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ABSTRACT
Maximum margin clustering (MMC) is a relatively new and promis
ing kernel method. In this paper, we apply MMC to the task of un
supervised speech segmentation. We present three automatic speech 
segmentation methods based on MMC, which are tested on TIMIT 
and evaluated on the level of phoneme boundary detection. The re
sults show that MMC is highly competitive with existing unsuper
vised methods for the automatic detection of phoneme boundaries. 
Furthermore, initial analyses show that MMC is a promising method 
for the automatic detection of sub-phonetic information in the speech 
signal.

Index Terms— speech processing, clustering methods, unsuper
vised learning.

1. INTRODUCTION

Kernel methods have become increasingly prominent recently with 
the development of support vector machines (SVMs) [1] and their 
successful application in various fields. For example, SVMs have 
become an integral part of most state-of-the-art speaker recognition 
systems competing in the annual NIST evaluations [2]. In contrast, 
the use of kernel methods in other fields of speech processing, such as 
automatic speech recognition (ASR), is comparatively uncommon.

Maximum margin clustering (MMC) [3] is a relatively new and 
promising kernel method. It is of interest because of its close 
relationship to SVMs. MMC is a (semi) unsupervised form of SVM 
which determines the maximum margin dichotomy when (some 
or) no labels are specified: the two are related by the maximum 
margin criterion [1] for finding the optimum solution. Also, kernels 
developed for SVMs are immediately applicable to MMC. For 
example, using a sequence kernel developed for speaker verification 
[4, 5, 6] enables maximum margin speaker clustering and using 
a temporally discriminant sequence kernel developed for speech 
recognition [7] enables clustering of variable length speech segments. 
For the latter it is necessary to provide an initial segmentation of the 
speech signal. Since MMC and SVMs are closely related, it seems 
natural to use MMC to segment the speech for later reclassification 
by SVMs. However, before applying sequence kernels an evaluation 
of MMC’s potential to segment speech is necessary.

In this paper, we examine the use of MMC for frame-level 
unsupervised speech segmentation using standard kernels. The
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Fig. 1. The maximum margin criterion applied to SVMs and MMC.

obtained segmentation will be evaluated on TIMIT [8] by comparing 
the segment boundaries to the phone boundaries. One has to bear 
in mind though, that MMC is a speech segmentation method, but 
the evaluation is on the level of phonemes. Our goal is not strictly 
phoneme segmentation, but the segmentation of speech into clusters 
that may be classified later using SVMs.

The remainder of the paper is as follows. Section 2 describes 
MMC. Section 3 describes the material used. The segmentation 
methods and their results are presented in Section 4, and discussed in 
Section 5. The paper concludes with the most important findings and 
a brief outlook on future research.

2. MAXIMUM MARGIN CLUSTERING

The principle underlying SVMs is the maximum margin criterion. 
It states that if a linear decision boundary is to be placed between 
two separable classes then the optimum position is located exactly 
mid-way between the two such that the shortest distances from the 
boundary to the nearest points of each class are equal and maximal. 
Such an optimal decision boundary is illustrated in figure 1a, whereas 
figure 1b illustrates a non-optimal decision boundary. The empty 
region bounded by the two lines running parallel to the decision 
boundary between the two classes is called the margin and should 
have maximal width, i.e., it should be as wide as possible while 
remaining empty. The SVM formulation extends this principle to 
the non-separable case by penalising incursions into a so-called 
soft-margin and the goal then is to maximise the soft-margin while 
minimising the penalties.

Maximum margin clustering (MMC) developed by [3] employs 
the same underlying principle. The difference between SVMs and 
MMC is as follows. In SVMs the goal is to find the decision 
boundary that maximises the margin given a set of input vectors and 
their corresponding cluster labels. This task is illustrated in figures 
1a and 1b where the task is to find the optimal decision boundary 
that maximises the margin between the black dots and the grey 
squares. Hence SVMs are discriminative classifiers that are trained 
in a supervised manner. In contrast, the goal of MMC is to find the 
cluster label assignments given the input vectors such that the margin
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between the two resulting classes is maximal. This is illustrated in 
figure 1c where the task is to find the optimal decision boundary 
between the two sets of black dots. The proposed boundary in figure 
1c is non-optimal, the boundary should be placed as is done in figure 
1a. Therefore, MMC is an unsupervised algorithm which can be 
used to dichotomise a set of feature vectors. The MMC optimisation 
problem can be formulated as a semidefinite programming problem 
and our implementation closely follows that outlined in [3]. It is 
interesting to note that MMC can also be used in a semi-supervised 
setting in which some of the points are labelled. This leads to a 
constrained form of MMC which might be useful when handling 
temporally ordered data such as speech. However, this property is 
not exploited in this study.

The application of MMC to divide a speech signal into segments 
separated by maximum margin is relatively straight-forward and is 
described in section 4. Such MMC segments may be useful on 
multiple levels. For example, for the analysis of two consecutive 
phonemes. Alternatively, MMC can be used to analyse a single 
phoneme such as a long vowel in which case it might be able to detect 
fine sub-phonetic detail [9]. Thus the method may provide valuable 
insights into our understanding of speech.
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Fig. 2. a: Sliding window clustering representation; each column 
shows the cluster label assignments. b: Euclidean distance between 
cluster means; the detected boundaries (using 5 = 0.001,) are 
indicated by the solid vertical lines. The x-axis shows the TIMIT 
boundaries (dashed vertical lines) o f the phrase “She had your 
dar[k] ”.

3. MATERIAL

The speech used in this study is taken from the TIMIT corpus 
[8]. TIMIT consists of reliably hand labelled and segmented data 
of quasi-phonetically balanced sentences read by native speakers 
of eight major dialect regions of American English. Of the 630 
speakers in the corpus, 438 (70%) were male. We used TIMIT’s 
predefined test set, consisting of 1,344 utterances (the sa sentences 
are excluded). Note that in our experiments the silence part (i.e. the 
closure) of the stop consonant is merged with the release part of the 
stop consonant into a single segment.

The speech was parameterised with 12 MFCC coefficients and 
log energy, augmented with their first and second derivatives result
ing in 39-dimensional MFCC vectors. The MFCC were computed 
on windows of 15 ms, with a 5 ms frame shift, and cepstral mean and 
variance normalisation was applied.

4. SEGMENTATION AND RESULTS

To perform a frame-level segmentation of speech, a sliding window, 
which is N  frames wide, is applied to the parameterised speech 
signal. From initial experiments a value of N  = 1 8  was determined 
to yield the best results. MMC using an RBF kernel (with a width 
of 200 determined using a small development set) is applied to the 
frames inside the window and a set of cluster labels is obtained. The 
window is then shifted by one frame and the process is repeated 
across a whole utterance. The results of the analysis are shown in 
figure 2a. The x-axis represents the time of the frame at the centre 
of the sliding window. Each column of the graph corresponds to a 
window centred on a different frame so adjacent columns correspond 
to windows centred on adjacent frames. Elements at the bottom of 
a column occur earlier than elements at the top. The shading of 
each element indicates the cluster label assigned to each frame so 
a change in the shading corresponds to a potential boundary. The 
TIMIT phoneme label transcription is marked on the x-axis.

Segment boundaries can be seen by comparing the cluster label 
assignments across the columns. Boundaries that are well defined 
should shift downwards in subsequent columns leading to diagonal 
structures in the graph. An example of a phoneme boundary is 
highlighted in rectangle B  of figure 2a: the maximum margin

segmentation found by MMC coincides with the hand labelled 
TIMIT boundary marked on the x-axis.

Section 4.1 describes the metrics used to evaluate the segmen
tation quantitatively with respect to the TIMIT phoneme labels. A 
method of finding potential segmentation points by detecting diag
onal structures in the graph is described in section 4.2. Section 4.3 
describes an alternative method of finding segmentation points based 
on the Euclidean distance between the clusters. A combination of the 
two approaches is described in 4.4.

4.1. Evaluation metrics

Firstly, detected boundaries will not generally coincide exactly with 
manually transcribed phoneme labels. Thus, following [10] a bound
ary is considered to be correctly detected if  the hypothesis and the 
manual transcription are within 20ms of each other.

Four metrics are used to evaluate the segmentation. The correct 
detection rate (c.d.r) is defined as,

c.d.r. --
Total number of correct boundaries detected 

Total number of true boundaries
(1)

which is a measure of the proportion of the true boundaries detected. 
A related metric is the miss rate (m.r.) which is defined as m .r. = 
1 — c.d.r and indicates the proportion of true boundaries that were 
not detected.

Over-segmentation (o.s.) [11] gives an indication of how many 
segments were hypothesised compared to the actual number of 
segments.

Total number of boundaries found 
Total number of true boundaries

—1 (2)

An o.s. = 0 indicates that the number of hypothesised segments 
equals the number of true boundaries. Expressed as a percentage, 
an o.s. =  100% means that there are twice as many hypothesised 
segments as there are true segments. A negative value indicates too 
few segments were found.

The last metric used is the false alarm rate (f.a.), which indicates 
the proportion of boundaries that were incorrectly detected:

f.a . =  1 —
Total number of true boundaries found 

Total number of boundaries found (3)

0

o.s.



mask size 2 x 1 2 x 2 4 x 3
c.d.r. (%) 81.6 59.4 32.4
m.r. (%) 19.4 40.6 67.6
f.a. (%) 67.2 50.3 38.4
o.s. (%) 195.2 39.5 -46 .2

Table 1.
Boundary detection performances for different mask sizes.

4.2. Detecting structures (MB)

A mask based (MB) method is used to detect the diagonal structures 
in figure 2a. The mask is an n  x  m  matrix that is divided along 
its diagonal into two: each element in the upper right triangle must 
match the lighter shaded elements of the graph while the elements 
in the lower left triangle must match the darker shade. One mask is 
slid across the graph so that the top row of the mask is at the current 
frame of each column and another (inverted mask) is slid across the 
top of the graph. The total number of matching elements in the mask 
is counted each time. When all of the mask’s elements are matched 
then a segment boundary is marked at the time corresponding to the 
frames along the mask’s diagonal.

Table 1 shows the results of phoneme boundary detection on the 
TIMIT test using different mask sizes. The smallest mask is most 
sensitive as it looks only at one column whereas larger masks look 
for consistent boundaries across multiple columns. As is shown by 
Table 1, larger masks lead to much lower c.d.r. as not all structures 
are as large as those illustrated in figure 2a. Consequently, larger 
masks also led to very low f.a. and o.s.. Marking boundaries when 
there was only a partial match was considered. However, this led to 
an increase in the number of false alarms without a corresponding 
decrease in the miss rate.

4.3. Segmenting by Euclidean distance (ED)

The structures in figure 2a are quite complex and the MB approach 
is not very robust. An alternative method of determining whether a 
segment boundary is detected is to calculate the distance between 
the assigned clusters of a window. When the distance peaks, a 
boundary is detected. Since this is a maximum margin approach, 
our first instinct is to use the margin distance. However, this measure 
was found to be noisy and a relatively poor indicator of a segment 
boundary: although there may be two distinct clusters the margin 
separating them can vary significantly depending on the relative 
positions of the points on the edge of the margin. A more reliable 
and stable measure is to use the Euclidean distance between the 
mean vectors of the clusters (referred to as ED). The graph of these 
Euclidean distances is shown in figure 2b. A simple peak detector 
that registers peaks only if the value has changed by a value greater 
than a threshold S is used to find local maxima in the Euclidean 
distance. These maxima are marked in the graph by the solid vertical 
bars, the TIMIT phoneme boundaries are marked by the dotted 
vertical bars. The peaks clearly line up well with the TIMIT phoneme 
labels for this particular utterance.

Figure 3 shows a graph of miss rate (x-axis) plotted against over
segmentation (y-axis). The various points on the curve are obtained 
by varying the threshold S in the peak detection algorithm. Figure 3 
shows that at no over-segmentation the miss rate is 25% (equivalently 
75% of the phoneme boundaries are correctly detected).

Figure 4 plots miss rate against false alarm (an inverted ROC 
curve). In fact this method is unable to detect all of the TIMIT
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Fig. 3. Miss rate (x-axis) plotted against over-segmentation (y-axis) 
for varying S, for ED and COMB.

phoneme boundaries: missing about 8% with a 60% false alarm. 
When no false boundaries are detected the method detects approx
imately 25% of the phone boundaries. Comparing the f.a. and m.r. in 
Table 1 for the various mask sizes with the results plotted in Figure 4 
clearly shows that the ED method outperforms MB.

4.4. Combined approach (COMB)

It is interesting to combine the above approaches to determine 
whether searching for structures gives additional information over 
the ED method. The detected segments from each method are 
combined using a “soft” OR operator in which boundaries from 
the two methods within k frames of each other are combined and 
replaced by a single boundary located at the mean of the two.

In this approach (referred to as COMB), a 4 x 3 mask was 
combined with the Euclidean distance segments. The reason for 
using a 4 x 3 mask is that it introduces a low number of false 
alarms, which makes it well suited to investigate whether MB finds 
boundaries that ED does not. Figures 3 and 4 show the results of 
COMB for different distances of k  (1, 2, or 3 frames) between the 
boundaries hypothesised by MB and by ED.

The figures show that for lower miss rates, COMB gives fewer 
false alarms compared to the ED method. Thus MB does indeed find 
correct boundaries that are not found by ED, without introducing new 
false alarms.

Combined ED, MB (4x3); k=1 
Combined ED, MB (4x3); k=2 
Combined ED, MB (4x3); k=3 
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Fig. 4. Miss rate (x-axis) plotted against false alarm (y-axis) for 
varying S, for ED and COMB.

5

00



5. DISCUSSION

The o.s. results in figure 3 and the f.a . results in figure 4 show that 
combining MB and ED yields the best performance. With an o.s. 
rate of 0%, 76.0% of the phoneme boundaries are detected correctly, 
increasing to 90.3% c.d.r. when allowing 75.5% o.s. This compares 
well with results found in the literature. [10] obtained a c.d.r. of 
73.6% with an o.s. of 0%, increasing to 90.0% c.d.r with an o.s. 
of 63.0% on a subset of 480 utterances from TIMIT. [12] obtained a 
c.d.r. of 85.9% (they did not report o.s.) on the full TIMIT test set 
while using a supervised method (this in contrast to our and [10]’s 
method which are unsupervised). Even though the methods proposed 
here and by [10] are different, the results are strikingly similar. This 
might suggest that there may be an upper limit on the accuracy of 
unsupervised automatic detection of phone boundaries.

Figure 4 shows that with ED a 25% c.d.r. can be obtained at 
no f.a .. Combining ED with MB into COMB however leads to an 
increased f.a . rate. The difference between the f.a . rates for COMB 
and ED indicates the number of additional boundaries introduced 
by MB. The Euclidean distance is low for some of the boundaries 
hypothesised by MB, indicating that the MFCCs on either side of 
the hypothesised boundary are very similar. This suggests that both 
sides of the hypothesised boundary belong to the same phoneme. 
Since MB hypothesises a boundary, this might indicate that there 
is information in the speech signal on a sub-phonetic level; for an 
example of such a boundary see structure A in figure 2.

We further analysed the A structures. Of the 5,827 times such a 
structure occurred, 35.7% were related to vowels, 17.1% to fricatives, 
and 14.2% to plosives, the rest were distributed over the other 
consonant classes and silence. The high percentage for vowels is 
not surprising considering the coarticulation effects occurring during 
sound production. During the production of one sound, articulatory 
features belonging to the preceding or following sound may spread 
into that sound. Looking more closely at the case where a boundary 
is hypothesised in the middle of a vowel segment shows that in 36.4% 
the following TIMIT phoneme label is a plosive, while 25.6% is 
followed by a nasal. These preliminary results show that the method 
proposed in this paper is indeed very good at capturing sub-phonetic 
detail. This is an interesting area for further research.

The automatic detection of sub-phonetic information is also 
getting increasing attention in the field of ASR. Since 1999, it 
has been proposed to move away from the standard ‘beads-on-a- 
string’ (i.e. phoneme-based) recognition paradigm [13]. One of 
the proposals of such a new system is based on the modelling of 
articulatory features (AFs) [14, 15]. Since MMC can extract sub- 
phonetic information it is an interesting method for the development 
of a kernel based ASR system that is based on this sub-phonetic AF 
information. In this paper, the parameter settings were optimised 
for the automatic segmentation of phonemes. However, different 
parameter settings will result in the detection of even more detailed 
information in the speech signal.

6. CONCLUDING REMARKS AND FUTURE WORK

In this paper we have presented a novel application of MMC to the 
task of unsupervised speech segmentation. It is a first step towards 
the ultimate goal of building a kernel based ASR system. MMC’s 
potential with respect to the automatic segmentation of speech is 
evaluated on TIMIT. The results in sections 4 and 5 have shown that 
MMC is highly competitive with existing unsupervised methods for 
the automatic detection of phoneme boundaries. Although MMC has 
been evaluated in terms of phoneme boundary detection, it is in fact

a speech segmentation method. To achieve our ultimate goal, future 
work will refine then analyse the speech segments. The segements 
can be reclustered and classified by sequence kernel approaches. The 
preliminary results in section 5 also show that MMC is a promising 
method for the automatic detection of sub-phonetic information in 
the speech signal.

Finally, we should note that this work is based on an earlier 
version of MMC: there now exists a newer formulation that can 
handle multiple classes [16].
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