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Abstract
This paper extends the problem of palindrome searching into a higher dimension, addressing two
definitions of 2D palindromes. The first definition implies a square, while the second definition
(also known as a centrosymmetric factor), can be any rectangular shape. We describe two
algorithms for searching a 2D text for maximal palindromes, one for each type of 2D palindrome.
The first algorithm is optimal; it runs in linear time, on par with Manacher’s linear time 1D
palindrome algorithm. The second algorithm searches a text of size n1 × n2 (n1 ≥ n2) in
O(n2) time for each of its n1 × n2 positions. Since each position may have up to O(n2) maximal
palindromes centered at that location, the second result is also optimal in terms of the worst-case
output size.
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1 Introduction

Palindromes are strings that read the same forwards and backwards. Formally, a string P is
a palindrome if it is of the form uauR, where u is a non-empty string and uR is its reverse;
a is the empty string or a single character. a is called the gap, while u and uR are called
respectively the left arm and right arm of the palindrome. Palindromes have long drawn the
attention of computer science researchers. The classical online and linear time palindrome
algorithm is due to Manacher [21] in 1975. A palindrome variation called a palstar, which
is loosely defined as the concatenation of palindromes, was studied as well in the 1970’s by
[19] and [11]. There is later research concerning searching for palindromes when there is a
parallel model [3][4].

Other variations of palindrome search that have been studied more recently include
gapped palindromes, complementary palindromes, approximate palindromes, and compressed
palindromes. A gapped palindrome is when the size of the gap |a| ≥ 2 [20]. Complementary
palindromes are relevant in DNA, and it is where a character matches its complementary
character instead of itself, e.g. AACGTT. [20]’s gapped palindrome algorithm can be ad-
apted to find complementary gapped palindromes (which they refer to as biological gapped
palindromes). Approximate palindromes have an allowed number of variations between the
arms, and they have been studied in run-length compressed texts [6] as well as in the online
model [2]. An interesting algorithm that searches for palindromes with edit distance of k

is presented in [15]. Compressed palindromes have been studied as well under straight line
programs [22].

Extending the concept of a palindrome to two dimensions has various applications. For
example, face recognition technology exploits symmetry characteristics of the human face
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19:2 2D Palindromes

S A T O R
A R E P O
T E N E T
O P E R A
R O T A S

Figure 1 Two examples of sq2DPs. The one on the left is written in Latin, while the one on the
right is in Hebrew.

in order to extract a set of significant features [7]. Determining the global maximum of
local reflectional symmetry in grey level images is related to genetic algorithms [18]. [14]
creates palindromic shapes as representations of the intrinsic and extrinsic symmetries of
2D articulated planar shapes.

This paper presents algorithms that work with two different definitions of 2D palin-
dromes. The first definition dates back to the early Romans, and it can apply only to a
square pattern; hence, we refer to it as a sq2DP. The second definition is termed a centrosym-
metric factor1 in [5]. This type of 2D palindrome can take on any rectangular shape and
thus we refer to it as a rect2DP. To the best of our knowledge, the problem of searching a
2D text for maximal 2D palindromes has not been previously studied.

I Definition 1. A sq2DP is an m ×m 2D pattern that admits four symmetries: identity,
two diagonal reflections, and 180◦ rotation.

For example, Figure 1 portrays two famous sq2DPs. The one on the left is the first
dateable representation of this type of 2D palindrome, and it was found in the ruins of
Pompeii. The language is Latin, and it means, “the sower [planter] Arepo works with the
help of wheel [a plough]” [10][24]. The one on the right is a sq2DP formed of five Hebrew
words, of five characters each. It was written by Rabbi Abraham ibn Ezra (1089-1164) in
response to the question as to whether a fly landing in honey makes the honey not kosher.
Its translation is: “We have explained that the glutton [fly] who is in the honey was burned
and incinerated [i.e., it disintegrated and therefore does not make it not kosher]” [23].

This problem is important to group theorists, in the field of mathematics. A sq2DP is
a 2D pattern invariant under the subgroup generated by the two diagonal reflections of the
dihedral group known as D8. The D8 group is one that is formed by the set of a square’s
eight symmetries (four rotations and four reflections).

I Definition 2. A rect2DP is a rectangular block of m1 rows and m2 columns that admits
the two symmetries of identity and 180◦ rotation.

Each 2D palindrome has a center, which is the point that results in an equal number of
columns to the left and right, as well as an equal number of rows above and below. The
technical definition of the center differs slightly depending on the type and size of the 2D
palindrome. Given an m×m sq2DP, if m is odd, the center is at location (dm

2 e, d
m
2 e). If m

1 The paper studies the complexity of 2D Sturmian sequences in terms of the number of centrosymmetric
factors that can occur in a 2D Sturmian sequence. Although their definition uses a binary alphabet
due to its context, this paper assumes any bounded alphabet.
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Table 1 Two examples of rect2DPs. The left one’s center is between the two 3’s.

1 0 2 4
0 3 3 0
4 2 0 1

n e v e r o d
d o r e v e n

is even, the center is in between rows and columns. Similarly for a rect2DP, if the number
of rows (resp. columns) is even, the center is placed between rows (resp. columns). For
example, the center of the left rect2DP in Table 1 is in the second row between the two 3’s.

We present one algorithm for sq2DP, and one for rect2DP. Both algorithms consider each
possible position of a center, and then locate the 2D palindrome(s) centered there. As with
1D palindromes, we are interested only in the 2D palindromes that are maximal. A sq2DP
of size m ×m is maximal if enlarging it by one on all sides – to size (m + 2) × (m + 2) –
results in a pattern that is not a sq2DP. There is exactly one maximal sq2DP centered at
each possible center position. Similarly, a rect2DP is maximal if it is not contained within
a larger rect2DP with the same center. For a given text position, a maximal rect2DP is
the highest rect2DP for its width or the widest rect2DP for its height. Thus, there may be
several maximal rect2DP centered at a given position.

The remainder of this paper is organized as follows: Section 2 presents an algorithm for
locating all maximal sq2DP in a given 2D text. Its input is T of size n× n, and its runtime
is linear, i.e. O(n2). This is on par with Manacher’s linear palindrome algorithm and stems
from the fact that there is exactly one maximal palindrome centered at each position. In
Section 3, we describe a different algorithm that searches for maximal rect2DP. Its input is
T of size n1 × n2 (where n1 ≥ n2), and its runtime is O(n1n2

2). We conclude in Section 4
with our plans for future work.

2 Square 2D Palindrome

The input to the algorithm is a 2D text T over a bounded alphabet Σ. For simplicity, we
assume T is of size n×n, however, the algorithm can be used for any rectangular text. The
algorithm searches T for all maximal sq2DP that occur in T .

The basis of the algorithm is that the symmetry property of palindromes in one dimension
also applies to sq2DP. In 1D, the palindromes that are substrings of the left arm of a
palindrome will appear as well in the right arm. To illustrate, consider the lengths of the
maximal palindromes centered at each position in the string abacaba: 1,3,1,7,1,3,1, and note
the symmetry of this numerical list (around its center).

Henceforth we distinguish between the two diagonals of a square as follows. The diagonal
that extends from the upper left corner to the lower right corner is called the main diagonal,
and the diagonal that extends from the upper right corner to the lower left corner is called
the anti-diagonal. Assume that P is a maximal sq2DP in T centered at position (Ci, Cj).
Suppose we are considering location (i, j) of T as a possible center for a palindrome, and
(i, j) is contained in the bottom right triangle of the larger palindrome P that is centered
at (Ci, Cj). Further assume that both the maximal palindrome centered at (i, j) and at the
mirror position of (i, j) over the anti-diagonal of P are completely contained within P . We
can conclude the following:

I Observation 1. The maximal palindrome centered at a location (i, j) is identical to the
maximal palindrome centered at the mirror position of (i, j) over the anti-diagonal of P .

CPM 2016
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The observation follows directly from the symmetry that the palindrome has over its anti-
diagonal. As in 1D, the smaller palindromes contained in the upper triangle are mirrored
exactly in the lower triangle. Note that this is true whether we use either diagonal, but our
algorithm uses only the values over the anti-diagonal.

The idea of the algorithm is to use Observation 1 as follows. When searching for a
palindrome centered at location (i, j) that is contained in a larger palindrome P , we first
consider the value from the mirror image of position (i, j) over the anti-diagonal of P . If
the maximal palindrome at the mirror image extends beyond the left boundary of P , then
we take the minimum of the value at the mirror image and the boundary of P . Following
this initial setting, we use the naive method to check whether it is possible to extend the
palindrome centered at (i, j) beyond the right boundary of the containing palindrome. This
mimics the algorithm of Manacher in two dimensions, but of course additional techniques
are needed to render the algorithm linear time.

2.1 Preprocessing Stage
The text T is preprocessed by constructing a generalized suffix tree (GST) for the columns
of T , from bottom to top and from top to bottom, and for the rows of T , from left to right
and right to left. Then, it is preprocessed to allow O(1)-time longest common prefix (LCP)
queries.

We define forward subcolumns and subrows (resp.) beginning at any location (i, j) as:
c(i, j) = T [i, j] . . . T [n, j], r(i, j) = T [i, j] . . . T [i, n]. Similarly, the reverse subcolumns and
subrows are denoted by: c′(i, j) = T [i, j] . . . T [1, j], r′(i, j) = T [i, j] . . . T [i, 1].

Using these subcolumns and subrows, we can define four directions of L’s cornered at a
particular location (i, j), as subcolumn-subrow pairs2.

1. A “backwards L,” denoted Li,j = 〈c′(i, j), r′(i, j)〉, consists of a pair of T ’s reverse sub-
column and reverse subrow.

2. An “upside down L,” denoted L
i,j = 〈c(i, j), r(i, j)〉 consists of a pair of T ’s forward

subcolumn and forward subrow.
3. An L, denoted Li,j = 〈c′(i, j), r(i, j)〉, consists of a pair of T ’s reverse subcolumn and

forward subrow.
4. An “upside down backwards L,” denoted L

i,j = 〈c(i, j), r′(i, j)〉, consists of a pair of T ’s
forward subcolumn and reverse subrow.

We also define constant time symmetry checking between L and L. This can be done
by taking the minimum value of the LCP of the corresponding sides of the L’s when re-
flected over the anti-diagonal. Specifically, LCP (Li,j , Lp,q) = min(LCP (c′(p, q), r(i, j)),
LCP (c(i, j), r′(p, q))). Similarly, in the other direction, the longest symmetric prefix between
L and L, reflected over the main diagonal, can be found in constant time.

2.2 Scanning Stage
In the scanning stage of the algorithm, we define a set of forward diagonals in the text,
parallel to the main diagonal, d = −(n− 1) to (n− 1). This is similar to the method used
by Amir and Farach [1] for multiple pattern matching of square patterns. We number each

2 These L’s are similar to the L’s defined by Amir and Farach in [1]; the L-suffix tree of Giancarlo [12]
uses a similar concept.



S.H. Geizhals and D. Sokol 19:5

forward diagonal d = i − j, the difference between its row and column coordinates. Note
that d = 0 is the main diagonal, d > 0 are the diagonals below the main diagonal, and d < 0
are the diagonals above the main diagonal. Each diagonal contains n− |d| positions, where
|d| represents the absolute value of d.

Since the same procedure is performed on each forward diagonal, we describe the al-
gorithm for a single forward diagonal d. The goal of the algorithm is to fill d’s integer array
pals which corresponds to the n−|d| positions on diagonal d in T . Each element in pals will
contain a value representing the maximal sq2DP centered at the corresponding position in
T . Value v indicates that it consists of the position itself, plus v in the four directions (up,
down, left, and right) – i.e., a sq2DP of size (v ∗ 2− 1), with this position as its center.

We explain how Algorithm 1 works on diagonal d ≥ 0. For d < 0, the same algorithm
works with minor modifications to indices. The variable maxCenter is the center of the
sq2DP that has extended the farthest; maxCenter+pals[maxCenter] is the rightmost (and
lowest) position it reaches. j is a pointer that moves along the positions on the diagonal one
at a time, and at each position we determine the size of the maximal sq2DP centered at the
position pointed to by j.

For each j, the value in pals[j] is set in a way similar to Manacher [21]: if the position
is past maxCenter + pals[maxCenter], then it has never been seen yet, and therefore its
value in pals is initialized to 1. If the position is before maxCenter + pals[maxCenter],
then it is known to be part of a palindrome, and therefore its value in pals is initialized to
the value of its mirror image over maxCenter; but if that value, when added to j, would
extend beyond maxCenter + pals[maxCenter], then the value is reduced so that it doesn’t
extend. Following the initial setting of the value in pals[j], a while loop continually performs
constant-time symmetry checking between the L’s of different orientation to check how far
the current palindrome extends.

One such square is demonstrated in Figure 2. Diagonal d > 0 is depicted and location j

on diagonal d is depicted as the large dot. The LCP queries start one beyond j +pals[j] and
j − pals[j]: one involves L(straight vertical and horizontal lines) with L (dashed vertical
and horizontal lines), and the other query involves L (dashed vertical and straight horizontal
lines) with L(straight vertical and dashed horizontal lines).

Although both reflectional symmetries must be checked individually, it is not necessary
to explicitly check the 180◦ rotation, since it is implied by transitivity from the reflectional
symmetries. Specifically, location (i, j) must match its symmetric location over the main
diagonal, which is (j, i). By the anti-diagonal symmetry, T [j, i] = T [n − i, n − j] which is
exactly the location symmetric to (i, j) by the 180◦ rotation.

Note that the algorithm works with sq2DPs of odd × odd dimensions; for even × even
ones, include the following modifications: before the preprocessing stage, add a row to the
top and the bottom of T , plus a row between every two rows. Also add a column on the left
and the right of T , plus a column between every two columns. The added rows and columns
are filled with a character that does not appear in T ; and T of size n × n is now of size
(2n + 1)× (2n + 1). When the scanning stage outputs a sq2DP of size (2v + 1)× (2v + 1),
where v is even, that is indicative of a sq2DP of size v×v, once the added rows and columns
are removed.

2.3 Example
Using Table 2, we will demonstrate the scanning stage with an example, at the point where
d = 0 and j = 6 (for position T [6, 6]; it is underlined). This position is contained in a
palindrome, as maxCenter + pals[maxCenter] = 5 + 5 = 10 extends beyond it. Therefore,

CPM 2016



19:6 2D Palindromes

Figure 2 LCP queries on position j (large dot) of diagonal d > 0. One query involves a backwards
L (straight vertical and horizontal lines) with an upside down L (dashed vertical and horizontal
lines), and the other involves an L (dashed vertical and straight horizontal lines) with an upside
down backwards L (straight vertical and dashed horizontal lines).

Algorithm 1: Algorithm for sq2DP.
input : GST of the columns and rows of T in forward and reverse order, diagonal d

output: diagonal d’s integer array pals, of size n− |d|, containing the values of the
maximal sq2DP centered at the corresponding positions in T

1 maxCenter = 1
2 pals[1] = 1
3 for j = 2 to n− |d| do //for positions j on diagonal d

4 i = d + j //jth position on diagonal d is at T [d + j, j] (if d ≥ 0)
5 if maxCenter + pals[maxCenter] ≤ j /* position not known to be part of

palindrome */

6 then
7 pals[j] = 1
8 else
9 pals[j] = min{pals[2 ∗maxCenter − j], maxCenter + pals[maxCenter]− j}

10 while (j + pals[j] < n) and (j − pals[j] > 1) and /* in bounds */

/* The following two LCP queries check each of the diagonal symmetries, verifying
whether the current palindrome can be enlarged by one layer all around. */

11 LCP (Li−pals[j]−1,j−pals[j]−1, Li+pals[j]+1,j+pals[j]+1) ≥ 2× pals[j] and
12 LCP (Li+pals[j]+1,j−pals[j]−1,

L

i−pals[j]−1,j+pals[j]+1) ≥ 2× pals[j]
13 do
14 pals[j]++
15 end
16 if j + pals[j] > maxCenter + pals[maxCenter] then
17 maxCenter = j

18 end
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Table 2 Text T (left) and d = 0’s pals array (right), at the point where the algorithm will
calculate the value for T [6, 6] in pals[6].

1 2 3 4 5 6 7 8 9 10
1 a b b b b a a b b e
2 b c c c b c c c b e
3 b c c c b c c c a e
4 b c c c b c c c a e
5 b b b b a b b b b a
6 a c c c b c c c b c
7 a c c c b c c c b c
8 b c c c b c c c b c
9 b b a a b b b b a b
10 e e e e a c c c b c

index 1 2 3 4 5 6 7 8 9 10
value 1 1 3 1 5 ? ?

its value in pals is that of its mirror image over maxCenter: 1. The two LCP queries
indicate no extensions. Then j = 7, and that refers to T [7, 7] (underlined). Its value in pals

is that of its mirror image over maxCenter – T [3, 3]’s value of 3. LCP queries are performed,
in an effort for a larger sq2DP, and they start with a square of size 7× 7 (as sizes 3× 3 and
5× 5 are already known to be part of the sq2DP). They do indicate a sq2DP of size 7× 7,
but then the algorithm cannot continue as it would go out of bounds. Thus, maxCenter

is set to point to this position and pals[7] is set to 4. Then j is 8, and the algorithm will
calculate the value of pals[8] for T [8, 8].

2.4 Runtime
I Theorem 3. The time complexity for finding all maximal sq2DP in a text of size n × n

is O(n2).

Proof. The runtime of the preprocessing stage is as follows: the construction of the GST
is in time linear to the size of T [8]. Then it takes O(n)-time to preprocess to allow for
constant-time LCP queries [13].

The scanning stage runs in O(n2) time. This is because Algorithm 1 is run on each of
the 2n − 1 diagonals. There are O(n) positions j per diagonal (as seen by the number of
iterations of the for loop in Algorithm 1). As in Manacher’s algorithm, the initial value in
pals is copied from the mirror image around maxCenter, and therefore each matching L
is compared exactly once. Each mismatching L can be charged to the center for which it
mismatched since each center encounters at most one mismatch. J

3 Rectangle 2D Palindrome

Working with rect2DPs is different than working with sq2DPs, as the mirror image property
of Observation 1 is unique to squares and does not hold for general rectangles. Therefore,
we use a different approach to finding them. The input is a 2D text T over a bounded
alphabet Σ, with n1 rows and n2 columns. We assume n1 ≥ n2; otherwise, it is possible to
first rotate T by 90◦. The preprocessing and scanning stages are described in this section,
and all maximal rect2DP in T are reported.

CPM 2016



19:8 2D Palindromes

Figure 3 Placing of T180 on top of T , with T [r, c] (represented as the dot) as the anchor. Some
mismatches are demarcated with x’s, and a rect2DP (enclosed in double lines) is placed within their
bounds.

3.1 Preprocessing Stage
In the preprocessing stage, we construct a GST for the columns in T , both from top to
bottom and from bottom to top. Then the GST is preprocessed to allow for constant-time
LCP queries.

3.2 Scanning Stage
The scanning stage is run on each position of T . We describe the algorithm for a given
position (r, c). The scanning stage outputs integer tuples whose values represent the height
and width of maximal rect2DP(s) centered at position T [r, c].

The underlying idea is visually depicted in Figure 3. Place T180, which is T rotated by
180◦, on top of T , with T [r, c] as the anchor (that is, T [r, c] must be placed on top of itself).
Let Tov be the overlapping region, which is shaded. For each column in Tov, find the first
mismatch between T and T180 that is above row r in T , and the first mismatch that is below
row r of T . In Figure 3, some mismatches are demarcated with x’s. Then, for each width
possible, attempt to place a rect2DP whose center is position T [r, c] and which is bounded
on top and on bottom by mismatches. In Figure 3, such a rect2DP (enclosed with double
lines) is drawn.

The idea is implemented in Algorithm 2 as follows: create Tov as a subtext of T . It has
T [r, c] as its center, and it has the coordinates

top left: T [r −minr, c−minc] top right: T [r −minr, c + minc]
bottom left: T [r + minr, c−minc] bottom right: T [r + minr, c + minc]

where minr = min(r− 1, n1− r) and minc = min(c− 1, n2− c). Thus, Tov has minr ∗ 2 + 1
rows and minc ∗ 2 + 1 columns. Note that since position T [r, c] is the center of Tov, it is at
position Tov[minr + 1, minc + 1].

Then, finding mismatches between T and T180 is performed as constant-time LCP queries
on the GST of the columns of T . Specifically, let 0 ≤ k ≤ minc. Every query involves row
r; it is between the column that is k to the left of T [r, c], from row r and above, with the
column that is k to the right of T [r, c], from row r and below. The results are stored in the
colLcp array.

Finally, for every width, beginning with the widest possible, perform a range minimum
query (RMQ) on colLcp. The resulting value bounds a rectangle on top and on bottom.
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Algorithm 2: Algorithm for rect2DP.
input : T , GST of T ’s columns in forward and reverse order, r, c

output: integer tuples whose values represent the maximal rect2DP(s) centered at
position T [r, c]

1 for k = 1 to (minc ∗ 2 + 1) do //for columns k

2 colLcp[k] = LCP (T [r, c−minc + k], . . . , T [1, c−minc + k];
3 T [r, c + minc − k], . . . , T [n1, c + minc − k])
4 end

5 maxHeight = 0
6 for w = minc . . . 0 do //for widths w, in decreasing order
7 height = RMQ (colLcp, (minc + 1)− w, (minc + 1) + w)
8 if height > maxHeight /* if height ≤ maxHeight, then there is no rect2DP ; or

there is, but it’s not maximal */

9 then
10 maxheight = height

11 output 〈(height× 2− 1), (w × 2 + 1)〉
12 end

Table 3 The algorithm is at the point of locating the rect2DPs for position T [3, 5] (underlined).
The Tov subtext (bold) is centered at that position. The colLcp array is also shown.

1 2 3 4 5 6 7 8
1 e e e e e e e e
2 e e d d b b e e
3 e d c c a c c b
4 e e e b b d e e
5 e e e e e e e e
6 e e e e e e e e

1 2 3 4 5 6 7
colLcp 0 1 3 3 3 3 0

If the height is less than or equal to a previously found height then the rectangle is not a
rect2DP (as it is not maximal). Otherwise, the algorithm outputs an integer tuple – height
and width – representing this maximal rect2DP.

The algorithm above works with rect2DPs of odd × odd dimensions. For the case where
one or both of the dimensions is even, similar modifications can be done to the text as
provided in the sq2DP case. Alternatively, each possible center, including in between rows
and columns, can be considered.

3.3 Example
In Table 3, T has n1 = 6 rows and n2 = 8 columns. We will demonstrate the scanning
stage, at the point of the algorithm where r = 3 and c = 5 (position T [3, 5], which is
underlined). That position is the center of Tov (which is bold), by having 5 rows (since
minr = min(3−1, 6−3)∗2+1 = 5) and 7 columns (since minc = min(5−1, 8−5)∗2+1 = 7).

CPM 2016
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In particular, they are T ’s rows 1-5 and columns 2-8.
The colLcp array is shown. In detail: colLcp[1] is the result of the LCP query between

dee and bee (which is 0), colLcp[2] is from the LCP query between cde and cee (which is 1),
colLcp[3] is from the LCP query between cde and cde (which is 3), and so on.

Then, we set maxHeight to 0. We will look for rect2DPs in w widths, in decreasing
order. When w = 3, we are looking for a rect2DP that is centered at this position and is
of width 7. No such rect2DP exists, and this is found by the algorithm (height = 0; since
height ≯ maxHeight, there is no output). When w = 2, height = 1. 1 > maxHeight, and
so this rect2DP is maximal: maxHeight is set to 1, and 〈(1× 2− 1), (2× 2 + 1)〉 = 〈1, 5〉 is
outputted. It refers to the rect2DP of size 1 × 5: ccacc. When w = 1, we are looking for a
rect2DP that is centered at this position and is of width 3. height = 3, and 3 > maxHeight,
which means that there is such a rect2DP. It is of size 5× 3 – from T [1, 4] through T [5, 6].
Lastly, when w = 0, height = 3. Because 3 ≯ 3 there is no output. This correlates, as the
rect2DP of size 3× 3 isn’t maximal.

3.4 Runtime
I Lemma 4. The time complexity for finding all maximal rect2DP in a text of size n1×n2
(where n1 ≥ n2) is O(n1n2

2).

Proof. The runtime of the preprocessing stage is as follows: the construction of the GST
is in time linear to the size of T [8]. Then it takes O(n)-time to preprocess to allow for
constant-time LCP queries [13].

The scanning stage takes O(n1n2
2)-time. This is because there are n1 × n2 positions,

and each takes O(n2) time for each for loop in Algorithm 2 (they run O(minc) times and
minc < n2). Note that, following linear time preprocessing, a RMQ takes O(1)-time [9]. J

I Lemma 5. A text T of size n1 × n2 can have O(n1n2
2) maximal rect2DP.

Proof. We prove by providing one such example. See Table 4 for an n × n text that has
O(n3) maximal rect2DP. It contains a diamond composed of 0’s, and the rest of the text
has *’s which indicate unique, unused characters. On the right is a partial table of counts
of how many rect2DPs are centered at the corresponding text positions. The other three
quadrants of the diamond (whose counts are not shown) are reflections and have the same
values. Beginning at the center (T [dn/2e, dn/2e]) and moving outward, an element’s count
is one less than that of its neighbor. Let i represent a row and j a column; summing the top
left quadrant (in this case, from [1, 1] through [7, 6]) of the counts table is:

∑bn/2c
i=1

∑i−1
j=1 j =∑bn/2c

i=1
i(i+1)

2 = O(
∑n

i=1 i2). Since the sum of the squares of 1 to n is (n)(n+1)(2n+1)/6 =
O(n3), this n× n input text has O(n3) maximal rect2DP. J

I Theorem 6. Algorithm 2 has worst case running time proportional to the worst case
output size.

Proof. Combining Lemmas 4 and 5 results in the proof. J

4 Conclusion

In this paper, we discussed two types of 2D palindromes and presented efficient algorithms
to find them. By unlocking the world of 2D palindromes, we released many research oppor-
tunities. Essentially all of the variations of the 1D palindrome problem can now be applied
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Table 4 Shown on the left is a text that contains a cubic number of maximal rect2DP. The *’s
indicate unique, unused characters. On the right is a partial table with counts, which are the exact
number of rect2DP that are centered at the corresponding text positions.

1 2 3 4 5 6 7 8 9 0 1 2 3
1 * * * * * * 0 * * * * * *
2 * * * * * 0 0 0 * * * * *
3 * * * * 0 0 0 0 0 * * * *
4 * * * 0 0 0 0 0 0 0 * * *
5 * * 0 0 0 0 0 0 0 0 0 * *
6 * 0 0 0 0 0 0 0 0 0 0 0 *
7 0 0 0 0 0 0 0 0 0 0 0 0 0
8 * 0 0 0 0 0 0 0 0 0 0 0 *
9 * * 0 0 0 0 0 0 0 0 0 * *
0 * * * 0 0 0 0 0 0 0 * * *
1 * * * * 0 0 0 0 0 * * * *
2 * * * * * 0 0 0 * * * * *
3 * * * * * * 0 * * * * * *

1 2 3 4 5 6 7 8 9 0 1 2 3
1 1
2 1 2
3 1 2 3
4 1 2 3 4
5 1 2 3 4 5
6 1 2 3 4 5 6
7 1 2 3 4 5 6 7 6 5 4 3 2 1
8 6
9 5
0 4
1 3
2 2
3 1

to the 2D setting. First, we would like to look at how both types of 2D palindromes relate
to palstars and gapped palindromes. Additionally, searching for approximate palindromes
is something that would be interesting in 2D. Yet another extension is from [16] and [17],
who study pal-equivalence. Two strings of the same length are pal-equivalent iff the length
of the maximal palindrome at every center in the strings is equal.

Another angle for further research, in terms of rect2DP, is to reduce the runtime. Al-
though we proved that the output size is potentially asymptotically larger than the input,
an optimal algorithm would take time proportional to the actual number of non-trivial
palindromes reported.

Finally, it would be interesting to define and study additional geometric shapes of 2D
palindromes, e.g. triangular, circular and perhaps a hexagonal 2D palindrome.
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