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ABSTRACT 

A heurisitic 4s given for ft;ftie 
minimal perfect hash functions . 
extensive searchings The procedure is to 
construct a set of graph (or hypergraph) 
models for the dictionary, then choose one 
of the models for use in constructing the 
minimal perfect hashing function. The 
construction of this function relies on a 
backtracking algorithm for numbering the 
vertices of the graph. Careful selection 
of the graph model limits the time spent 
searching. Good results have been 
obtained for dictionaries of up to 181 
words. Using the same techniques, non- 
minimal perfect has functions have been 
found for sets of up to 667 words. 

INTRODUCTION 

A minimal perfect hashing function is 
one-to-one, 

ie ys 
onto mapping from a set of 

K to n consecutive integers. This 
paper presents a method for quickly 
finding such functions for sets of up to 
about 180 words. The same techniques can 
be applied to larger sets to find perfect 
hash functions (still one-to-one, but 
n > IKI>- 

Ordinary hash functions are cheap to 
compute, and families of good hash 
functions have been described in the 
literature [CW]. Examining arbitrary hash 
functions until a perfect one is found has 
been attempted [Sp], but p;;f;cttoha;i 
functions are too rare for 
feasible on sets of size n where n is 

large (of the nIKI possible hash 
functions, only nl/(n-IK])! are perfect. 
Cichelli presented a method for finding 
minimal perfect hash functions [Cl. Only 
hash functions of the form 
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h(word) = g(first letter) 
+ g(last letter) + length(word) 

were considered. Many useful word sets 
have no perfect hash function with that 
form. Even using different functions for 
the first and last letter, or considering 
other pairs of letter positions is not 
enough. For example, the complete list of 
PASCAL reserved words and pre-declared 
identifiers contains the six words CASE, 
ELSE, PAGE, READ, REAL, TRUE, and TYPE. 

Figure 1. No two selector functions can 
distinguish CASE, ELSE, PAGE, READ, REAL, 
TRUE, and TYPE. 

Sager [Sal proposes an optimization 
for the method of Cichelli which uses a 
different intermediate process to prepare 
for the backtracking search for the 
required functions. Our method 
generalizes that of Cichelli, and uses a 
more flexible intermediate processing step 
to prepare for the backtracking search 
than Sager. We search for hash functions 
of the form 

h(word) = length(word) + 1 g,(a,(word)), 
i 

where u i (word) selects a letter from the 

word based on the length of the word, and 
gi(letter) is computed) by table lookup. 

The method described here allows the 
construction of the 76 word dictionary of 
Pascal reserved words and predefined 
identifiers without special considerations. 

l9i 



The search has two parts. First, we 
look for selector functions such that the 
vector (length,o 1'.4Jm) uniquely 

identifies each word. The vectors can be 
thought of as the edges of an m-partite 
hypergraph whose vertices are the letters 
selected by ui- The word length is kept 

as a label for the edge. Second, we look 
for values of gf(letter) such that 
each word maps to a different integer in 
1,2,..., n where n is the size of the word 
set. That is, a value is assigned to each 
vertex of the hypergraph, so that the sum 
of the edge label and the values on the 
vertices is a different integers in 
n for each hyperedge. 

Edges incident on vertices of degree 
one can be assigned any desired hash 
value, since the vertex can be assigned a 
value independent of any other vertex 
value. Thus the vertex assignment problem 
can be simplified by deleting all edges 
containing a vertex unique to that edge. 
The reduced graph may have new vertices of 
degree one, allowing more edges to be 
deleted. Repeating the process eventually 
results in a graph with no vertices of 
degree one. The removed edges (which we 
call tree edges) are assigned hash values 
in reverse order of their removal after 
all the edges in the reduced graph have 
been assigned values. 

For small sets the tree edges are a 
substantial part of the graph, and minimal 
perfect hash function can often be found 
by hand. For example, for the month 
abbreviations JAN, FEB, MAR, APR, MAY, 
JUN, JUL, AUG, SEP, OCT, NOV, and DEC. 
choosing the second and third letters 
gives a graph containing only tree 
(see Figure 2). Arbitrarily 

edges 
choosing 

JAN=1 . . . ..DEC=12. we can 
values as-shown in Figure 3. 

assion vertex 
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Figure 2. Graph for second and third 
letters of the abbreviations for month 
names. 

A = -2 N- 0 JAN = I. 
u= 3 JUN = ZI 

R= 2 MAR = :I 
P = -1 APR = 4 

Y= 4 MAY = :i 
L= 1 JUL = ; 
G- 2 AUG = FI 

E = -1 B- 0 FEB = 3. 
P= 7 SEP = !I 
c = 10 DEC = l:! 

O= 8 v= 0 NOV = 11; 
c- 7 T= 0 OCT = 10 

Figure 3. Vertex assignments for the 
abbreviations of month names. 

A set of selector functions (cho%ce of 
letter positions within the worda) is 
chosen by doing a limited search of all 
sets composed of selector functions from a 
fixed family of functions. We use a 
family of 27 different selector functions, 
but new functions can be easily added to 
the family. For each set of selector 
functions, a word hypergraph is built. If 
no two words map to the same edge with the 
same length lable, the set of selector 
functions is accepted, and vertex value 
assignment starts. If all the sets allow 
words to map to identical edges, the best 
few sets are kept, and new larger sets 
are generated from them. From a set of 
selector functions, a larger set is 
constructed by adding a function ill the 
family that is not already in the set. 

First we consider the empty set: are 
the words separated by length alone? Then 
we consider all extensions of the empty 
set: does any single selecter function 
suffice7 The best few selector functions 
are remembered, and all pairs of selector 
functions that include one of the best 
functions are tried. This continues for 
higher dimensions. The best few sets of k 
selector functions are remembered, and all 
sets of k+l functions that include a 
remembered set are tried. Sets of 
selector functions are tried until a good 
set is found, or the size of the sets gets 
too large. 

The quality of a set of selector 
functions is measured by a weighted sum of 
the number of distinct edges, the number 
of tree edges, and the number of vertices 
in the word hypergraph. Of these, the 
tree edge count is more important. For 
more details on the weights used, see 
[KHI l 

After the selector functions have 
been chosen, values have to be assigned to 
all vertices of the word hypergraph. The 
tree edges can be removed, and the 
corresponding vertices assigned values in 
reverse order after the rest of the 
vertices have values. For the main body 
of the graph, the vertex assignment 
proceeds as follows: 



1) choose a vertex, 

2) if no legal assignment 
backtrack and change a 
choice, 

exists, 
previous 

3) otherwise, assign the _ _ smallest 
legal value to the vertex (0 if 
the vertex value is unconstrained), 

4) repeat l-3 until all vertices 
have been assigned. 

The simplest possible backtracking 
scheme is to have a fixed ordering of the 
vertices, and undo the most recent choice 
when a conflict occurs. This scheme works 
well for small graphs (such as those in 
[Cl), b;zriztt take a long time otsi;rger 
ones. heuristics were to 
speed up both the vertex choice and the 
backtracking. 

Vertex choice heuristics attempt to 
choose the most difficult vertices first, 
thus triggering necessary backtracks as 
soon as possible. Define Emin as the set 

of edges with the fewest unassigned 
vertices (excluding edges with all 
vertices assigned). The best vertex- 
choice heuristic found was to choose among 
the vertices with the most edges in E min 
the vertex that has the widest range of 
partial sums for edges in E min' 

This 

heuristic works well for hypergraphs of 
dimension one or two, but not as well for 
higher dimensions. Only edges that have 
only one vertex value unassigned affect 
vertex values (we call these almost 
completed edges). If the graph has no 
almost completed edges, a value iS 

assigned arbitrarily to the chosen vertex. 

Backtracking heuristics are more 
complicated than the vertex-choice ones. 
The hash function searches that succeed 
backtrack rarely, so the heuristics don't 
affect them much. The searches that run a 
long time spend almost all the time doing 
backtracking. 

Three different conflicts can trigger 
backtracking. Edge conficts occur when 
two different almost completed edges have 
the same value. Too-big conflicts occur 
when the range of partial sums for almost 
completed edges is larger than the range 
of unused edge values. No-fit conflicts 
occur when every vertex assignment will 
make some almost completed edge conflict 
with an existing completed edge. 

For edge conflicts, vertex values are 
popped until the partial sum of the 
conflicting edges differ. A larger value 
iS assigned to the most recently popped 
vertex, and the vertex value assignment 
proceeds forward again. For too-big 

conflicts, 
the last 

vertex values are popped until 
vertex removed is in the 

with 
edge 

the smallest partial sum and not in 
the edge with the largest partial sum, or 

vertex assignment can be made 
zartial sum of the almost completed 

SO the 

will fit. For no-fit conflicts, 
edges 

vertex 
values are popped until some vertex of an 
almost completed edge has been removed. 
The almost completed edge with the highest 
partial sum is excluded, 
the assignment 

since increasing 
for its vertices is not 

likely to resolve the conflict. 

For more details on the backtracking 
heuristics, and statistics on the 
occurrences of the different 
see [KH]. 

conflicts, 

Theoretical analysis of running time 
is difficult, since we lack a convincing 
model for sets of words, Empirically, our 

program takes about .06(words)1'5 CPU 
seconds for a successful search on a Vax 
11-780. The time doesn't seem to depend 
on whether a minimal perfect hashing 
function or a perfect hashing function is 
sought. Unsuccessful searches take far 
longer, and have not been allowed to run 
to completion. 
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