
FINDING MINIMAL PERFECT HASH FUNCTIONS

Gary Haggard
Department of Computer Science

University of Maine at Orono
and

Kevin Karplus
Department of Computer Science

Cornell University

ABSTRACT

A heurisitic 4s given for ft;ftie
minimal perfect hash functions .
extensive searchings The procedure is to
construct a set of graph (or hypergraph)
models for the dictionary, then choose one
of the models for use in constructing the
minimal perfect hashing function. The
construction of this function relies on a
backtracking algorithm for numbering the
vertices of the graph. Careful selection
of the graph model limits the time spent
searching. Good results have been
obtained for dictionaries of up to 181
words. Using the same techniques, non-
minimal perfect has functions have been
found for sets of up to 667 words.

INTRODUCTION

A minimal perfect hashing function is
one-to-one,

ie ys
onto mapping from a set of

K to n consecutive integers. This
paper presents a method for quickly
finding such functions for sets of up to
about 180 words. The same techniques can
be applied to larger sets to find perfect
hash functions (still one-to-one, but
n > IKI>-

Ordinary hash functions are cheap to
compute, and families of good hash
functions have been described in the
literature [CW]. Examining arbitrary hash
functions until a perfect one is found has
been attempted [Sp], but p;;f;cttoha;i
functions are too rare for
feasible on sets of size n where n is

large (of the nIKI possible hash
functions, only nl/(n-IK])! are perfect.
Cichelli presented a method for finding
minimal perfect hash functions [Cl. Only
hash functions of the form

Permission to copy without fee all or part of thii material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its data appear, and not& is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise,orto npublish,nquimaafcc and/orspecificpannission.

Q 1986 ACM-O-89791-\78-4/86/000210191 $00.75

h(word) = g(first letter)
+ g(last letter) + length(word)

were considered. Many useful word sets
have no perfect hash function with that
form. Even using different functions for
the first and last letter, or considering
other pairs of letter positions is not
enough. For example, the complete list of
PASCAL reserved words and pre-declared
identifiers contains the six words CASE,
ELSE, PAGE, READ, REAL, TRUE, and TYPE.

Figure 1. No two selector functions can
distinguish CASE, ELSE, PAGE, READ, REAL,
TRUE, and TYPE.

Sager [Sal proposes an optimization
for the method of Cichelli which uses a
different intermediate process to prepare
for the backtracking search for the
required functions. Our method
generalizes that of Cichelli, and uses a
more flexible intermediate processing step
to prepare for the backtracking search
than Sager. We search for hash functions
of the form

h(word) = length(word) + 1 g,(a,(word)),
i

where u i (word) selects a letter from the

word based on the length of the word, and
gi(letter) is computed) by table lookup.

The method described here allows the
construction of the 76 word dictionary of
Pascal reserved words and predefined
identifiers without special considerations.

l9i

The search has two parts. First, we
look for selector functions such that the
vector (length,o 1'.4Jm) uniquely

identifies each word. The vectors can be
thought of as the edges of an m-partite
hypergraph whose vertices are the letters
selected by ui- The word length is kept

as a label for the edge. Second, we look
for values of gf(letter) such that
each word maps to a different integer in
1,2,..., n where n is the size of the word
set. That is, a value is assigned to each
vertex of the hypergraph, so that the sum
of the edge label and the values on the
vertices is a different integers in
n for each hyperedge.

Edges incident on vertices of degree
one can be assigned any desired hash
value, since the vertex can be assigned a
value independent of any other vertex
value. Thus the vertex assignment problem
can be simplified by deleting all edges
containing a vertex unique to that edge.
The reduced graph may have new vertices of
degree one, allowing more edges to be
deleted. Repeating the process eventually
results in a graph with no vertices of
degree one. The removed edges (which we
call tree edges) are assigned hash values
in reverse order of their removal after
all the edges in the reduced graph have
been assigned values.

For small sets the tree edges are a
substantial part of the graph, and minimal
perfect hash function can often be found
by hand. For example, for the month
abbreviations JAN, FEB, MAR, APR, MAY,
JUN, JUL, AUG, SEP, OCT, NOV, and DEC.
choosing the second and third letters
gives a graph containing only tree
(see Figure 2). Arbitrarily

edges
choosing

JAN=1DEC=12. we can
values as-shown in Figure 3.

assion vertex

GLNYRPBCVT

u A P E 0 c

Figure 2. Graph for second and third
letters of the abbreviations for month
names.

A = -2 N- 0 JAN = I.
u= 3 JUN = ZI

R= 2 MAR = :I
P = -1 APR = 4

Y= 4 MAY = :i
L= 1 JUL = ;
G- 2 AUG = FI

E = -1 B- 0 FEB = 3.
P= 7 SEP = !I
c = 10 DEC = l:!

O= 8 v= 0 NOV = 11;
c- 7 T= 0 OCT = 10

Figure 3. Vertex assignments for the
abbreviations of month names.

A set of selector functions (cho%ce of
letter positions within the worda) is
chosen by doing a limited search of all
sets composed of selector functions from a
fixed family of functions. We use a
family of 27 different selector functions,
but new functions can be easily added to
the family. For each set of selector
functions, a word hypergraph is built. If
no two words map to the same edge with the
same length lable, the set of selector
functions is accepted, and vertex value
assignment starts. If all the sets allow
words to map to identical edges, the best
few sets are kept, and new larger sets
are generated from them. From a set of
selector functions, a larger set is
constructed by adding a function ill the
family that is not already in the set.

First we consider the empty set: are
the words separated by length alone? Then
we consider all extensions of the empty
set: does any single selecter function
suffice7 The best few selector functions
are remembered, and all pairs of selector
functions that include one of the best
functions are tried. This continues for
higher dimensions. The best few sets of k
selector functions are remembered, and all
sets of k+l functions that include a
remembered set are tried. Sets of
selector functions are tried until a good
set is found, or the size of the sets gets
too large.

The quality of a set of selector
functions is measured by a weighted sum of
the number of distinct edges, the number
of tree edges, and the number of vertices
in the word hypergraph. Of these, the
tree edge count is more important. For
more details on the weights used, see
[KHI l

After the selector functions have
been chosen, values have to be assigned to
all vertices of the word hypergraph. The
tree edges can be removed, and the
corresponding vertices assigned values in
reverse order after the rest of the
vertices have values. For the main body
of the graph, the vertex assignment
proceeds as follows:

1) choose a vertex,

2) if no legal assignment
backtrack and change a
choice,

exists,
previous

3) otherwise, assign the _ _ smallest
legal value to the vertex (0 if
the vertex value is unconstrained),

4) repeat l-3 until all vertices
have been assigned.

The simplest possible backtracking
scheme is to have a fixed ordering of the
vertices, and undo the most recent choice
when a conflict occurs. This scheme works
well for small graphs (such as those in
[Cl), b;zriztt take a long time otsi;rger
ones. heuristics were to
speed up both the vertex choice and the
backtracking.

Vertex choice heuristics attempt to
choose the most difficult vertices first,
thus triggering necessary backtracks as
soon as possible. Define Emin as the set

of edges with the fewest unassigned
vertices (excluding edges with all
vertices assigned). The best vertex-
choice heuristic found was to choose among
the vertices with the most edges in E min
the vertex that has the widest range of
partial sums for edges in E min'

This

heuristic works well for hypergraphs of
dimension one or two, but not as well for
higher dimensions. Only edges that have
only one vertex value unassigned affect
vertex values (we call these almost
completed edges). If the graph has no
almost completed edges, a value iS

assigned arbitrarily to the chosen vertex.

Backtracking heuristics are more
complicated than the vertex-choice ones.
The hash function searches that succeed
backtrack rarely, so the heuristics don't
affect them much. The searches that run a
long time spend almost all the time doing
backtracking.

Three different conflicts can trigger
backtracking. Edge conficts occur when
two different almost completed edges have
the same value. Too-big conflicts occur
when the range of partial sums for almost
completed edges is larger than the range
of unused edge values. No-fit conflicts
occur when every vertex assignment will
make some almost completed edge conflict
with an existing completed edge.

For edge conflicts, vertex values are
popped until the partial sum of the
conflicting edges differ. A larger value
iS assigned to the most recently popped
vertex, and the vertex value assignment
proceeds forward again. For too-big

conflicts,
the last

vertex values are popped until
vertex removed is in the

with
edge

the smallest partial sum and not in
the edge with the largest partial sum, or

vertex assignment can be made
zartial sum of the almost completed

SO the

will fit. For no-fit conflicts,
edges

vertex
values are popped until some vertex of an
almost completed edge has been removed.
The almost completed edge with the highest
partial sum is excluded,
the assignment

since increasing
for its vertices is not

likely to resolve the conflict.

For more details on the backtracking
heuristics, and statistics on the
occurrences of the different
see [KH].

conflicts,

Theoretical analysis of running time
is difficult, since we lack a convincing
model for sets of words, Empirically, our

program takes about .06(words)1'5 CPU
seconds for a successful search on a Vax
11-780. The time doesn't seem to depend
on whether a minimal perfect hashing
function or a perfect hashing function is
sought. Unsuccessful searches take far
longer, and have not been allowed to run
to completion.

REFERENCES

[Cl Richard J. Cichelli. "Minimal
Perfect Hash Functions Made Simple."
Communications of the ACM
(January 1980). v-19. -

23(l)

[CW] J. Lawrence Carter and Mark N.
Wegman. "Universal Classes of Hash
Functions." Proceedings of the 9th
Annual ACM Symposium of the Theory
of Computing

--
- (May 1977), 106-112.

[KH] Kevin Karplus and Gary Haggard.
Finding Minimal Perfect Hash
Functions. Cornell Computer SciZZ
Technical Report TR84-637 (September
1984).

[Sal T. J. Sager. " A Polynomial Time
Generator for Minimal Perfect Hash
Functions. Communications of the
ACM 28(5) (May 1985), 523-532, -

[SPI R. Sprognoli. "Perfect hashing
functions: A single probe retrieving
method for static sets.”
Communications of the ACM 20(11)
(November 1977),841-850.-

193

