forecasting error in this case: market,
submarket, and brand. These errors including null model of “no” structure are reported
in the lower panel of the table. The choice of the best hypothesis of market structure
depends on which errors are to be considered; we employ two kinds of measure,
“sum1” and “sum2”. “sum1” is the sum of all of errors induced by the model in the
sense that we have no specific preference on the levels to be predicted. On the other
hand, “sum2” is defined to be the sum of market and brand errors by considering that
the number of submarket are different between (1), (2) and (3), where the number of
errors is the same across the hypotheses.

According to the three criteria, the market structure defined by “usage” is supported.
In fact, there is no great difference in the values for ML and DIC; however, RMSE is
more evident.

The left panel of Fig. 4 shows the predicted fit of in-sample market sales data, where
each observation is denoted by a dot and the estimates are connected by straight lines.
We observe that the model fits the market sales quite well over the observational period.
The right panel depicts its ten-step-ahead forecasting of market sales, where the mean
values of predicted density at each prediction step are connected by a continuous line,
and 2.5 and 97.5% quantiles of the density at each step are connected by dashed lines.
The hold-out samples are also denoted by the dots in the figure. This shows that the
market will gradually expand over the next 10 weeks, and these forecasts are consistent
with the movement of hold-out samples. We generate the forecasts keeping the last
observation Xs

iT for the prediction steps.
Figure 5 conveys the same information for submarket and brand sales. For saving

spaces, we take up only a few pictures. We observe that the model performs quite well
not only for in-sample but also for out-of-sample criteria at these levels.

Figure 6a indicates the trend for the market sale and suggests that the market sale
has a little downward trend after 70th week with a cyclical movement. Figure 6b and c
depicts time varying coefficient estimates for submarket 1 and one of the brand in
the submarket, respectively. The Fig. 6b shows that the feature promotions of both
submarkets help to increase of the sales of “usage 1” submarket because the response
parameters of feature promotions of both submarket keep taking positive values on
the mean parameter of usage 1 submarket. The Fig. 6c suggests that the price cut of
B1 promotes the increase of brand A1’s sales because the price coefficients of B1
on the A1’s mean parameter are negative throughout sample. That is, by considering
negative correlation between A1 and B1, we find unexpected relation so that B1 is not
hostile to A1 in the sense of pricing strategy. However, other brand’s pricing works
competitive to A1.
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Fig. 5 In-sample performance and forecasting—submarket and brand a in-sample fit, b forecasting

Forecasting future events Finally, we forecast future events regarding the competi-
tive relation between submarkets and brands. Figure 7a shows the posterior probability
of submarket “usage 1” having larger sales than those of “usage 2,”
Pr{M1T +s(= ∑N1

j=1 y[1]
jT +s) > M2T +s(= ∑N2

j=1 y[2]
jT +s)|data} for s = 1, . . ., 10. The

figure suggests that the submarket “usage 1” maintains larger sales than “usage 2” with
high probability, more than 0.825, over the next 10 weeks; however, its probability is
gradually decreasing.

Figure 7b indicates the future competitive relations between brands in “usage 2”
submarket, where we evaluate the posterior probability of Pr{y[2]

jT +s > y[2]
kT +s |data}

for the brand A3, B3 and C3. It shows that there will be still higher probability of the
event “B3 > C3”; however, C3 will be getting the share slightly from B3. On the other
hand, the relations “A3>C3” and “A3>B3” will be relatively stable. The picture also
suggests that the probabilities of “B3>C3” and “A3>C3” will fall a bit at three and
six weeks ahead, although this change is not so significant.

5 Concluding remarks

In this paper, we proposed a multivariate time series model for discrete outcomes to
find the market structure between brand sales and to forecast the amount of brand
sales as well as their submarket and market sales. The model was directly built on
the natural distributional assumption for discrete outcomes of amount of sales. We
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Fig. 6 Trend and time varying market response a trend for market sales, b time varying coefficient of
feature for submarket “Usage 1”, c time varying coefficient of price on A1

extended Poisson–multinomial modeling to a dynamic model in terms of a dynamic
generalized linear model. We employed the Bayesian MCMC approach to estimate the
model and constitute predictive density. We showed that a higher-order layers model
could be useful to find market structure.

We proposed a three-layer hierarchical structure model with “flat” submarkets,
which means that the brands are classified into submarkets so that they are compet-
itive at the same level. However, the model can be easily extended to express more
complex hierarchical structures, for example, irregularly bifurcated to describe an
“umbrella” structure known in marketing.

There are a couple of problems for future research. One is the extension of the
theoretical study. The model could have an over-dispersion of in-sample as well as
out-of-sample predictions, which stems from the fact that Poisson distribution has a
variance identical with the mean parameter by nature. This means that the variance of
predicted sales gets larger whenever the mean level is higher. For this over-dispersion
problem, it is shown in, for example, McCullagh and Nelder (1990) that compound
Poisson distribution can be employed, whereas several Poisson distributions are mixed
by the gamma density so that the induced compound Poisson distribution has different
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Fig. 7 Forecasting future events a submarket sales, b brand sales

mean and variance values. It is also known that several independent compound Poisson
distributions, when their sum is given, have a similar relationship with compound
multinomial distributions characterized as mixed negative binomial distributions. In
addition, the Zero-inflated Poisson (ZIP) model by e.g., Lambert (1992) could be also
applied to our modeling when the data contain many zeros. This modeling demands
more complicated procedures of computation. The expected gains from this extension
could not be substantial, compared with the development of a new model, and thus
we would like to leave this modification of model for future research.

From the view point of developing marketing models, we would like to explore
the problems of dynamic change of market structure, endogeneity between sales and
marketing variables, and more elaborated selection of explanatory variables, e.g., the
choice of order of stochastic trend for each subject, pricing and promotional variables
to extend our model.

Another problem is on the empirical research. As mentioned above, the proposed
model can depict more complicated market structure with irregularly bifurcated sub-
markets. In particular, it is of much interest to find a market with umbrella structure
in the point of brand management for the firms producing several brands in the same
category. The existing methods are not easily applicable to that problem, at least, in
the way of incorporating sales dynamics. We are not ready to apply this structure to
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our dataset because it is evident that the dataset has no such relations. The usefulness
of our model could be shown further when another dataset with possible umbrella
structure gets available.

Appendix A: MCMC Algorithm

A.1 Generalized linear model Generating {η̃s
t } for link function

When the initial values of (η̃
s(0)
t , θ̃

s(0)
t , V s(0)) are given, the conditional posterior

density of η̃s
t is defined by

p(η̃s
t |Xs

t , θ̃
s
t , V s, {yi t }) ∝ p(zs

t |η̃s
t )p(η̃s

t |Xs
t , θ̃

s
t , V s),

where p(zs
t |η̃s

t ) is the data density of nt with Poisson when s = 1, and multinomial
distributions of m̃t |nt and ỹt |m̃t when s = 2 and 3 respectively. The last term on the
right-hand side is the prior density for η̃t , which is defined as structural equation (6).

Then, we use Metropolis–Hastings with a random walk algorithm,

η̃
s(k)
t = η̃

s(k−1)
t + ω, ω∼N (0, 0.1Is),

where Is is an identity matrix with corresponding dimensions to the case of “s”.
Acceptance probability α is defined as

α(η̃
s(k)
t , η̃

s(k−1)
t ) = min

(
p(η̃

s(k)
t |Xs

t , θ̃
s(k)
t , V s(k), {yi t })

p(η̃
s(k−1)
t |Xs

t , θ̃
s(k−1)
t , V s(k−1), {yi t })

, 1

)

.

Then, using uniform random number u ∼ U (0, 1), we determine the rule of accep-
tance of random draws as

η̃s
t =

⎧
⎪⎨

⎪⎩

η̃
s(k)
t accepted if u ≤ α

(
η̃

s(k)
t , η̃

s(k−1)
t

)

η̃
s(k−1)
t accepted if otherwise.

A.2 Forecasting sales and constituting predictive density

Given the mth draw of MCMC, {θ̃ s(m)
t , V s(m), W s(m)} for s = 1, 2, 3,

(i) obtain the forecast of parameter of market sales (total number) λ
1(m)
1t+1 = exp

(η
1(m)
t+1 ) from the one-step-ahead forecast η

1(m)
1t+1 of structural equation (6) gener-

ated using θ
1(m)
t+1 in the system equation ( 12),

(ii) get the forecast of market sales n(m)
t+1 ∼ Poisson(λ

1(m)
t+1 ),
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(iii) given n(m)
t+1 together with the parameter values {π(m)

i t+1} derived from {η2(m)
i t+1}

in (10), generate the submarket sales forecasts m̃[k](m)
t+1 by sampling from the

multinomial distribution

m̃(m)
t+1 |n(m)

t+1 ∼ Multinomial(n(m)
t+1, {π(m)

i t+1}).

(iv) given m̃[k](m)
t+1 together with the parameter values {π [k](m)

i t+1 } of multinomial dis-

tribution of submarket Mk derived from {η3(m)
i t+1} of (10), generate the respective

brand’s forecasts by sampling from the multinomial distribution

ỹ[k](m)
t+1 | m̃[k](m)

t+1 ∼ Multinomial (m̃[k](m)
t+1 , {π [k](m)

i t+1 }) for k = 1, . . ., L .

(v) iterate the steps (i)–(iii) M times.

Then, the empirical distribution of {ỹ[k](m)
t+1 , m = b, . . . , M} approximates the predic-

tive density (18) in case of zT +1 = y[k]
t+1. We set the burn-in parameter b = 4,000 and

the total number of iterations M = 6,000 for empirical application after checking the
convergence. By extending the forecasting steps above up to H step ahead, we obtain
the MCMC sample path {ỹ[k](m)

t+1 , ỹ[k](m)
t+2 , . . . , ỹ[k](m)

t+H } for the joint predictive density.
As for the estimate of future events between variables (19), we count the number of
times that the event is held in the (M − b) times iterations and its ratio gives the
estimate.
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