
Journal of Signal Processing Systems

https://doi.org/10.1007/s11265-018-1357-8

Finding Maximum Cliques on the D-Wave Quantum Annealer

Guillaume Chapuis1 ·Hristo Djidjev1 ·Georg Hahn2 ·Guillaume Rizk3

Received: 21 August 2017 / Revised: 9 January 2018 / Accepted: 19 March 2018

© The Author(s) 2018

Abstract

This paper assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph,

one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly

solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and

analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a

quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising

model) acceptable by the machine, and compare several quantum implementations to current classical algorithms such as

simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum

phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by

DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical

algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we

observe substantial speed-ups in computing time over classical approaches.

Keywords Maximum clique · Quantum annealing · D-Wave 2X · Optimization · Gurobi

1 Introduction

The emergence of the first commercially available quantum

computers by D-Wave Systems, Inc. [10] has provided

This article is an extended version of the paper [7] that appeared

in the proceedings of the 2017 ACM International Conference on

Computing Frontiers (CF’17). The extended version additionally

contains a detailed review of related work in Section 2, details

on the algorithms of Section 3.3, proofs of the propositions of

Sections 3.3.2 and 3.3.3, and further experiments in Section 4.4.

� Georg Hahn

g.hahn@lancaster.ac.uk

Guillaume Chapuis

gchapuis@lanl.gov

Hristo Djidjev

djidjev@lanl.gov

Guillaume Rizk

guillaume.rizk@inria.fr

1 Los Alamos National Laboratory, CCS-3, P.O. Box 1663, MS

B256, Los Alamos, NM 87545, USA

2 Department of Mathematics and Statistics Fylde College,

Lancaster University, Lancaster LA1 4YF, UK

3 INRIA/Irisa, Campus de Beaulieu, 35042

Rennes Cedex, France

researchers with a new tool to tackle NP-hard problems for

which presently, no classical polynomial-time algorithms

are known to exist and which can hence only be solved

approximately (with the exception of very small instances

which can be solved exactly).

One such computer is D-Wave 2X, which we denote

here as DW. It has roughly 1000 units storing quantum

information, called qubits, which are implemented via a

series of superconducting loops on the DW chip. Each loop

encodes both a 0 and 1 (or, alternatively, −1 and +1) value

at the same time through two superimposed currents in

both clockwise and counter-clockwise directions until the

annealing process has been completed and the system turns

classical [5, 18].

The device is designed to minimize an unconstrained

objective function consisting of a sum of linear and

quadratic binary contributions, weighted by given constants.

Specifically, it aims at minimizing the Hamiltonian

H = H(x1, . . . , xN) =
∑

i∈V

aixi +
∑

(i,j)∈E

aijxixj (1)

with variables xi ∈ {0, 1} and coefficients ai , aij ∈ R,

where V = {1, . . . , N} and E = V × V [20]. This type

of problem is known as a quadratic unconstrained binary

(2019) 91:363–377

/ Published online: 3 May 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-018-1357-8&domain=pdf
mailto:g.hahn@lancaster.ac.uk
mailto:gchapuis@lanl.gov
mailto:djidjev@lanl.gov
mailto:guillaume.rizk@inria.fr

optimization (QUBO) problem. When the coefficients ai

and aij are encoded as capacities of the couplers (links)

connecting the qubits, H describes the quantum energy

of the system: During annealing, the quantum system

consisting of the qubits and couplers tries to settle in its

stable state, which is one of a minimum energy, i.e., of a

minimum value of H . In order to solve a given optimization

problem, one has to encode it as a minimization problem of

a Hamiltonian of type (1).

Similarly to the random moves considered in a simulated

annealing classical algorithm, a quantum annealer uses

quantum tunneling to escape local minima and to find a low-

energy configuration of a physical system (e.g., constructed

from an optimization problem). Its use of quantum

superposition of 0 and 1 qubit values enables a quantum

computer to consider and manipulate all combinations of

variable values simultaneously, while its use of quantum

tunneling allows it to avoid hill climbing, thus giving it

a potential advantage over a classical computer. However,

it is unclear if this potential is realized by the current

quantum computing technology, and by the DW computer

in particular, and whether DW provides any quantum

advantage over the best available classical algorithms

[11, 28].

This article tries to answer these questions for the

problem of finding a maximum clique (MC) in a

graph, an important NP-hard problem with multiple

applications including network analysis, bioinformatics,

and computational chemistry. Given an undirected graph

G = (V , E), a clique is a subset S of the vertices forming a

complete subgraph, meaning that any two vertices of S are

connected by an edge in G. The clique size is the number of

vertices in S, and the maximum clique problem is to find a

clique with a maximum number of vertices in G [1].

We will consider formulations of MC as a QUBO prob-

lem and study its implementations on DW using different

tools and strategies. We will compare these implementa-

tions to several classical algorithms on different graphs

and try to determine whether DW offers any quantum

advantage, observed as a speedup over classical approaches.

The article is organized as follows. Section 2 starts with

an overview of related work that aims to solve graph and

combinatorial problems with DW, in particular previous

work on the maximum clique problem. Section 3 proceeds

by introducing the qubit architecture on the DW chip as

well as available software tools. We also describe a QUBO

formulation of MC together with its implementations on

DW and present methods for dealing with graphs of sizes

too large to fit onto the DW chip. Section 4 presents an

experimental analysis of the quantum software tools and

a comparison with several classical algorithms, both for

graphs small enough to fit DW directly as well as for larger

graphs for which decomposition approaches are needed. We

conclude with a discussion of our results in Section 5.

In the rest of the paper, we denote a graph as G = (V , E),

where V = {1, . . . , N} is a set of N ∈ N vertices and E is a

set of undirected edges.

2 Related work

Several publications available in the literature aim at

searching for a quantum advantage within a variety

of problem classes. Existing publications often target

a particular (NP-complete) problem and compare the

performance of a quantum annealer (by D-Wave Systems,

Inc. [10]) to state-of-the-art classical or heuristic solvers.

Early examples include multiple query optimization in

databases, analyzed by [32], who investigate scaling

behavior and show a speed-up of several orders of

magnitude over classical optimization algorithms, and [6],

who in contrast do not detect any quantum speedup

for the set cover with pairs problem, one of Karp’s

21 NP-complete problems. Other work include graph

partitioning via quantum annealing on DW in the context of

QMD (quantum molecular dynamics) applications [22, 33],

in which graph partitioning is shown to reduce the

computational complexity of QMD. Test sets for integer

optimization are investigated in [8], who observe an

advantage of DW over Gurobi [15] both in terms of speed

and quality of solution.

In [30], a general introduction to the DW architecture

and the representation of problem instances in Ising and

QUBO format is given as well as a QUBO formulation

for the maximum clique problem. However, the authors

do not actually report any computation results for finding

maximum cliques on DW, nor do they compare DW

to state-of-the-art heuristic solvers. In contrast to [30],

we solve the maximum clique problem on DW for a

variety of test graphs and compare its solutions to the

ones of state-of-the-art classical solvers. Moreover, we

present a graph splitting algorithm allowing to solve

problem sizes larger than those embeddable on DW,

analyze its scaling behavior, and investigate the influence

of alternative QUBO formulations on the solution

quality.

In [3], the authors consider finding large clique minors

in the DW hardware Chimera graph C(m, n, l), defined

as the m × n grid of Kl,l complete bipartite graphs (also

called unit cells). The authors present a polynomial time

algorithm for finding clique minors in the special case of

the Chimera graph only. Such clique minors are needed to

embed problem instances of arbitrary connectivity onto the

current and future Chimera architectures, given the problem

J Sign Process Syst (2019) 91:363–377364

size is not larger than the clique minor. In contrast, in

the present article we consider finding maximum cliques

in arbitrary graphs with DW by minimizing a QUBO for

the maximum clique problem (applied to the user-specified

arbitrary input graph). This step requires an embedding

of our QUBO onto DW’s Chimera graph, for which the

algorithm of [3] can be beneficial. However, the work of

[3] does not substitute for the embedding and minimization

of a QUBO when finding cliques in arbitrary graphs as

considered in our work.

Instead of attempting a full solution via DW, other

publications propose using a quantum annealer to assist

in finding a solution of certain problem classes, which

often are of a practical and thus more complex nature. For

instance, [13] consider computing the (algebraic) homology

of a data point cloud and propose to reduce this computation

to a minimum clique covering, which is then suggested to

be solved using DW. No empirical results are presented. A

real-world application (the network scheduling problem) is

considered in [34]. The authors demonstrate an advantage

of quantum over simulated annealing; moreover, they show

how to obtain more admissible solutions with DW by

introducing an additional weight into the QUBO that

incrases the gap between linear and quadratic QUBO terms.

In [24], a sparse coding model is trained using samples

obtained via DW from a Hamiltonian with Lp sparseness

penalty. A graph flow problem in real-world traffic network

analysis is considered in [23], who employ gps coordinates

of cars in Beijing as training data.

Another class of publications is concerned with the the-

ory of quantum annealing and the problem of benchmarking

quantum computations. For instance, [27] empirically ver-

ify the known phase transition in magnetization for the

2D Ising model with DW. In [31], the author proposes to

run Markov Chain Monte Carlo using samples generated

by DW from a suitable Boltzmann distribution. The ques-

tion whether random spin-glass problems are a suitable

type of problem to detect a quantum advantage over clas-

sical approaches is considered in [26], who also study the

problem of benchmarking quantum annealing vs. classical

CMOS computation.

3 SolvingMC on D-Wave

This section introduces the DW chip architecture and briefly

presents three tools provided by D-Wave Inc. to submit

quadratic programs to the quantum computer.

We also introduce the QUBO formulation of MC needed

to submit an MC instance to DW. The section concludes

with an algorithmic framework designed to solve instances

of MC which are not embeddable on DW.

3.1 DW hardware and software

3.1.1 The Qubit architecture

DW operates on roughly 1000 qubits. The precise number

of available qubits varies from machine to machine (even

of the same type) due to manufacturing errors which render

some of the qubits inoperative. The qubits are connected

using a specific type of network called Chimera graph,

C12,12,4 (see Fig. 1), comprised of a lattice of 12 × 12 cells,

where each cell is a 4 × 4 complete bipartite graph. DW can

naturally solve Ising and QUBO problems where non-zero

quadratic terms are represented by an edge in the Chimera

graph.

The particular architecture of the qubits implies two

important consequences: First, the chip design actually only

allows for direct pairwise interactions between two qubits

which are physically adjacent on the chip. For pairwise

interactions between qubits not physically connected, a

minor embedding of the graph describing the non-zero

structure of the Hamiltonian matrix into the Chimera type

graph is needed, which maps a logical variable into one

or several physical qubits on the chip. Minor embeddings

are hence necessary to ensure arbitrary connectivity of the

logical variables in the QUBO. The largest complete graph

that the DW can embed in theory has 1+4·12 = 49 vertices.

In practice, the largest embeddable graph is slightly smaller

(n ≈ 45) due to missing qubits arising in the manufacturing

stage.

When more than one qubit is used to represent a variable,

that set of qubits is called a chain. The existence of chains

has two vital consequences, which will play an important

role in the analyses of Section 4. On the one hand, the

need for chains uses up qubits, which would otherwise

be available to represent more variables in the quadratic

program, thereby reducing the maximum problem sizes that

can directly be solved on DW. This is the reason for the

relatively small sizes of N = 45 for QUBO problems (1)

that fit onto DW when the corresponding Hamiltonians are

dense (contain nearly all quadratic terms), despite the fact

that more than 1000 qubits are available in DW.

On the other hand, due to the imperfections of

the quantum annealing process caused by environmental

noise, limited precision, and other shortcomings, solutions

returned by D-Wave do not always correspond to the

minimum energy configuration. In the case of chains, all

qubits in a chain encode the same variable in (1) and hence

should have the same value, but for the reasons outlined

above this may not be the case. This phenomenon is called

a broken chain, and it is not clear which value should be

assigned to a variable if its chain is broken. Clearly, chains

can be ensured to not break by increasing their coupler

J Sign Process Syst (2019) 91:363–377 365

Figure 1 The Chimera C12,12,4

graph of 1152 vertices (qubits)

and 3360 edges (couplers).

LANL’s D-Wave 2X chip has

usable only 1095 qubits and

3061 couplers due to

manufacturing defects.

weights, but as we will see in the next section this may

significantly reduce the accuracy of the solver.

3.1.2 D-Wave solvers

D-Wave Inc. provides several tools that help users submit

their QUBO problems to the quantum processor, perform

the annealing, apply necessary pre- and post-processing

steps, and format the output. This section briefly describes

several such tools used in this article.

Sapi Sapi stands for Solver API and provides the highest

level of control one can have over the quantum annealer. It

allows the user to compute minor embeddings for a given

Ising or QUBO problem, to choose the number of annealing

cycles, or to specify the type of post-processing. Sapi

interfaces for the programming languages C and Python are

available.

One can also use a pre-computed embedding of a

complete 45-vertex graph, thus avoiding the need to run the

slow embedding algorithm.

QBsolv QBsolv is a tool that can solve problems in QUBO

format which are of a size that cannot natively fit onto DW.

Larger problems (with more variables or more connections

than can be mapped onto the corresponding Chimera graph)

are analyzed by a hybrid algorithm, which identifies a small

number of significant rows and columns of the Hamiltonian.

It then defines a QUBO on that subset of variables which fits

DW, solves it, and extends the found solution to a solution

of the original problem.

QSage In contrast to Sapi or QBsolv, QSage is a blackbox

hybrid solver which does not require a QUBO or Ising

formulation as input. Instead, QSage is able to minimize

any function operating on a binary input string of arbitrary

size. For this it uses a tabu search algorithm enhanced with

DW-generated low-energy samples near the current local

minimum. To ensure that also input sizes larger than the

DW architecture can be processed, QSage optimizes over

random substrings of the input bits.

3.2 QUBO formulations of MC

Recall that a QUBO problem can be written as

minimize
xi∈{0,1}

H =
∑

1≤i<j≤N

aijxixj , (2)

where the weights aij , i �= j , are the quadratic terms and

aii are the linear terms (since x2
i = xi for xi ∈ {0, 1}).

There are multiple ways to formulate the MC problem as

a QUBO. One of the simplest is based on the equivalence

between MC and the maximum independent set problem.

J Sign Process Syst (2019) 91:363–377366

An independent set S of a graph H is a set of vertices

with the property that for any two vertices v,w ∈ S, v

and w are not connected by an edge in H . It is easy to

see that an independent set of H = (V ,E) defines a clique

in graph G = (V , E), where E is the complement of set

E. Therefore, looking for the maximum clique in G is

equivalent to finding the maximum independent set in H .

The corresponding constraint formulation for MC is

maximize
xi∈{0,1}

N∑
i=1

xi

subject to
∑

(i,j)∈E

xixj = 0,
(3)

where G = (V , E) is the input graph and E is the

complement of E. The equivalent unconstrained (QUBO)

minimization of (3), written in the form (2), is

H = −A

N∑

i=1

xi + B
∑

(i,j)∈E

xixj , (4)

where one can determine that the coefficients/penalties A

and B can be chosen as A = 1, B = 2 (see [21]). A

disadvantage of the formulation (4) is that H contains an

order of N2 quadratic terms even for sparse graphs G,

which limits the size problems for which MC can be directly

solved on DW.

3.3 Solving larger MC instances

To solve the MC problem on an arbitrary graph, we develop

several algorithms that reduce the size of the input graph

by removing vertices and edges that do not belong to a

maximum clique and/or split the input graph into smaller

subgraphs of at most 45 vertices, the maximal size of a

complete graph embeddable on DW. Let G(V, E) be a

connected graph of n vertices.

3.3.1 Extracting the k -core

The k-core of a graph G = (V , E) is the maximal subgraph

of G whose vertices have degrees at least k. It is easy to

see that if G has a clique C of size k + 1, then C is also

a clique of the k-core of G (since all vertices in a k-clique

have degrees k−1). Therefore, finding a maximum clique of

size no more than k +1 in the original graph G is equivalent

to finding such a clique in the k-core of G (which might be

a graph of much smaller size).

One can compute the k-core iteratively by picking a

vertex v of degree less than k, removing v and its adjacent

edges, updating the degrees of the remaining vertices, and

repeating while such a vertex v exists. The algorithm can be

implemented in optimal O(|E|) time [2].

We also apply another reduction approach, which we

refer to as edge k-core, to reduce the size of an input graph g

using a known lower bound lower bound on the clique size.

This approach combining k-core and edge k-core is given in

pseudo-code notation as Algorithm 1.

Algorithm 1 Graph reducing -core based

algorithm

1 def reduce graph(Graph g, int lower bound):

2 extract k core(g, lower bound)

3 Vertex v = choose random vertex(g)

4 for each vertex n in neighbors(g, v) do

5 Set nv = neighbors(g,v)

6 Set nn = neighbors(g,n)

7 List common neighbors = intersection(nv, nn)

8 if length(common neighbors)

lower bound-2 then

9 remove edge(g, v, n)

10 end

11 end

12 extract k core(g, lower bound)

In Algorithm 1, we first aim to reduce the size of g by

simply extracting its k-core, where k is set to the currently

known lower bound. It is easily shown that for two vertices

v,w in a clique of size c, the intersection of the two

neighbor lists of v and w has size at least c − 1. We

therefore choose a random vertex v in sg and remove all

edges (v, e) satisfying |N(v) ∩ N(e)| < lower bound − 2

(here N(v) denotes the set of neighbor vertices of v), as

such edges cannot be part of a clique with size larger than

lower bound . Since this changes the graph structure, we

attempt to extract the lower bound-core at the end again

before returning the reduced graph.

3.3.2 Graph partitioning

This divide-and-conquer approach aims at dividing G into

smaller subgraphs, solves the MC problem in each of these

subgraphs, and combines the subproblem solutions into a

solution of the original problem. If one uses standard (edge-

cut) graph partitioning, which divides the vertices of the

graph into a number of roughly equal parts so that the

number of cut edges, or edges with endpoints in different

parts, is minimized, then the third step, combining the

subgraph solutions, will be computationally very expensive.

Instead, we will use CH-partitioning, recently introduced

in [12].

J Sign Process Syst (2019) 91:363–377 367

In CH-partitioning, there are two levels of dividing the

vertices of G into subsets. In the core partitioning, the set

V of vertices is divided into nonempty core sets C1, . . . , Cs

such that
⋃

i Ci = V and Ci ∩ Cj = ∅ for i �= j . There is

one halo set Hi of vertices for each core set Ci , defined as

the set of neighbor vertices of Ci that are not from Ci . Recall

that a vertex w is a neighbor of a vertex v iff there is an edge

between v and w. We define the cost of the CH-partitioning

P = ({Ci}, {Hi}) as

cost(P) = max
1≤i≤s

(|Ci | + |Hi |). (5)

The CH-partitioning problem is finding a CH-partitioning

of G of minimum cost. The next statement shows how

CH-partitions can be used for solving MC in larger graphs.

Proposition 1 Given a CH-partitioning ({Ci}, {Hi}) of a

graph G, the size of the maximum clique of G is equal to

maxi{ki}, where ki is the size of a maximum clique of the

subgraph of G induced by Ci ∪ Hi .

Proof Let K be a maximum clique of G and let v be

any vertex of K . Since, by definition of CH-partitioning,⋃
i Ci = V , where V is the set of the vertices of G, then v

belongs to some core Cj .

We will next show that for any vertex w �= v from K ,

w ∈ Cj ∪ Hj , which will imply that all vertices of K are in

Cj ∪ Hj , implying the correctness of the proposition.

If w ∈ Cj then the claim follows.

Assume that w �∈ Cj . We will show that w ∈ Hj . Since

K is a clique, there is an edge between any two vertices from

it, and hence there is an edge between v and w. Since, by

definition, Hj consists of all neighbors of vertices from Cj

that are not in Cj , v ∈ Cj , w �∈ Cj , and w is a neighbor of

v, then w ∈ Hj .

Using Proposition 1, the solutions to all subproblems of

a CH-partitioning can be combined into a solution of the

original problem at an additional cost of only O(s) = O(n),

where s is the number of the sets of the partition.

One may conjecture that increasing s in (5) will always

reduce the cost, but this is not always the case. If the

minimum cost is achieved for s = 1, or if some of the parts

of the partition are still too large, then the method in the next

subsection might be applied.

3.3.3 Vertex splitting

This method is similar to a special case of the previous one,

obtained by choosing s = 2, letting C1 contain only a single

vertex v, and letting C2 contain all other vertices V \ {v}.
Moreover, while the halo H1 of C1 is defined as above, we

Figure 2 Illustration of the vertex splitting algorithm.

set C1 = ∅ and H2 = ∅. As a result, G is divided into two

subgraphs, G1 containing all neighbors of v without v itself,

and G2 containing all vertices of G except v, see Fig. 2.

Because this partitioning is uniquely determined by a single

vertex, we call it a vertex-splitting partitioning. The cost of

such a partitioning is again given by (5).

Proposition 2 Given a vertex-splitting partitioning of G,

({C1, C2}, {H1, H2 = ∅}), the size of the maximum clique

of G is equal to max{k1 + 1, k2}, where ki , i = 1, 2, is the

size of a maximum clique of the subgraph of G induced by

Ci ∪ Hi .

Proof Let v be the vertex that defines the partition. If there

is a maximum clique of G that contains v let K be such

a clique, otherwise let K be any maximum cliques of G.

Consider the following two cases.

Case 1: v belongs to K . Then the set of the vertices

of K consists of v and a subset V1 of vertices from

G1. Moreover, since there is an edge between any two

vertices of K , there is an edge between any two vertices

of V1, which means that V1 defines a clique K1 in G1.

Assume that K1 is not a maximum clique of G1, i.e.,

there exists a clique K ′
1 in G1 with more vertices than

K . Then adding v to the vertices of K ′
1 will result in a

clique in G of size larger than K , which is a contradiction

to the choice of K . Hence K1 is a maximum clique in

G1, whose size was denoted by k1. Since K consists of v

and the vertices of K1, its size is k1 + 1. Moreover, G2

cannot have a clique larger than K since any clique in G2

is also a clique in G. Hence, k2 ≤ |K| = k1 + 1 and

|K| = max{k1 + 1, k2}.
Case 2: v does not belong to K . Then, K is entirely

contained in G2 and hence |K| ≤ k2. On the other

hand, G2 cannot have a larger clique than |K| since any

J Sign Process Syst (2019) 91:363–377368

clique in G2 is also a clique in G, hence |K| = k2.

Moreover, by the choice of K , any clique containing v

is of size less than K , so |K| > k1 + 1, and therefore

|K| = max{k1 + 1, k2}.

Since H2 = ∅, vertex splitting can be used in cases

where CH-partitioning fails. Moreover, if there is a vertex

of degree less than n − 1, this method will always create

subproblems of size smaller than the original one. However,

the total number of subproblems resulting from the repeated

use of this method can be too large. A more efficient

algorithm can be obtained if all the above methods are

combined.

3.3.4 Combining the three methods

We use the following algorithm to decompose a given input

graph G into smaller MC instances fitting the DW size

limit. We assume that the size k + 1 of the maximum clique

is known. (Otherwise, use the procedure of this section

in a binary-tree search fashion to determine the size of

the maximum clique. This increases the running time by

a factor O(log k) = O(log n) only.) We also have an

implementation that, instead of “guessing” the exact value

of k, uses lower bounds on k determined by the size of the

largest clique found so far.

The algorithm works in two phases. First, we apply the k-

core algorithm on the input graph and then CH-partitioning

on the resulting k-core.

Consequently, we keep a list L of subgraphs (ordered by

their number of vertices), which is initialized with the output

of the CH-partitioning step. In each iteration and until all

produced subgraphs fit the (DW) size limit, we choose a

vertex v from the largest subgraph sg, extract the subgraph

ssg induced by v and its neighbors and remove v from sg.

The k-cores of the two subgraphs produced at this iteration

are then inserted into L. Second, we compute the maximum

clique on DW for any subgraph in L of size small enough.

Algorithm 2 gives the pseudo-code of this approach. It

returns a list of subgraphs of an input graph g sorted in

increasing order of their number of vertices as well as an

updated lower bound on the maximum clique size. The

parameters of Algorithm 2 are the input graph g, a maximal

number of vertices vertex limit for which the maximum

clique problem is solved directly on a subgraph, and a lower

bound on the clique size found so far (lower bound). All

returned subgraphs have the property that their size is at

most vertex limit. Since the algorithm attemps to solve MC

exactly on graphs not larger than vertex limit, the parameter

vertex limit in our case can be set to the maximal number of

vertices embeddable on DW.

Algorithm 2 Graph splitting algorithm

1 def split(Graph g, int vertex limit, int lower bound):

2 List subgraphs = [g]

3 while length(subgraphs[-1]) vertex limit do

4 Graph sg = subgraphs.pop()

5 Vertex v = choose vertex(sg)

6 Graph ssg = extract subgraph(v, sg)

7 remove vertex(v, sg)

8 reduce graph(sg, lower bound)

9 if length(sg) 0 then

10 if length(sg) = vertex limit then

11 lower bound = solve(sg)

12 end

13 else

14 sorted insert(subgraphs, sg)

15 end

16 end

17 reduce graph(ssg, lower bound)

18 if length(ssg) 0 then

19 if length(ssg) vertex limit then

20 lower bound = solve(ssg)

21 end

22 end

23 end

24 return subgraphs, lower bound

Algorithm 2 works as follows. First, a sorted list of

graphs called subgraphs (sorted in descending order of the

degree of the subgraphs) is created and initialized with g.

As long as the largest subgraph (denoted as subgraphs[−1]

in Python notation) has at least vertex limit nodes, the

current largest graph sg in the list (command pop()) is

returned, sg is removed from list subgraphs, and a vertex v

is chosen according to some rule specified in the function

choose vertex (see the end of Section 3.3 for possible

approaches). Then, the induced subgraph ssg by vertex v is

extracted and deleted from sg.

A graph reduction step via the function reduce graph

is then applied to sg which reduces the size of the graph

using the currently known best lower bound lower bound

on the clique size. The graph reduction is given separately

as Algorithm 1.

Suppose sg still contains vertices after reduction. If the

degree of sg after reduction is less than vertex limit, we

attempt to solve the MC problem exactly on sg using

some function solve() (for instance via DW) and update

lower bound. Otherwise, sg is inserted again into the list

subgraphs.

The same step is repeated for the subgraph ssg with the

exception that ssg does not have to be re-inserted into list

subgraphs at the end. This is because the subgraph induced

by a single vertex v either contains a clique or can be

removed.

J Sign Process Syst (2019) 91:363–377 369

Removing a vertex v in line 5 of Algorithm 2 decreases

the size of sg by one in each iteration, thus the algorithm

terminates in finite time once all generated subgraphs have

size at most vertex limit.

Lastly, we describe our procedure choose vertex(sg) for

choosing the next vertex to be removed from sg. A vertex

with high degree will potentially greatly reduce the size

of sg, however at the expense of also producing a large

subgraph ssg.

In order to maximize the impact of removing a vertex,

we successively try out three choices: a vertex of highest

degree, a vertex of median degree and, if necessary, a vertex

of lowest degree in sg. If the vertex of lowest degree has

degree |V | − 1, then sg is a clique: In this case, solving

MC on sg can be omitted and lower bound can be updated

immediately.

4 Experimental analysis

The aim of this section is to investigate if a quantum

advantage for the MC problem can be detected for certain

classes of input graphs. To this end, we compare the DW

solvers of Section 3.1.2 to classical ones on various graph

instances – from random small graphs that fit the DW chip

to (larger) graphs tailored to perfectly fit DW’s Chimera

architecture. We also evaluate our graph splitting routine of

Section 3.3 on large MC instances. First we briefly describe

classical solvers that will be used in the comparison.

4.1 Classical solvers

Apart from the tools provided by D-Wave Inc., we employ

classical solvers in our comparison, consisting of: A sim-

ulated annealing algorithm working on the Ising problem

(SA-Ising), a simulated annealing algorithm specifically

designed to solve the clique problem (SA-clique, see [14]),

softwares designed to find cliques in heuristic or exact

mode (the Fast Max-Clique Finder fmc, see [25]), the

software tool pmc (see [29]), and the Gurobi solver [15].

SA-Ising This is a simulated annealing algorithm working

on an Ising problem formulation. The initial solution is

a random solution, and a single move in the simulated

algorithm is the flip of one random bit.

SA-clique We implemented a simulated annealing algo-

rithm specifically designed to find cliques, as described in

[14]. As SA-clique only finds cliques of a user-given size

m, we need to apply a binary search on top of it to find

the maximum clique size. Its main parameter is a value α

controlling the geometric temperature update of the anneal-

ing in each step (that is, Tn+1 = αTn). A default choice is

α = 0.9996. A value closer to 1 will yield a better solution

but will increase the computation time.

Fast Max-Clique Finder (fmc, pmc) These two algorithms

are designed to efficiently find a maximum clique for a

large sparse graph. They provide exact and heuristic search

modes. We use version 1.1 of software fmc [25] and pmc

(github commit 751e095) [29].

Post-processing heuristics alone (PPHa) The DW pipeline

includes a post-processing step: First, if chains exist, a

majority vote is applied to fix any broken chains. Then

a local search is performed to ensure that any solution is

indeed a local minimum (the raw solutions coming from

DW might not be in a local minimum, see [9]). For a given

solution coming out of the pipeline, one might wonder what

the relative contributions of DW and of the post-processing

step are. For some small and simple problems, the post

processing step alone might be able to find a good solution.

We try to answer this issue by solely applying the

post-processing step, and by comparing the result with

the one obtained by quantum annealing. However, post-

processing by DW runs on the DW server and is not

available separately.

To enable us to still use the DW post-processing alone,

we employ the following procedure. We set a very high

absolute chain strength (e.g., 1000 times greater than the

largest weight in our Ising problem), and turn on the

auto-scale feature mapping QUBO weights to the interval

[−1, 1]. Because of the limited precision of the DW

hardware (DW maps all QUBO weigths to 16 discrete

values within [−1, 1]), chain weights will be set to the

minimum value −1 while all other weights will be scaled

down to 0. In this way, the quantum annealer will only

satisfy the chains rather than the actual QUBO we are

interested in. As chains will not be connected to other

chains, and as all linear terms will be zero, each chain

will be assigned a random value −1 or +1. Applying the

DW post-processing step to such a QUBO with large chain

weights will therefore result in the post-processing step

being called with a random initial solution. We hence expect

to obtain results stemming from the post-processing step

only (with random starting point). This method will be

referred to as PPHa, post-processing heuristic alone.

Gurobi Gurobi [15] is a mathematical programming solver

for linear programs, mixed-integer linear and quadratic

programs, as well as certain quadratic programs. We employ

Gurobi to solve given QUBO problems (Ising problems

can be solved as well, nevertheless Gurobi explicitly allows

to restrict the range of variables to binary inputs, making

it particularly suitable for QUBO instances). Instead of

solving MC directly with Gurobi, we solve the dual

J Sign Process Syst (2019) 91:363–377370

Table 1 Running time on 45

vertex random graphs. Graph Max. clique size Runtime [s]

Sapi PPHa QBsolv fmc pmc SA Gurobi

p=0.3 5 0.15 0.15 0.05 8 · 10−6 3 · 10−5 0.15 102

p=0.5 8 0.15 0.15 0.06 3 · 10−4 5 · 10−5 0.37 38

p=0.7 13 0.15 0.15 0.04 0.002 8 · 10−5 0.19 33

p=0.9 20 0.15 0.15 0.04 0.135 8 · 10−5 0.28 2

The edge probability used to generate those graphs is given in the first column. Since for such small graphs,

every software returned the correct solution, we only report the running times. Gurobi solves the dual

problem, leading to reversed graph densities and timings

problem, that is we computed a maximum independent set

on the complement graph.

4.2 Small graphs with no special structure

We generate four random graphs with increasing edge den-

sities for our experiments. We considered edge probabilities

ranging from 0.3 to 0.9 in steps of 0.05. We compare the

execution times of DW using the Sapi interface and the dif-

ferent solvers listed in Section 3.1.2 to the classical solvers

of Section 4.1.

Results are shown in Table 1. For small graphs, every

solver returns a maximum clique, therefore the table shows

execution times only. We can see that (a) software solvers

are much faster than DW, with pmc being the fastest by

several order of magnitudes; (b) DW and PPHa exhibit

equal results and execution times. This shows that for these

small graphs, even the simple software heuristic included in

the DW pipeline is capable of solving the MC problem. The

similar performance of DW and PPHa therefore makes it

impossible to distinguish between the contributions from the

post-processing heuristic and the actual quantum annealer;

(c) Gurobi finds the best solution as well (for the dual of

MC, the maximum independent set problem, thus timings

decrease in the last column of Table 1), but since Gurobi is

an exact solver, its running time is higher than the one of

the other methods. We note that the timings for Gurobi are

for finding the best solution – letting Gurobi run further to

subsequently prove that a found solution is optimal requires

a far longer runtime. Moreover, we have observed in

Eq. 4 in Section 3.2 that the QUBO for MC leads to an

order of N2 quadratic terms even for sparse graphs. This in

turn typically causes the QUBO matrix to be very dense,

making it difficult to embed the QUBO onto the Chimera

graph. If embedding the QUBO is indeed possible, then

usually at the cost of incurring long chains. This is due to

the fact that a dense QUBO necessarily contains a large

number of couplers between qubits not adjacent on the

DW chip, thus requiring re-routing through chain qubits.

In our experiments we observe that this is a delicate case

for the quantum annealer: Using high coupler strengths

for the chains results in consistent chains after annealing,

but comes at the cost of downscaling the actual QUBO

weights, thus leading to meaningless solutions. Lower chain

strengths often cause many of the chains to be broken, i.e.

the physical qubits constituting the chains have different

values. Therefore some processing needs to be applied to

obtain valid solutions. The most simple one is a majority

vote, however all postprocessing rules offered by DW are

merely heuristic ways of assigning final values to the qubits.

It is not guaranteed that a weighting scheme exists which

preserves the QUBO and prevents chains from breaking at

the same time.

As an example, Fig. 3 shows the first four broken chains

in a typical DW execution of the MC problem on a 45

vertex graph. The chain for x2 has more zeros and less

ones than the one for x7, yet after the DW postprocessing

algorithm was applied, the variables got correct values x2 =
1, x7 = 0 (with apparently PPHa overwriting the inferior

DW solution). Our experiments with randomly assigned

values to broken chains (see the discussion for PPHa in

Section 4.1) similarly show that accurate solutions obtained

for small graphs are often mostly due to the post-processing

algorithm rather than the quantum annealing by DW.

4.3 Graphs of sizes that fit DW

In Section 4.2, we performed experiments with random

graphs that can be embedded onto DW. We observed that

Figure 3 The first four broken chains (out of 16) produced by DW on

a test 45-vertex graph. The first column shows the name of the variable

the chain corresponds to and the third column gives the correct value

for that variable.

J Sign Process Syst (2019) 91:363–377 371

highly optimized software solvers outperformed DW in

terms of speed. This is due to the fact that the largest random

graphs we are sure to embed on DW (around 45 vertices) are

still comparably small and can hence be solved efficiently

with an optimized heuristic. In order to detect a difference

between DW and classical solvers, we need to consider

larger graphs. In this section we will analyze the behavior of

the quantum annealer on subgraphs of DW’s chimera graph,

i.e. the largest graph we can embed on the DW architecture.

4.3.1 Chimera-like graphs

Since on small graphs we did not observe any speedup of

DW compared to the classical algorithms, we now consider

graphs that fit nicely the DW architecture. The largest graph

that fits DW is the Chimera graph C, and since formulation

(4) uses the complement edges, the largest graph that we

can solve MC on is the complement of C. Let G denote the

complement of any graph G. Note that the graphs C and C

are not interesting for the MC problem since C is bipartite

and hence C consists of two disconnected cliques, which

makes MC trivial on this graph.

Consider now the graph C1 obtained by contracting one

random edge from C. An edge contraction consists of

deleting an edge (v1, v2) and merging its endpoints v1

and v2 into a new vertex v∗. With N1 and N2 the set of

neighboring vertices of v1 and v2, the neighbors of v∗ are

N1 ∪N2 \ {v1, v2}. Solving the MC problem on C1 requires

the embedding of the complement of C1 onto DW, which

is C1. The natural embedding of C1 onto C maps v∗ onto

a chain of two vertices and all other vertices of C1 onto

single vertices of C. Moreover, if we add any edge to C1,

the resulting graph will not be embeddable onto C any more

since C1 already uses all available qubits and edges of C.

We can thus say that C1 is one of the densest graphs of size

|V | − 1 than can be embedded onto C.

We can generalize the aforementioned construction to m

random edge contractions; the resulting graph Cm will have

|V | − m vertices, will be one of the densest graphs of size

|V |−m that fits onto C, and the chains of such an embedding

will be the paths of contracted edges. This family of graphs

Cm with 0 < m < 1100 is therefore a good candidate for the

best-case scenario for the MC problem: The Cm family are

large graphs whose QUBOs can be embedded onto C and

whose solutions of MC are not trivial.

4.3.2 Experiments

We solve the MC problem on the Cm family of graphs using

DW’s Sapi, PPHa and the SA-Ising software, SA-clique,

and fmc.

Figure 4 shows the result. We observe that for graph

sizes up to 400, PPHa finds the same result as DW. For

200 400 600 800 1000

−
5
0

−
4
0

−
3
0

−
2
0

−
1
0

0

Graph size

b
e
s
t
c
liq
u
e
 s
iz
e
 f
o
u
n
d
,
re
la
ti
v
e
 t
o
 D
w
a
v
e
 2
X

Dwave 2X

PPHa

SA−clique fast

SA−clique slow

SA−ising

fmc

Figure 4 Best clique size found by the different solvers, relatively to

the DW result, on the Cm family of graphs.

these small graphs the problem is likely simple enough to

be solved by the post-processing step alone. As expected,

the simulated annealing algorithms designed specifically for

MC (fmc, pmc) are behaving better than the general SA-

Ising algorithm. The fmc software is run in its heuristic

mode. The comparatively lower quality results we obtain

with fmc could be due to the fact that fmc is designed for

large sparse graphs but run here on very dense graphs.

For large graphs (≥ 800 vertices), DW gives the best

solution. (Note we do not know if that solution is optimal.)

4.3.3 Speedup

Since SA-clique seems to be the best candidate to compete

against DW, and moreover since it is considered the classical

analogue of quantum annealing, we choose to compute the

DW speedup relatively to SA-clique on the Cm graph family.

We employ the following procedure: For each graph size,

we run DW with 500 anneals and report the best solution.

The DW runtime is the total qpu runtime for 500 anneals

(approximately 0.15s). For SA-clique, we start with a low

α parameter (i.e., a fast cooling schedule), and gradually

increase α until SA-clique finds the same solution as DW.

The value of α for which SA-clique finds the same solution

as DW gives us the best execution time for SA-clique given

the required accuracy. The SA-clique algorithm is run on

one CPU core of an Intel E8400 @ 3.00GHz.

Figure 5 shows the speedup for different graph sizes of

the Cm family. We observe that DW is slower than SA-

clique for graphs with less than 200 vertices. For larger

graphs, DW gets exponentially faster, reaching a speedup of

the order of a million for graphs with 1000 vertices. This

J Sign Process Syst (2019) 91:363–377372

0 200 400 600 800 1000

1
e
−
0
2

1
e
+
0
0

1
e
+
0
2

1
e
+
0
4

1
e
+
0
6

Graph size

ra
ti
o

S

A
/Q

A
 t
im

e
s

Quantum annealing

Sim
ulated annealin

g

Figure 5 Speedup on artificial graphs designed to fit the Chimera

topology.

behavior is not unexpected: For small graphs, optimized

software solvers can terminate with runtimes far less than

the constant anneal time of DW (see Table 1). The larger

the graphs, the more pronounced the advantage of DW is

due to the fact that the Cm graph instances investigated in

this experiment are similar to the topology of DW’s native

Chimera graph. Further detail is given in the following

section.

Overall, our experiments show that for large graphs

whose QUBOs can be embedded onto C, DW is able to find

very quickly a solution that is very difficult to obtain with

classical solvers.

4.3.4 Topology

In summary, the results of Sections 4.2 and 4.3 demonstrate

that the closer the topology of a problem is to the

native Chimera graph (Fig. 1) of the DW chip, the more

pronounced the advantage of DW over classical solvers.

Moreover, with an increasing problem size, the problem

becomes exponentially more difficult for classic solvers,

while it takes the same time to run on DW (as long as it

can be embedded onto the hardware). Note however, that

the larger problem we can fit on DW (with a fixed number

of qubits), the smaller average chain length we get. This

means that these experiments benefit DW in the comparison

with classical solvers twice: on the one hand, the problem

becomes much more difficult for the classical solvers due

to larger graphs involved; on the other hand, it becomes

somewhat easier for DW because the shorter chains improve

the accuracy, thereby biasing the results in favor of DW.

edge presence probability

n
u
m

b
e
r

o
f

s
o
lv

e
r

c
a
ll
s

Figure 6 Number of solver calls against edge probability. Log scale

on the y-axis.

4.4 Using decomposition for large graphs

We investigate some properties of the graph splitting routine

of Section 3.3 which enables us to solve MC instances larger

than the size that fits onto the DW chip. In this section, we

always use our graph splitting routine to divide up the input

graphs into subgraphs of 45 vertices, the largest (complete)

graphs that can be embedded on the DW chip. First, we

test our graph splitting routine on random graphs with 500

vertices and an edge probability (edge density) ranging from

0.1 to 0.4 in steps of 0.05. Figure 6 shows the number of

generated subgraphs (or equivalently, the number of solver

calls) against the edge probability. Each data point is the

median value of ten runs, the standard deviation is given as

5000 10000 15000 20000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

graph size |V|

c
o
m
p
u
ti
n
g
 t
im
e
 [
s
]

av. degree = 50

av. degree = 100

av. degree = 200

Figure 7 Time of the graph splitting routine as a function of the graph

size.

J Sign Process Syst (2019) 91:363–377 373

error bars. The number of solver calls seems to follow an

exponential trend with respect to the edge probability.

Second, we investigate the scaling of our graph splitting

routine with an increasing graph size |V |. Since, with a

fixed edge probability, graphs become denser (their vertex

degrees increase) as their size goes to infinity, we take an

alternative approach and fix the average degree d of each

vertex: We then generate graphs of size 3000 to 20,000 (in

steps of 500) using edge probability p = d/(|V | − 1). This

ensures that the average vertex degree stays constant as |V |
goes to infinity.

We measure both the time t (in seconds) of the

graph splitting alone as well as the number n of

problems/subgraphs being solved by DW. According to

Table 1 (column for DW’s interface Sapi), the time to solve

each subgraph on the DW chip is 0.15 seconds, thus leading

to an overall time for computing MC of t +0.15 ·n seconds.

Figure 7 shows average timings from 100 runs for

three fixed average degrees d ∈ {50, 100, 200}. We

observe that if d is relatively large in comparison to

|V | (which, in particular, appears to hold for |V | ≈
5000 and d = 200), the k-core and CH-partitioning

algorithms are less effective, while the vertex-splitting

routine alone produces too many subgraphs, causing

the computing time to get disproportionately high. With

increasing the number of vertices, we observe a roughly

linear increase of the runtime. As expected, higher

average degrees d result in denser graphs and thus higher

runtimes.

To demonstrate the applicability of our graph splitting

routine outside of random graphs, we apply the graph

splitting to families of graphs from the 1993 DIMACS

Challenge on Cliques, Coloring and Satisfiabilty [17], also

used in [4]. These are Hamming and c-fat graphs. Both

graph families depend on two parameters: the number

of vertices n and an additional internal parameter, the

Hamming distance d for Hamming graphs and the partition

parameter c for c-fat graphs. We use the generation

algorithms of [16] for both graph families. We also

employed g and U graphs, defined in [19] (including their

generation mechanism), which have previously been used

for graph assessments in [4, 19].

Table 2 shows results for all four graph families. We see

that for the graph parameters used in the aforementioned

studies, our graph splitting algorithm finds a maximum

clique (mostly) within a fraction of a second. The number

Table 2 Graph splitting

algorithm applied to a variety

of graph families (first column)

including their graph

parameters (number of vertices

in second column, internal

parameter in third column).

Graph family Vertices Parameter Largest clique No. subgraphs Runtime [s]

Hamming 128 1 64 0 0.09

2 32 196 6.4

4 4 20 0.1

6 2 1 0.09

c-fat 200 1 12 3 0.02

5 58 1 0.53

500 1 14 3 0.08

5 64 2 2.1

10 126 0 25.6

g graph 100 10 1 1 0.01

200 10 1 1 0.01

500 10 1 1 0.07

1000 10 1 1 0.26

2000 10 1 1 1.1

5000 10 1 1 6.8

10000 10 1 1 28.3

U graph 1000 5 7 6 0.49

10 10 9 0.49

20 14 11 0.57

2000 5 7 7 1.9

10 11 10 2.0

20 17 14 2.2

Largest clique found, number of generated subgraphs and overall runtime in seconds for the splitting is

reported

J Sign Process Syst (2019) 91:363–377374

n
u
m

b
e
r

o
f

s
o
lv

e
r

c
a
ll
s

number of qubits

s
iz

e
 l
im

it

Figure 8 Number of solver calls (left y-axis) and size limit (maximal

arbitrary graph embeddable on DW; right y-axis) as a function of the

number of qubits.

of generated subgraphs along the way varies widely, from

none or one subgraph for g graphs to almost two hundred

for Hamming graphs.

Lastly, we aim to assess the performance of future

generations of DW systems on our clique finding approach

for arbitrary large graphs. Essentially, we turn the previous

question around: Instead of assessing the graph splitting for

a variety of graphs and a fixed DW system, we now look

at the evolution of possible future DW machines with an

increasing number of qubits and investigate the number of

solver calls needed by the graph splitting algorithm (applied

to a fixed realization of a random graph with 500 vertices

and edge presence probability 0.3).

First, assuming a similar Chimera topology for future

generations of DW systems, doubling the number of

available qubits will increase the size of the maximal

complete subgraph that can be embedded by a factor of
√

2.

The maximal size of an arbitrary graph embeddable on DW

is shown in Fig. 8 in red (right y-axis). If we assume that the

number of qubits doubles with each new generation, seven

generations of DW machines are required in order to be able

to directly embed and solve an arbitrary 500 vertex graph.

Second, Fig. 8 (blue data line; left y-axis) shows

the evolution of the number of solver calls for future

DW systems with an increasing number of qubits.

We use the envisaged size of the maximal complete

subgraph embeddable on future DW machines to set the

lower bound parameter of the graph splitting algorithm. In

this experiment we applied the graph splitting algorithm

to the fixed graph generated with 500 vertices and edge

presence probability of 0.3. Each data point is the median of

ten runs. The standard deviation of those ten runs is given

with error bars. The number of required solver calls of our

graph splitting algorithm rapidly decreases in what seems

like an exponential trend.

5 Conclusion

This article evaluates the performance of the DW quantum

annealer on maximum clique, an important NP-hard graph

problem. We compared DW’s solvers to common classical

solvers with the aim of determining if current technology

already allows us to observe a quantum advantage for

our particular problem. We summarize our findings as

follows.

1. The present DW chip capacity of around 1000 qubits

poses a significant limitation on the MC problem

instances of general form that can be solved directly

with DW. For random graphs with no special structure

that are small enough to fit onto DW, the returned

solution is of comparable quality to the one obtained

by classical methods. Nevertheless the highly optimized

classical solvers available are usually faster for such

small instances.

2. Special instances of large graphs designed to fit DW’s

chimera architecture can be solved orders of magnitude

faster with DW than with any classical solvers.

3. For MC instances that do not fit DW, the proposed

decomposition methods offer a way to divide the MC

problem into subproblems that fit DW. The solutions

of all subproblems can be combined afterwards into an

optimal solution of the original problem (assuming DW

solves the subproblems optimally, which is usually true,

but cannot be guaranteed). Our decomposition methods

are highly effective for relatively sparse graphs;

however the number of subproblems generated grows

exponentially with increasing density. We demonstrate

that this issue can be alleviated when/if larger D-Wave

machines become available (Fig. 8).

Overall, we conclude that general problem instances that

allow to be mapped onto the DW architecture are typically

still too small to show a quantum advantage. But quantum

annealing may offer a significant speedup for solving the

MC problem, if the problem size is at least several hundred,

roughly an order of magnitude larger than what it typically

is for general problems that fit D-Wave 2X.

Acknowledgments The authors acknowledge and appreciate the

support provided for this work by the Los Alamos National Laboratory

Directed Research and Development Program (LDRD). They would

also like to thank Dr Denny Dahl for his help while working on the

D-Wave 2X machine.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

J Sign Process Syst (2019) 91:363–377 375

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

References

1. Balas, E., & Yu, C. (1986). Finding a maximum clique in an

arbitrary graph. SIAM Journal of Comparative, 15, 1054–1068.

2. Batagelj, V., & Zaversnik, M. (2011). An o(m) algorithm for cores

decomposition of networks. Adv Dat An Class, 5(2), 129–145.

3. Boothby, T., King, A., Roy, A. (2016). Fast clique minor

generation in Chimera qubit connectivity graphs. Quantum

Information Processing, 15(1), 495–508.

4. Boros, E., Hammer, P., Tavares, G. (2006). Preprocessing of

Unconstrained Quadratic Binary Optimization. Rutcor Research

Report RRR, 10-2006, 1–58.

5. Bunyk, P., Hoskinson, E., Johnson, M., Tolkacheva, E., Altomare,

F., Berkley, A., Harris, R., Hilton, J., Lanting, T., Przybysz, A.,

Whittaker, J. (2014). Architectural considerations in the design of

a superconducting quantum annealing processor. IEEE Trans on

Appl Superconductivity, 24(4), 1–10.

6. Cao, Y., Jiang, S., Perouli, D., Kais, S. (2016). Solving Set Cover

with Pairs Problem using Quantum Annealing. Nature Scientific

Reports, 6(33957), 1–15. https://doi.org/10.1038/srep33957.

7. Chapuis, G., Djidjev, H., Hahn, G., Rizk, G. (2017). Finding

maximum cliques on the d-wave quantum annealer. Proceedings

of the 2017 ACM International Conference on Computing

Frontiers (CF’17), 1–8.

8. Coffrin, C., Nagarajan, H., Bent, R. (2017). Challenges and

successes of solving binary quadratic programming benchmarks

on the dw2x qpu. Los Alamos ANSI debrief, 1–84.

9. D-Wave (2016). D-Wave post-processing guide.

10. D-Wave (2016). Introduction to the D-Wave quantum hardware.

11. Denchev, V., Boixo, S., Isakov, S., Ding, N., Babbush, R.,

Smelyanskiy, V., Martinis, J., Neven, H. (2016). What is the

computational value of finite-range tunneling? Physical Review X,

6(031), 015.

12. Djidjev, H., Hahn, G., Mniszewski, S., Negre, C., Niklasson,

A., Sardeshmukh, V. (2016). Graph partitioning methods for fast

parallel quantum molecular dynamics. CSC 2016, 1(1), 1–17.

13. Dridi, R., & Alghassi, H. (2016). Homology computation of large

point clouds using quantum annealing. arXiv:1512.09328, 1–17.

14. Geng, X., Xu, J., Xiao, J., Pan, L. (2007). A simple simulated

annealing algorithm for the maximum clique problem. Informa-

tion Science, 177(22), 5064–5071.

15. Gurobi Optimization, Inc. (2015). Gurobi optimizer reference

manual. http://www.gurobi.com.

16. Hasselberg, J., Pardalos, P., Vairaktarakis, G. (1993). Test Case

Generators and Computational Results for the Maximum Clique

Problem. Journal of Global Optimization, 3, 463–482.

17. Johnson, D.S., & Trick, M.A. (Eds.) (1996). Clique, Coloring,

and Satisfiability: Second DIMACS Implementation Challenge,

DIMACS, Vol. 26. Providence: American Mathematical Society.

http://dimacs.rutgers.edu/Volumes/Vol26.html.

18. Johnson, M., Amin, M., Gildert, S., Lanting, T., Hamze, F.,

Dickson, N., Harris, R., Berkley, A., Johansson, J., Bunyk, P.,

Chapple, E., Enderud, C., Hilton, J., Karimi, K., Ladizinsky,

E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.,

Tolkacheva, E., Truncik, C., Uchaikin, S., Wang, J., Wilson, B.,

Rose, G. (2011). Quantum annealing with manufactured spins.

Nature, 473, 194–198.

19. Kim, S.H., Kim, Y.H., Moon, B.R. (2001). A Hybrid Genetic

Algorithm for the MAX CUT Problem. Proceeding GECCO’01

Proceedings of the 3rd Annual Conference on Genetic and

Evolutionary Computation, 416–423.

20. King, J., Yarkoni, S., Nevisi, M., Hilton, J., McGeoch, C. (2015).

Benchmarking a quantum annealing processor with the time-to-

target metric. arXiv:1508.05087, 1–29.

21. Lucas, A. (2014). Ising formulations of many np problems.

Frontiers in Physics, 2(5), 1–27.

22. Mniszewski, S., Negre, C., Ushijima-Mwesigwa, H. (2016).

Graph Partitioning using the D-Wave for Electronic Structure

Problems. LA-UR-16-27873, 1–21.

23. Neukart, F., Von Dollen, D., Compostella, G., Seidel, C., Yarkoni,

S., Parney, B. (2017). Traffic flow optimization using a quantum

annealer. arXiv:1708.01625, 1–12.

24. Nguyen, N., & Kenyon, G. (2017). Solving sparse representations

for object classification using the quantum d-wave 2x machine.

Los Alamos ISTI debrief, 1–30.

25. Pattabiraman, B., Patwary, M., Gebremedhin, A., Liao, W.K.,

Choudhary, A. (2013). Fast algorithms for the maximum clique

problem on massive sparse graphs. In International Workshop

on Algorithms and Models for the Web-Graph (pp. 156–169):

Springer.

26. Perdomo-Ortiz, A., Feldman, A., Ozaeta, A., Isakov, S., Zhu,

Z., O’Gorman, B., Katzgraber, H., Diedrich, A., Neven, H.,

de Kleer, J., Lackey, B., Biswas, R. (2017). On the readiness

of quantum optimization machines for industrial applications.

arXiv:1708.09780, 1–22.

27. Rogers, M., & Singleton, R. (2016). Ising Simulations on the

D-Wave QPU. LA-UR-16-27649, 1–14.

28. Rønnow, T., Wang, Z., Job, J., Boixo, S., Isakov, S., Wecker, D.,

Martinis, J., Lidar, D., Troyer, M. (2014). Defining and detecting

quantum speedup. Science, 345, 420–424.

29. Rossi, R., Gleich, D., Gebremedhin, A., Patwary, M. (2013). A

fast parallel maximum clique algorithm for large sparse graphs

and temporal strong components. CoRR, arXiv:1302.6256.

30. Stollenwerk, T., Lobe, E., Tröltzsch, A. (2015). Discrete optimisa-

tion problems on an adiabatic quantum computer. London: 17th

British-French-German Conference on Optimization.

31. Thulasidasan, S. (2016). Generative Modeling for Machine

Learning on the D-Wave. LA-UR-16-28813, 1–23.

32. Trummer, I., & Koch, C. (2015). Multiple Query Optimization on

the D-Wave 2X adiabatic Quantum Computer. arXiv:1510.06437,

1–12.

33. Ushijima-Mwesigwa, H., Negre, C., Mniszewski, S. (2017).

Graph Partitioning using Quantum Annealing on the D-Wave

System. arXiv:1705.03082, 1–20.

34. Wang, C., Chen, H., Jonckheere, E. (2016). Quantum versus sim-

ulated annealing in wireless interference network optimization.

Nature Scientific Reports, 6(25797), 1–9. https://doi.org/10.1038/

srep25797.

GuillaumeChapuis is a former

post-doctoral research associate

with the Information Sciences

Group (CCS3) at Los Alamos

National Laboratory, New Mex-

ico, United States of America.

He holds a Ph.D. degree in com-

puter science from ENS Cachan

(France) and a computer engi-

neering degree from INSA

Rennes (France). His research

interests include Parallel Dis-

crete Event Simulation, graph

theory, High Performance

Computing, General-Purpose

Graphics Processing Units

and bioinformatics.

J Sign Process Syst (2019) 91:363–377376

https://doi.org/10.1038/srep33957
http://arXiv.org/abs/1512.09328
http://www.gurobi.com
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://arXiv.org/abs/1508.05087
http://arXiv.org/abs/1708.01625
http://arXiv.org/abs/1708.09780
http://arXiv.org/abs/1302.6256
http://arXiv.org/abs/1510.06437
http://arXiv.org/abs/1705.03082
https://doi.org/10.1038/srep25797
https://doi.org/10.1038/srep25797

Hristo Djidjev received his

Ph.D. from the University of

Sofia, Bulgaria. He is currently

a Scientist at Los Alamos

National Laboratory, USA.

Before Los Alamos, he has

been with the Bulgarian

Academy of Sciences, Rice

University, and University of

Warwick. His interests are in

graph algorithms, discrete

optimization, software/hard-

ware codesign, bioinformatics,

and quantum computing.

Georg Hahn received his

Ph.D. from Imperial College

London in 2015. Following

a one-year EPSRC doctoral

prize fellowship at Imperial’s

statistics department (2016-

17), he is currently a senior

research associate affiliated

with the StatScale project,

a joint EPSRC programme

grant to develop next genera-

tion statistical methods for

streaming data. Previously he

was a post-doc at the statistics

department of Columbia Uni-

versity in New York (2015-16)

and a visiting researcher at Los Alamos National Laboratory (2015,

2016, 2017). His research interests include algorithmic/computational

mathematics and statistics, mathematical optimisation, Monte Carlo

methods, multiple testing, and information theory.

Guillaume Rizk holds a Ph.D.

from the Université de Rennes 1

and a master degree from the

École Nationale Supérieure

d’Informatique et de Mathéma-

tiques Appliquées de Greno-

ble (ENSIMAG). His research

interests include DNA/RNA

sequencing, graph data struc-

tures for nextgeneration sequen-

cing (NGS), GPU accelerated

RNA folding, and global align-

ment of short DNA sequences.

He is one of the founders of

“Algorizk” which develops inter-

active physics simula tion apps

for mobile devices.

J Sign Process Syst (2019) 91:363–377 377

	Finding Maximum Cliques on the D-Wave Quantum Annealer
	Abstract
	Abstract
	Introduction
	Related work
	Solving MC on D-Wave
	DW hardware and software
	The Qubit architecture
	D-Wave solvers
	Sapi
	QBsolv
	QSage

	QUBO formulations of MC
	Solving larger MC instances
	Extracting the k-core
	Graph partitioning
	Vertex splitting
	Combining the three methods

	Experimental analysis
	Classical solvers
	SA-Ising
	SA-clique
	Fast Max-Clique Finder (fmc, pmc)
	Post-processing heuristics alone (PPHa)
	Gurobi

	Small graphs with no special structure
	Graphs of sizes that fit DW
	Chimera-like graphs
	Experiments
	Speedup
	Topology

	Using decomposition for large graphs

	Conclusion
	Acknowledgments
	Open Access
	References

