
Finding Maximum Flows in Undirected Graphs Seems Easier than
Bipartite Matching

David R. Karger� and Matthew S. Levine�
Abstract

Consider ann-vertex,m-edge, undirected graph with max-
imum flow valuev. We give a method to find augmenting
paths in such a graph in amortized sub-linear(O(npv)) time
per path. This lets us improve the time bound of the clas-
sic augmenting path algorithm toO(m+ nv3=2) on simple
graphs. The addition of a blocking flow subroutine gives a
simple, deterministicO(nm2=3v1=6)-time algorithm. We also
use our technique to improve known randomized algorithms,
givingÕ(m+nv5=4)-time andÕ(m+n11=9v)-time algorithms
for capacitated undirected graphs. For simple graphs, in
whichv� n, the last bound is̃O(n2:2), improving on the best
previous bound ofO(n2:5), which is also the best known time
bound for bipartite matching.

1 Introduction

In this paper we consider the problem of finding maximum
flows in undirected graphs with small flow values. Tradi-
tionally, only a special case of this problem has been con-
sidered: unit-capacity graphs with no parallel edges (called
simplegraphs). Until recently, the best known algorithm for
this special case used the blocking flow method of Dinitz
[2], which Karzanov [15] and Even and Tarjan [3] showed
runs inO(mminfn2=3;m1=2;vg) time. Heren is the number
of nodes,m is the number of edges, andv is the value of the
maximum flow. Note that for graphs with no parallel edges
m� n2 and for simple graphsv� n, so the above bound is
O(n8=3). In an exciting new result, Goldberg and Rao [7]
extended Dinitz’s algorithm tocapacitatedgraphs, achiev-
ing Even-Tarjan-like bounds of̃O(mminfn2=3;m1=2;vg) =�MIT Laboratory for Computer Science, Cambridge, MA 02138. Sup-
ported by NSF contract CCR-9624239 and an Alfred P. Sloane Foundation
Fellowship.
email: fkarger,mslevineg@theory.lcs.mit.edu.
URL: http://theory.lcs.mit.edu/�fkarger,mslevineg

Õ(n8=3) time1 on graphs whose edge capacities are polyno-
mially bounded.

Recently, several algorithms have been developed that
exploit the special properties ofundirectedgraphs to get bet-
ter time bounds for finding small flows. Karger [12, 14],
has given several randomized algorithms culminating in an
Õ(vpmn) = Õ(n5=2) time bound. Note that Karger’s latest
algorithms do apply to graphs with capacities, although they
are only useful whenv is small. At the same time, Goldberg
and Rao [8] gave a blocking-flow based algorithm that runs
in O(npmn) = O(n5=2) time on simple graphs.

The main result of this paper is inspired by the simple-
graph algorithm of Goldberg and Rao [8]. They use bounds
on the residual flow in a graph and a sparsification technique
due to Nagamochi and Ibaraki [17] to throw away edges that
need not be used by a maximum flow. We use a related idea,
showing that we can find augmenting paths inO(npv) amor-
tized time per path by putting aside most of the edges and
only bringing them back when necessary. Our approach is
different from theirs in that they always keep enough edges
to find all of the flow, reducing when possible, whereas we
only ever work with enough edges to find a few augmenting
paths, adding when necessary.

As a first application, we get simple deterministic algo-
rithms that are faster than all previous ones for the most dif-
ficult values ofm andv on simple graphs. First, we can find
flow by augmenting paths inO(m+nv3=2) time (substituting
O(npv) for m in the classicO(mv)-time algorithm). Sec-
ond, by incorporating a blocking flow subroutine, we can
find flow in O(nm2=3v1=6) time. The first algorithm is the
best known deterministic algorithm for dense graphs with
small v; the second algorithm is the best known determin-
istic algorithm for dense graphs with largev. The second
time bound is also at least as good as the Goldberg-Rao time
bound ofO(n3=2m1=2) for all values ofm and v. Both al-
gorithms are clearly practical to implement, so only exper-
iments can tell what is actually best for practical purposes.
The first algorithm works for the capacitated case as well,
running inÕ(m+nv3=2) time.

1 f (n) = Õ(g(n)) if 9c such thatf (n) = O(g(n) logc n)

Source Year Time bound Capacities? Directed? Deterministic?

Ford-Fulkerson [4] 1956 O(mv) p p p
Even-Tarjan [3] 1975 O(mminfn2=3;m1=2g) p p
Karger [13] 1997 Õ(m2=3n1=3v)
Goldberg-Rao [7] 1997 Õ(mminfn2=3;m1=2g logv) p p p
Goldberg-Rao [8] 1997 O(npnm) p
Karger [14] 1998 Õ(vpnm) p
this paper 1998 O(m+nv3=2) p
this paper 1998 O(nm2=3v1=6) p
this paper 1998 Õ(m+nv3=2) p p
this paper 1998 Õ(m+nv5=4) p
this paper 1998 Õ(m+n11=9v) p

Table 1: Summary of algorithms. The long history ofΩ̃(mn)-time algorithms, which are still best for largev, have been omitted.

We also extend Karger’s most recent algorithm [14], get-
ting two Las Vegas randomized algorithms with expected
running times ofÕ(m+ nv5=4) and Õ(m+ n11=9v). The
latter time bound isÕ(n2:2) in the worst case for simple
graphs, which is better thanO(n2:5), the best bound previ-
ously known [8, 14]. These algorithms are complicated, so
likely not practical, but they do demonstrate thatO(n2:5) is
not the right time bound for maximum flow in undirected
simple graphs. Both of these algorithms also work for the
capacitated case.

Even more notable, however, than the fact thatO(n2:5) is
not the right time bound for flow, is the fact thatO(n2:2) is
better than the best known time bound for bipartite matching,
which isO(mpn)=O(n2:5). This suggests that we should be
able to improve the time bound for bipartite matching! Un-
fortunately, the well known reduction from bipartite match-
ing is to flow on adirectedgraph, and does not work if we
try to make the graph undirected [6]. So we do not improve
the time bound for bipartite matching, but this work suggests
that it may be possible to do so.

Another way to look at our results is as follows. We
prove that a flow of valuev never needs to use more than
O(npv) edges. This suggests that we should be able to re-
strict attention to these “important” edges, thereby effecting
a replacement ofmby O(npv) in the time bound of any flow
algorithm. For example, our̃O(m+ nv5=4)-time bound is
achieved by applying this substitution to Karger’sÕ(vpmn)-
time algorithm. Unfortunately, we do not know how to iden-
tify the rightO(npv) edges without finding a flow. Neverthe-
less, we devise methods to achieve all or part of this speedup
on undirected graphs.

Note that Galil and Yu [5] previously proved that flows
need only useO(npv) edges on simple graphs, but they did
not show how to exploit the fact. Their proof was also some-
what complex. Henzinger, Kleinberg, and Rao [9] indepen-

m
p

m

mn2=3

nm2=3v1=6

nv3=2

Uninteresting

logn m

nv3=2

mv

logn v0 1
1

2

Figure 1: Pictures of the best deterministic bounds. (See text
for explanation.)

dently simplified the proofs of Galil and Yu, using essentially
the same argument we use. Our result is stronger: we show
that any acyclic flow uses few edges, even oncapacitated
graphs.

In order to summarize the restrictions and performance
of the various algorithms, we have done two things. Table 1
summarizes the history of the various algorithms we refer to
in this paper. (The long history of̃Θ(mn)-time algorithms,
which are still best for largev, and were until recently [7]
the only option for graphs with capacities, has been omit-
ted.) Further, in order to show which algorithms have the
best performance for different values ofm andv relative to
n, we have drawn pictures (Figures 1 and 2): one for deter-
ministic algorithms only, and one including randomized al-
gorithms. A point in the picture represents the value ofmand
v relative ton. Specifically,(a;b) representsv= na;m= nb.
Each region is labeled by the best time bound that applies
for values ofm andv in that region. Note that the region
m> nv is uninteresting, because the sparsification algorithm

of Nagamochi and Ibaraki [17] can always be used to make
m� nv in O(m) time. The shaded regions correspond to al-
gorithms given in this paper. Note that theO(nm2=3v1=6)-
time algorithm (which is the fastest algorithm for the region
surrounded by a dashed line) is the only one in the picture
that cannot handle capacities or parallel edges, so the picture
looks strange atv = n. If capacities are being considered,
then this algorithm should be removed from the picture; if
only simple graphs are being considered, then the picture
should end atv= n. The complexity of these diagrams sug-
gests that more progress can be made.

logn m

Uninteresting

nv5=4

n11=9v

mn2=3

m
p

m
v
p

mn

logn v 10

1

2

nm2=3v1=6

Figure 2: Pictures of the best randomized bounds. (See text
for explanation.)

The rest of this paper is organized as follows. In Sec-
tion 2 we review some notation and basic definitions. In
Section 3 we give two algorithms for fast augmenting paths
in simple graphs. In Section 4 we give two deterministic al-
gorithms based on our fast augmenting paths subroutine. In
Section 5 and 6, we apply fast augmenting paths to some ran-
domized algorithms of Karger [12, 14]. In Section 7 we show
how to extend fast augmenting paths to capacitated graphs,
and discuss the implications for our other algorithms. We
conclude and discuss some open questions in Section 8.

2 Notation and definitions

We use the following notation:

G the graph
s the source
t the sink
n number of nodes
m number of edges
v value of a maximum flow
f a flow
Gf residual graph ofG with respect tof
df s-t distance inGfj f j the value of flowf
Ef the edges ofG carrying flow

The only unusual item here isEf . Two facts motivate
this definition: 1) The residual graphGf is necessarily a

directed graph, because flows are directed. 2) Undirected
graphs have special properties that we can exploit. Since
most flow algorithms work by repeatedly finding some flow
and then restricting attention to the residual graph, it would
seem that fact 1 renders fact 2 useless. However, the sym-
metry of an undirected graph is not entirely lost inGf . In
particular, since the capacity of a directed edge inGf is its
capacity inG minus the value off on that edge in that di-
rection, it is only the edges with non-zero flow that “become
directed”. The unused edges still have the same capacity in
both directions, so they may still be considered undirected.
Therefore, in order to make good use of the properties of
undirected graphs, we think ofGf as having an undirected
part, the unused edges, and a directed part,Ef .

We also use the following definitions:

Definition 2.1 A graph issimple if all edges have unit ca-
pacity and there are no parallel edges.

Definition 2.2 A flow f isacyclicif there is no directed cycle
on which every edge has positive flow in the cycle direction.

3 Finding augmenting paths quickly

In this section we show how to find augmenting paths in an
undirected simple graph inO(npv) amortized time per path.
We focus on simple graphs, deferring discussion of graphs
with capacities to Section 7. There are two facts that make
our result possible. The first is that an acyclic flow in a sim-
ple graph uses onlyO(npv) edges. The second is that in
an undirected graph, a maximal spanning forest on the un-
used edges, together with the flow-carrying edgesEf , con-
tains an augmenting path if there is one. So the basic idea
is to maintain a maximal spanning forestT of the undirected
edges and useT [Ef to search for an augmenting path in
O(n+n

p
v) = O(npv) time.

There are two ways to do this. The direct approach is
to use a dynamic connectivity data structure to maintain a
maximal spanning forest. The other possibility is to compute
many spanning forests at once and use them for many paths,
amortizing away the cost of finding the forests. We describe
both approaches.

We begin by proving the structure theorems we need, and
then give the details of the two approaches.

3.1 Structure theorems

3.1.1 Flows use few edges

The first important theorem is that small flows in simple
graphs use few edges:

Theorem 3.1 An acyclic flow f in a simple graph uses at
most3n

pj f j edges.

Note that this theorem is very close to a theorem proved
by Galil and Yu [5] and simplified by Henzinger, Klein-
berg, and Rao [9] that says there exists a flow that uses only

O(npv) edges. Our proof is very much the same as that of
Henzinger, Kleinberg and Rao, although we proved it inde-
pendently.

We use two lemmas to prove the theorem:

Lemma 3.2 [3] In a simple graph with a flow f , the maxi-
mum residual flow value is at most2(n=df)2. (Recall that df
is the length of the shortest source-sink path in Gf .)

Proof. Define the distance of a node to be the length of the
shortest path (in the residual graph) from that node to the
sink. LetVi be the set of nodes at distancei. Sinces is in Vdf

and the sink is inV0, the cut separating[j�iVj from [j>iVj

is an s-t cut. Call this cut thecanonical cutseparatingVi

from Vi+1. Observe that a node inVi+1 cannot have an edge
to a node inVj for any j < i since it would then be inVj+1.
So edges leavingVi+1 can only go toVj with j � i. Since
there are no parallel edges, the number of edges crossing the
canonical cut separatingVi+1 fromVi is at mostjVi+1jjVij.

Now consider theVi in pairs:V0[V1;V2[V3; : : : . There
areb(df +1)=2c such pairs, and they are vertex disjoint, so
some pair has at most 2n=df vertices in it. The canonical
cut separating this pair has at most maxx(x)(2n=df � x) =(n=df)2 edges crossing it. Each edge of the residual graph
has capacity at most 2 (one original unit and possibly one
more if it is carrying flow in the wrong direction), so the
maximum residual flow value is 2(n=df)2.

Lemma 3.3 (Small modification to Theorem 6 in [3]) In a
simple graph, if a flowj f j is found by repeatedly finding and
augmenting on a shortest path in Gf , then the total length of
the paths is at most3n

pj f j.
Proof. Restating Lemma 3.2, we have that whenx flow re-
mains inGf , the length of the shortest source-sink path in
Gf is at mostn

p
2=x. In the execution of any augmenting

path algorithm,x takes on each value from 1 toj f j once, so
if we always use the shortest augmenting path inGf we see
that the total length of the paths isj f j

∑
x=1

n
p

2p
x
� 3n

pj f j
Proof of Theorem 3.1.ConsiderEf . By definition, f is an
s-t max-flow inEf of valuej f j. Further, sincef is acyclic,
there can be no residual cycle inEf , so the maximum flow
in Ef is unique. That is,f is the only max-flow inEf . By
Lemma 3.3, if we were to find a max-flow inEf by shortest
augmenting paths, the total length of these paths would be
at most 3n

pj f j, meaning that at most 3n
pj f j edges were

used. But this (unique) max-flow isf , so f uses at most
3n
pj f j edges.

Observe that Theorem 3.1 is tight up to constant factors.
Figure 3 gives an example of a graph with an acyclic maxi-
mum flow that usesΘ(npv) edges.

s t

v nodesp
v nodes

. . .

Every cut defined by a vertical
line hasv edges crossing it.

Figure 3: A graph with an acyclic flow that usesO(npv)
edges

3.1.2 Unused edges can be reduced to a
spanning forest

The second important structure theorem is that the flow-
carrying edges together with a maximal spanning forest of
unused edges have an augmenting path if and only ifGf

does:

Theorem 3.4 Let T be any maximal spanning forest of Gf �
Ef . Then T[Ef has an augmenting path if and only if Gf

does.

Proof. Let G0 = T [Ef . SinceG0 is a subgraph ofGf , it is
clear that ifG0 has an augmenting path thenGf does. For
the other direction, suppose that there is an augmenting path
in Gf , but not inG0. By the max-flow min-cut theorem, we
can restate this condition as follows: there is ans-t cutC that
has a residual edgee crossing it (from thes to thet side) in
Gf , but no edges crossing it inG0. If e is in Ef , then it is
in G0, a contradiction. Soe must be inGf �Ef . But T is
a maximal spanning forest ofGf �Ef , which means that it
contains an edge from every nonempty cut ofGf �Ef . Since
C is nonempty inGf �Ef (ecrosses it) some edge ofT, and
thus ofG0, crossesC. This contradicts our (restated) original
assumption.

With these two results, we can now give some algo-
rithms.

3.2 An algorithm based on a dynamic
connectivity data structure.

In this section we show how to exploit Theorem 3.4 in the
most literal way: by maintaining an acyclic flowEf and a
maximal spanning forest ofGf �Ef . The most important
piece of this implementation is a data structure for dynamic
connectivity:

Lemma 3.5 [10] It is possible to maintain a maximal span-
ning forest of an undirected graph under edge insertions and
deletions in O(log2n) amortized time per operation.

We also need to worry about whether our flow is acyclic,
because Theorem 3.1 only applies if it is. Fortunately, us-
ing a procedure due to Sleator and Tarjan [18], it is easy to

remove all cycles from a flow (we will refer to this proce-
dure asdecycling). Since we are largely concerned with the
simpler case of unit-capacity graphs, we observe that their
algorithm minus the dynamic trees works a little faster in a
unit-capacity graph:

Lemma 3.6 In a unit-capacity graph, it is possible to take a
flow f and find an acyclic flow f0 of the same value (j f 0j =j f j) in O(jEf j) time.

Proof. Do a depth first search from the source on edges car-
rying flow. Whenever the sink is reached, retreat. Whenever
a back edge (an edge leading to vertex already on the cur-
rent depth-first search path) is found, we have found a cycle.
Delete the cycle and continue the search from the head of the
back edge. (The head of the back edge is the node furthest
from the source and still on the current depth-first search
path.) Deleting a cycle leaves a flow of the same value. The
search only advances over each edge once, and only deletes
each edge once, so it takesO(jEf j) time. Note that it is easy
to show by contradiction that there are no cycles left inEf

when this procedure terminates.

We can now give the basic algorithm for fast augmenting
paths:

SparseAugment1(G; f)
Input: GraphG, flow f
Output: maximum flow inG

insert all edges ofG that are not carrying flow
into a dynamic connectivity data structure,
and use it to maintain a maximal spanning forestT

repeat:
look for an augmenting path inEf [T
if no such path exists

return f
else

augmentf using the path
f decycle(f)
update the connectivity structure as appropriate

Note that in practice we might decycle the flow only
when it has many edges. To show that this algorithm is cor-
rect, we just need to know thatG0 contains an augmenting
path if and only ifGf does. This result is immediate by The-
orem 3.4. It remains to analyze the running time.

Theorem 3.7 SparseAugment1 runs in O((m+ rn) log2n+
rn
p

v) time, where r= v�j f j is the number of augmenting
paths that need to be found.

Proof. For now ignore the dynamic connectivity operations.
Since we decycle the flow in each iteration, every augment-
ing path search takes place in a graph withO(npv) edges
and therefore takesO(npv) time. Similarly, every decycling
takesO(npv) time. Since there arer iterations, the total time
is O(rnpv).

It remains to account for the dynamic connectivity oper-
ations. First consider deletions. An edge is deleted from the
data structure when we place flow on it. This happens to at
mostn edges in any one augmenting path, for a total ofnr
deletions takingO(nr log2n) time. Now consider insertions.
Initially, we insert all edges in the structure inO(mlog2n)
time. Later, edges are inserted in the data structure when
flow is removed from them. Note, however, that flow can-
not be removed from an edge until flow has been added to
the edge, We have already counted the cost of deleting edges
when we add flow to them; this cost can also absorb the equal
cost of inserting those edges when the flow is removed.

3.3 An algorithm based on sparse connectivity
certificates

Another way to exploit Theorem 3.4 is to find several span-
ning forests at once and use them to find several augmenting
paths, thus achieving the same average time per augment-
ing path. To do this, we use an idea and algorithm given by
Nagamochi and Ibaraki [17]:

Definition 3.8 For an undirected graph G= (V;E), asparse
connectivity certificateis a partition of E such that Ei is a
maximal spanning forest in G�E1[E2[�� � [Ei�1, for i =
1;2; : : : ; jEj, where possibly Ei = Ei+1 = � � � = EjEj = /0 for
some i.

Definition 3.9 A sparsek-certificateis the subgraph Gi =(V;E1[E2[�� �[Ek) derived from a sparse connectivity cer-
tificate.

Lemma 3.10 [17] The value of a minimum s-t cut in a
sparse k-certificate Gk of G is equal to the smaller of k and
the value of the minimum s-t cut in G.

Lemma 3.11 [17] In an undirected graph with unit capacity
edges, it is possible to construct a sparse connectivity certifi-
cate in O(m) time.

Notice that one easy application of this construction is to
reducem to nv. By Lemma 3.10, using a sparsenv-certificate
does not reduce the value of anys-t cut belowv, so a maxi-
mum flow in the certificate is a maximum flow in the original
graph. This gives anO(m+nv2)-time flow algorithm using
standard augmenting paths.

This construction turns out to be precisely what we want.
We formalize this idea with the following generalization of
Theorem 3.4:

Theorem 3.12 Let Gk be a sparse k-certificate of Gf �Ef .
Then Ef [Gk contains i< k augmenting paths if and only if
Gf has i augmenting paths, and Ef [Gk contains at least k
paths if Gf contains at least k.

Proof. The idea here is the same as that of Theorem 3.4,
except that now we have several spanning forests instead of
one. AgainG0 = Ef [Gk is a subgraph ofGf , so can have

no more augmenting paths thanGf . For the other direction,
consider a minimums-t cut of G0. SupposeGf has more
residual edges crossing this cut, that is, has an edge crossing
the cut that is not inG0. It is impossible for this edge to be
in Ef , becauseG0 contains all edges ofEf . So there must
be more unused edges crossing the cut inGf �Ef than in
Gk. But by Lemma 3.10, this can only happen if more thank
edges cross the cut inGf �Ef , in which case at leastk edges
must cross the cut inGk. This completes the proof.

We now give the basic algorithm using sparse certifi-
cates:

SparseAugment2(G; f)
k lp

m=n
m

repeat:
f decycle(f)
Gk a sparsek-certificate of unused edges ofG
G0 Ef [Gk

run augmenting paths onG0 until
k paths are found or no more paths exist

if the previous step found less thank paths
return f

To show the correctness of this algorithm, we just need
to know that when we find less thank augmenting paths in
G0, we have a maximum flow inG. This is immediate from
Theorem 3.12. It remains to analyze the running time.

Lemma 3.13 The running time ofSparseAugment2(G; f)
on a simple graph is O(m+ r(npv+pmn)), where r is the
number of augmenting paths that need to be found.

Proof. By Lemma 3.11 and Lemma 3.6, the cost per iteration
of the first two steps in the loop isO(m). The cost of the
augmenting paths step isO(m0k), wherem0 is the number
of edges inG0. By definition of a sparsek-certificate and
Theorem 3.1,m0 � nk+n

p
v=pmn+n

p
v. The number of

iterations isdr=ke, so the total time isO((m+m0k)dr=ke) =
O(m+ r(npv+pmn)).

This bound is somewhat unsatisfactory, in that the cost
per augmenting path becomes

p
mnwhenm� nv. But if we

knewv at the beginning, we could find a sparsev-certificate
and ensure that we only worked withnvedges for the rest of
the algorithm. This would give the amortizedO(npv) time
per path that we want. A complicated way to solve this prob-
lem is to use the graph compression technique of Benczúr
and Karger [1] to get a 2-approximation tov in Õ(m+ nv)
time. A simpler approach is to simulate knowingv by taking
a small guess and doubling it until we are correct:

SparseAugment3(G; f)
compute a sparse connectivity certificate of

unused edges ofG
For anyw, let Gw denote the firstw forests of this

sparse certificate (a sparsew-certificate)
w j f j
repeat:

w minw0 such thatjGw0 j> 2jGwj
SparseAugment2(Gw; f), stopping whenj f j �w

until j f j < w
return f

Notice thatGw�G2w, so we do not start over each itera-
tion, we just continue with more of the edges fromG. This is
irrelevant to the time bound, but seems likely to yield better
constant factors in practice.

Theorem 3.14 The running time ofSparseAugment3(G; f)
on a simple graph is O(m+ rn

p
v), where r is the number of

augmenting paths that need to be found.

Proof. The running time of the initial step isO(m). The
running time of theith iteration isO(mi + r i(npv+pmin))
by Lemma 3.13. (Here the notationxi is used to mean the
value ofx in the ith iteration.) Sincemi doubles with each
iteration, the sum over iterations of the first term isO(m).
Let k be the number of iterations. It must be the case that
wk�1 � v in order for the(k�1)st iteration to not terminate.
Thusmk�1 � nv. Since we attempt to doublemi , ending up
with at most one spanning forest too many,mk � 2nv+n=
O(nv). Since∑ r i = r, the sum over iterations of the second
term isO(rnpv). The total isO(m+ rn

p
v).

4 Applications of fast augmenting paths

The main result of Section 3 can be used in several ways
to give fast flow algorithms. Most obviously, direct ap-
plication of SparseAugment3 gives a simple, deterministic
O(m+nv3=2)-time flow algorithm. In the worst case, when
m= Θ(n2) andv= Θ(n), this gives anO(n5=2) time bound,
which is as good as all previous known algorithms’. For
smaller v this is the best deterministic algorithm known.
Note that ours is the first deterministic algorithm to achieve
this bound without blocking flows, and unlike previous
blocking flow approaches it benefits from smallv. If we do
use blocking flows, we can do better for largev:

BlockThenAugment (G;k)
f the result of computing blocking flows on

shortest paths inGf until df � k
returnSparseAugment3(G; f)

Theorem 4.1 On an undirected simple graphBlock-
ThenAugment (G;nv1=6=m1=3) runs in O(nm2=3v1=6) =
O(n5=2) time.

Proof. Finding a blocking flow takesO(m) time. We
compute at mostk blocking flows, which takesO(mk) =
O(nm2=3v1=6) time. We then havedf � k, so by Lemma 3.2
the remaining flow isO((n=k)2). Thus the time for the sec-
ond step isO(n3pv=k2), which is alsoO(nm2=3v1=6).

This algorithm also takesO(n5=2) time in the worst case,
but it is better when the graph is sparse but the flow value
is large. It is always at least as good as the bound of
O(n3=2m1=2) given by Goldberg and Rao [8], and in general
better by a factor of(n3=mv)1=6.

Note that unlike Dinitz’s algorithm, where the improved
running time arose by changing theanalysisof the algorithm
to augmenting paths at a certain point, we must explicitly
change theexecutionof the algorithm at a certain point to
achieve our bounds. Since our algorithm must change its
actions, we need to know what that point is. In particular,
we need to knowv in order to achieve our bound. We can
again get around this limitation by either estimatingv with
another algorithm and computing a sparse certificate or using
the iterative doubling trick ofSparseAugment3.

5 New tricks for an old DAUG

Using our fast augmentation, we can also improve the run-
ning time of the “divide and augment” algorithm (DAUG)
given by Karger [12]. This result is of relatively minor inter-
est in itself, but we make good use of it in the next section.

The idea ofDAUG is that if we randomly divide the edges
of a graph into two groups, then about half of the flow can
be found in each group. So we can recursively find a max-
imum flow in each half, put the halves back together, and
use augmenting paths to find any flow that was lost because
of the division. In the original version, the time spent find-
ing augmenting paths at the top level dominated the running
time, so it is natural to expect an improvement with faster
augmentations. Here is the original algorithm:

DAUG(G)
if G has no edges, return the empty flow
randomly divide the edges ofG into two groups,

giving G1 andG2

f1 DAUG(G1)
f2 DAUG(G2)
f f1+ f2

(*) use augmenting paths to turnf into a maximum flow
return f

The key fact that makesDAUG work is that random sam-
pling preserves cut values fairly well as long as all cuts are
large enough:

Definition 5.1 A graph is c-connectedif the value of each
cut is at least c.

Theorem 5.2 [12] If G is c-connected and edges are sam-
pled with probability p, then with high probability all cuts

in the sampled graph are within(1�p8lnn=pc)) of their
expected values.

Thus when we divide the edges into two groups (effect-
ing p = 1=2 in each group), the minimums-t cut in each
group is at leastv2(1�O(plogn=c)). So the flow in each
half has at least this value, giving us a flow of value at
leastv(1�O(plogn=c)) when we put the two halves to-
gether. This leaves onlyO(vplogn=c) augmenting paths to
be found in Step (*). It turns out that this step is the dom-
inant part of the running time (the time bound forDAUG is
O(mv

p
logn=c)), so it makes sense to useSparseAugment.

We refer to this new algorithm asnewDAUG.
Now, by Theorem 3.14, the time to find the augmenting

paths isO(m+nv
p

vlogn=c). So a recurrence for the run-
ning time ofnewDAUG is

T(m;v;c) = 2T(m=2;v=2;c=2)+O
�
m+nv

p
vlogn=c

�
This solves toÕ(m+nv

p
v=c), but unfortunately, because of

the randomization in the algorithm, the problem reduction is
expected, not guaranteed, so solving this recurrence does not
actually prove anything about the running time ofnewDAUG.
We need to look at the recursion tree (See [12] for a full
discussion). This proof is more technical than interesting,
and goes the same way as in [12], so we just sketch it.

Theorem 5.3 The running time ofnewDAUG on a c-
connected graph is̃O(m+nv

p
v=c).

Proof. (Sketch) As in the original algorithm, the depth of the
recursion tree isO(logm), and the time spent looking unsuc-
cessfully for augmenting paths isO(mlogm). It remains to
bound the time spent in successful augmentations. Consider
a recursion nodeN at depthd. Each edge of the original
graph ends up atN independently with probability 2�d, so
the graph at this node is equivalent to one obtained by sam-
pling with probability 2�d.

Consider the nodes at depths exceeding log(c= logn). By
Theorem 5.2, at these nodes the flow isÕ(v=c). So by The-
orem 3.14, the total time spent on successful augmenting
paths isÕ(nv

p
v=c). At the nodes at depthd� log(c= logn),

the argument from [12] continues to apply, showing that
the number of augmenting paths that need to found is
O(vplogn=2dc). Since the value of the flow isO(v=2d),
the time taken isÕ((vp1=c)npv=2d) = Õ(nv

p
v=c=2d).

Adding this up over the whole recursion, we get the claimed
bound.

Note that this time bound is very good ifv is not much
bigger thanc. In particular, we get the following easy corol-
lary:

Corollary 5.4 In a simple graph where v= Õ(c), the run-
ning time ofnewDAUG is Õ(m+ nv) = Õ(m). (Note that
m� nc=2 in a c-connected simple graph.)

6 Õ(m+nv5=4)- and Õ(m+n11=9v)-time algorithms

The algorithm of the previous section is only an improve-
ment over theO(m+nv3=2)-time algorithm ifc is large. Nev-
ertheless, we can take advantage of it by using ideas from
[14]. In that paper, a number of ideas are put together to get a
fast flow algorithm,CompressAndFill, that runs inÕ(vpmn)
time on any undirected graph. For our purposes, that algo-
rithm can be summarized with the following theorem:

Theorem 6.1 [14] Let T(m;n;v;c) denote the time to find a
maximum flow of value v in a c-connected undirected graph
with m edges and n nodes. Given flow algorithms A1 and A2;
(A1 must handle capacities), with running times T1 and T2
respectively, it is possible to define a flow algorithm A3 with
expected running time (up to log factors) given by

T3(m;n;v;c)� T1(nk;n;v;c)+T2(m;n;v;k)+T2(m;n;k;k)+ time to find O(v=pk) augmenting paths

(There is a technicality that the bound of T2 must be
“reasonable”—at least linear in n or m— for this theorem
to be true.)

CompressAndFill results from pickingk� m=4n, using
CompressAndFill (recursively) forA1, and usingDAUG (with
runtimeÕ(mv=pk) for A2. Thus the recurrence for the run-
ning time is

T(m;n;v;c)� T(m=2;n;v;c)+ Õ(mv
p

k) +Õ(mpk)+
Õ(mv

p
k)� T(m=2;n;v;c)+ Õ(vpmn)� Õ(vpmn)

We improve on this algorithm by replacing the subrou-
tinesA1 andA2 and the augmenting path step appropriately.
In particular, we usenewDAUG instead ofDAUG for A2 and
we find augmenting paths at the end withSparseAugment.
We also consider two possibilities forA1: CompressAndFill
and theÕ(mn2=3)-time algorithm of Goldberg and Rao. Note
that we investigated using a recursive strategy again, but we
were unable to get an improvement that way.

Theorem 6.2 On undirected simple graphs, we can find a
maximum flow in expected timẽO(m+nv5=4).
Proof. Use Theorem 6.1 withA1 =CompressAndFill, A2 =
newDAUG, andSparseAugment to find the augmenting paths
at the end. The resulting time bound is

Õ(vp(nk)n)+ Õ(nv3=2=k1=2)+ Õ(nv)+ Õ(npv �v=pk)= Õ(vn
p

k+nv3=2=k1=2)
Pickingk=pv completes the proof.

Theorem 6.3 On undirected simple graphs, we can find a
maximum flow in expected timẽO(m+n11=9v).

Proof. Use Theorem 6.1 withA1 = the Õ(mn2=3)-time al-
gorithm of Goldberg and Rao [7],A2 = newDAUG, and
SparseAugment to find the augmenting paths at the end. The
time is

Õ((nk)n2=3)+ Õ(nv3=2=k1=2)+∑Õ(nv)+ Õ(npv�v=pk)= Õ(kn5=3+nv3=2=k1=2)
Pickingk= v=n4=9 completes the proof.

7 Extensions to graphs with capacities

In this section we show that much of what we have already
shown for simple graphs actually applies to graphs arbitrary
integer capacities. The key fact is that Theorem 3.1 continues
to hold:

Theorem 7.1 An acyclic flow f in a graph with integer ca-
pacities and no parallel edges uses at most2n

pj f j edges.

Besides extending to capacitated graphs, this theorem
yields better constants, even for the simple-graph case, than
the similar theorems of Galil and Yu [5] and Henzinger et
al [9]. The lower-bound example of Figure 3 shows that our
bound is tight to within a factor of 2.

Notice also that restricting a capacitated graph to have no
parallel edges is no restriction at all, because in time linear
in the input we can merge parallel edges into one edge with
capacity equal to the sum of the capacities of the edges that
make it up, and at the end we can split the flow on such an
edge among the edges that make it up.

Our proof of Theorem 3.1 bounded the number of edges
used by a flow by breaking it down into augmenting paths
and counting their total length. That argument does not
work, because a single path of lengthn and capacityv would
cause the total length of augmenting paths to benv. How-
ever, a very similar argument does work. The problem is
that one edge can be in many paths, so our old proof counts
it many times. The idea of the new proof is to redefine the
length of an edge so that the total length of augmenting paths
gives a more accurate bound. Specifically, define the length
of a residual edge to be 1 if it has unit capacity and 0 if its
capacity is larger. Again we begin with a lemma:

Lemma 7.2 In a graph with flow f that has no parallel
edges, the maximum residual flow value is at most(n=df)2,
where df is the length of the shortest (with respect to the
length function defined above) source-sink path in Gf .

Proof. The argument used in the proof of Lemma 3.2 contin-
ues to imply that there is a canonical cut with only(n=df)2
edges crossing it. The only difference now is that the edges
of Gf are not limited to capacity 2. However, no length 0
edge can cross a canonical cut from thes side to thet side,
because that would violate the definition of the cut. (A node
w at distancei from the sink cannot possibly have a length-0

edge to a node at distance less thani, becausew would then
be at distance less thani.) Therefore only length 1—that is,
capacity 1—edges cross canonical cuts, so the residual flow
value is at most(n=df)2.

Proof of Theorem 7.1. As in the proof of Theorem 3.1,
we consider finding a max-flow inEf . To do this, define a
graphG0 = (V;Ef) where the capacity of an edge is equal
to the value off on it. Again, sinceEf has no cycles, the
maximum flow inG0 is unique and therefore must use all the
capacity of all the edges.

Consider finding a maximum flow inG0 by repeatedly
finding and augmenting one unit of flow on a shortest path
(with respect to the length function above) inG0

f . Lemma 7.2
tells us that the length of the path is at mostn=px. In the
execution of any augmenting path algorithm,x takes on each
value from 1 toj f j once, so if we always use the shortest
augmenting path we see that the total length of the paths isj f j

∑
x=1

np
x
� 2n

pj f j
Since every edge is reduced to 0 capacity at the end, every
edge has length 1 at least one of the times it is on an aug-
menting path. It follows that the total length of the augment-
ing paths is an upper bound on the number of edges used by
f .

Note that during the augmenting path algorithm the
lengths of edges can change in unpredictable ways, but this
does not affect our analysis. All we care is that each edge
has length 1 during at least one augmentation through it.

Given thatjEf j is still small for a capacitated graph, we
need to make sure that we can still decycle and that our
methods to sparsify the unused edges still work. Fortunately,
the original Sleator-Tarjan decycling algorithm [18] already
takes care of capacitated graphs, and a later paper of Nag-
amochi and Ibaraki [16] says that we can still find sparse
certificates quickly.

Lemma 7.3 [18] It is possible to take a flow f and find an
acyclic flow f0 of the same value (j f 0j= j f j) in O(jEf j logn)
time.

Lemma 7.4 [16] In an undirected graph, it is possible to
construct a sparse connectivity certificate in O(m+nlogn)
time.

It follows immediately that we can find augmenting paths
in a capacitated graph in amortizedÕ(npv) time. Almost all
of our simple-graph time bounds extend as easy corollaries.

Theorem 7.5 In an undirected graph, it is possible to find r
augmenting paths iñO(m+ rn

p
v) time.

Corollary 7.6 A maximum flow in an undirected graph can
be found inÕ(m+nv3=2) time.

Corollary 7.7 A maximum flow in an undirected graph can
be found inÕ(m+nv5=4) expected time.

Corollary 7.8 A maximum flow in an undirected graph can
be found inÕ(m+n11=9v) expected time.

Notice thatBlockThenAugment does not extend, because
it relies on Lemma 3.2 to bound the remaining flow after
several blocking flow computations. However, the remain-
ing algorithms do extend. In [14], Karger shows how to ex-
tendDAUG to graphs with capacities. Ignoring the details,
the bottom line is thatm has to be increased tom+nc. The
time bound fornewDAUG is independent ofm, so it remains
Õ(nv

p
v=c). CompressAndFill was originally designed to

work with capacities, so given thatnewDAUG and fast aug-
menting paths continue to work with the same time bounds
(up to logarithmic factors), our algorithms of Section 6 do as
well.

8 Conclusion

We have given algorithms that improve the time bounds for
maximum flow in undirected graphs. However, our results
seem to open more questions than they resolve. By giving
an algorithm that runs iñO(m+n11=9v) = Õ(n2:2) time, we
show thatO(n2:5) is not the right time bound for maximum
flow in undirected simple graphs. Further, for the case when
v= Õ(c), we give an algorithm that runs iñO(m) time. This
reopens the question of what the right time bound is. The
hope that the time bound has a simple form leads us to con-
jecture that it is possible to find flows iñO(m+ nv) time,
which isÕ(n2) on simple graphs.

We have also shown that maximum flow in undirected
simple graphs can be found faster than bipartite match-
ing. As discussed before, the standard reduction of bipar-
tite matching to flows is to directed flows, so our techniques
do not help. This opens the question of whether bipartite
matching can be reduced to undirected flow or, more gener-
ally, whether the time for bipartite matching is really correct.

It is also natural to ask whether our techniques can be
extended further. The best performance improvement we
could hope for from our present techniques is reduction of
m to n

p
v; we achieve this reduction for augmenting paths,

but only get part-way when blocking flows are involved. It
would be nice to find a way to sparsify for a blocking flow
computation. In particular, if we could achieve a full re-
duction ton

p
v edges when blocking flows were involved,

it would imply an O(npvn2=3) = O(n2:16)-time algorithm.
Further, the structure theorem, that a flow does not use many
edges, holds for directed graphs, but our sparsification tech-
niques do not. It would be nice to close the gap between
directed and undirected graphs.

Acknowledgments

We thank Allen Knutson and Joel Rosenberg for assistance
in proving Theorem 7.1.

References

[1] A. A. Benczúr and D. R. Karger. Approximates–t min-
cuts in Õ(n2) time. In G. Miller, editor,Proceedings
of the28th ACM Symposium on Theory of Computing,
pages 47–55. ACM, ACM Press, May 1996.

[2] E. A. Dinitz. Algorithm for Solution of a Problem of
Maximum Flow in Networks with Power Estimation.
Soviet Math. Dokl., 11:1277–1280, 1970.

[3] S. Even and R. E. Tarjan. Network Flow and Test-
ing Graph Connectivity.SIAM Journal on Computing,
4:507–518, 1975.

[4] L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow
through a network.Canadian Journal of Mathematics,
8:399–404, 1956.

[5] Z. Galil and X. Yu. Short length versions of Menger’s
theorem (extended abstract). InProceedings of the27th

ACM Symposium on Theory of Computing, pages 499–
508. ACM, ACM Press, May 1995.

[6] A. Goldberg. Personal communication, Oct. 1997.
[7] A. Goldberg and S. Rao. Beyond the flow decompo-

sition barrier. InProceedings of the30th Annual Sym-
posium on the Foundations of Computer Science[11],
pages 2–11.

[8] A. Goldberg and S. Rao. Flows in undirected unit ca-
pacity networks. InProceedings of the30th Annual
Symposium on the Foundations of Computer Science
[11], pages 32–35.

[9] M. R. Henzinger, J. Kleinberg, and S. Rao. Short-
length Menger theorems. Technical Report 1997-022,
Digital Systems Research Center, 130 Lytton Ave.,
Palo Alto, CA 94301, 1997.

[10] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic graph algo-
rithms I: Connectivity and minimum spanning tree.
Technical Report DIKU-TR-97/17, University of
Copenhagen, 1997. To appear in STOC 1998.

[11] IEEE. Proceedings of the30th Annual Symposium on
the Foundations of Computer Science. IEEE Computer
Society Press, Oct. 1997.

[12] D. R. Karger. Random sampling in cut, flow, and net-
work design problems.Mathematics of Operations Re-
search, 1998. To appear. A preliminary version ap-
peared in STOC 1994.

[13] D. R. Karger. Using random sampling to find maximum
flows in uncapacitated undirected graphs. InProceed-
ings of the29th ACM Symposium on Theory of Com-
puting, pages 240–249. ACM, ACM Press, May 1997.

[14] D. R. Karger. Better random sampling algorithms for
flows in undirected graphs. InProceedings of the
9th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 490–499. ACM-SIAM, Jan. 1998.

[15] A. V. Karzanov. O nakhozhdenii maksimal0nogo
potoka v setyakh spetsial0nogo vida i nekotorykh
prilozheniyakh. In Matematicheskie Voprosy Up-
ravleniya Proizvodstvom, volume 5. Moscow State

University Press, Moscow, 1973. In Russian; title trans-
lation: On Finding Maximum Flows in a Network with
Special Structure and Some Applications.

[16] H. Nagamochi and T. Ibaraki. Computing edge con-
nectivity in multigraphs and capacitated graphs.SIAM
Journal on Discrete Mathematics, 5(1):54–66, Feb.
1992.

[17] H. Nagamochi and T. Ibaraki. Linear time algorithms
for finding k-edge connected andk-node connected
spanning subgraphs.Algorithmica, 7:583–596, 1992.

[18] D. D. Sleator and R. E. Tarjan. A data structure for dy-
namic trees.Journal of Computer and System Sciences,
26(3):362–391, June 1983.

