
Discrete Comput Geom 7:45-58 (1992)
Discrete & Computttional Geometry

© 1992 Springer-Verlag New York Inc.

Finding Minimum Area k-gons*

David Eppstein, 1 Mark Overmars, 2 Giinter Rote, 3 and Gerhard Woeginger 3

1 Department of Computer Science, University of California,
Irvine, CA 92717, USA

2 Department of Computer Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

3 Institut fiir Mathematik, Technische Universitiit Graz,
Kopernikusgasse 24, A-8010 Graz, Austria

Abstract. Given a set P of n points in the plane and a number k, we want to find
a polygon ~ with vertices in P of minimum area that satisfies one of the following
properties: (1) cK is a convex k-gon, (2) ~ is an empty convex k-gon, or (3) ~ is the
convex hull of exactly k points of P. We give algorithms for solving each of these
three problems in time O(kn3). The space complexity is O(n) for k = 4 and O(kn 2) for
k > 5. The algorithms are based on a dynamic ptogramming approach. We generalize
this approach to polygons with minimum perimeter, polygons with maximum
perimeter or area, polygons containing the maximum or minimum number of points,
polygons with minimum weight (for some weights added to vertices), etc., in similar
time bounds.

1. Introduction

Given a set P of points in the plane, many papers have studied problems of
determining subsets of points in P that form polygons with particular properties.
One such problem deals with finding empty convex k-gons in a set of points (i.e.,
polygons that contain no points of P other than the k vertices). It is well known
[12] that such k-gons might not exist for k >_ 7. Algorithms to find such k-gons
have been presented in [4], [7], and [14]. The best-known result works for

* This paper includes work done while David Eppstein was at Columbia University, Department
of Computer Science, and while Giinter Rote and Gerhard Woeginger were at the Freie Universit~it
Berlin, Fachbereich Mathematik, Institut ftir lnformatik. Research was partially supported by the
ESPRIT II Basic Research Actions Program of the EC under Contract No. 3075 (project ALCOM).

46 D. Eppstein, M. Overmars, G. Rote, and G. Woeginger

arbitrary k in time O(T(n)) where T(n) is the number of empty triangles in the set,
which varies between O(n z) and O(n 3) [7].

Boyce et al. [5] treated the problems of finding maximum perimeter
and maximum area convex k-gons. Their algorithms work in linear space and
O (k n l o g n + n log z n) time. Aggarwal et al. [2] improved these results to
O(kn + n log n).

In applications like statistical clustering and pattern recognition, minimization
problems tend to play a more important role than maximization problems.
Minimization problems seem to be computationally harder than maximization
problems in this context. Finding minimum perimeter k-gons was studied by
Dobkin et al. [6]. Their O(kEn log n + k5n) algorithm was recently improved to
O(n log n + k4n) by Aggarwal et al. [3]. This recent paper also studies problems
like finding minimum diameter k-gons and minimum variance k-gons.

In this paper we concentrate on the problem of finding minimum area polygons.
For the case k = 3 the problem asks for the minimum area empty triangle. An
O(n2)-time and O(n2)-space algorithm for finding this triangle in a set of n points
in the plane is given in Chapter 12.4 of Edelsbrunner's book [8]. The storage
requirements of this method can be reduced to O(n) using topological sweeping
[9]. For k > 3 the best-known result was O(nk). In Problem 4(b) of [1] and Problem
12.10 of [8] the existence of an o(n 4) algorithm for finding a minimum area convex
4-gon is stated as an open problem. (The problem of finding a minimum area
quadrilateral without requiring convexity was also listed as open in [1] but this
is trivially solved by finding, for each possible diagonal d, a minimum area triangle
on each side of d, and then joining the two triangles to form a quadrilateral.) When
k > 3 we have to define the problem more carefully. We can distinguish between
the following three problems:

(1) Find a convex polygon Pl, P2 , PR in P with minimum area.
(2) Find an empty convex polygon Pl, P2 Pk in P with minimum area.
(3) Find a point set {Pt, P2 Pk} ~-- P such that the area of the convex hull

of this subset is minimal

Note that when k = 3 all three problems are the same. (The smallest area
triangle is obviously empty.) Note also that in the third problem this convex hull
will only contain the points in the subset and no other points. So the subset is a
kind of cluster.

Our new results (combined with the known results for k = 3) are summarized
in Table 1.

Our algorithms are based on the dynamic programming approach.
The paper is organized as follows. Section 2 shows how to calculate, for all

triangles determined by P, the numbers of points in their interiors. Section 3
describes space-efficient algorithms for k = 4, and Section 4 describes algorithms
for general k. In Section 5 our technique is generalized to finding convex k-gons
(and solving the other two problems) that minimize or maximize some general
weight criterion. In this way we obtain solutions to, e.g., the minimum perimeter
problem with the same time bounds as stated above, which is better than previous
solutions [3] for large k. Another application finds the convex k-gon containing

Finding Minimum Area k-gons 47

Table 1

k=3 k=4 k>5

Time Space Time Space Time Space

(1) Convex k-gon n ~ n n 3 n kn 3 n 2
(2) Convex empty k-gon n 2 n n 3 n kn ~ n 2
(3) Convex hull of k points n 2 n n 3 n kn 3 kn z

the smallest or largest number of points. Finally, in Section 6 we give some
concluding remarks and directions for further research.

The following notations is used throughout this paper. By l(p~, P2) we denote
the directed line through the points Pl and P2 and by P~P2 we denote the line
segment from pl to P2. cony (P) is the convex hull of the point set P. A p ~ p 2 P 3 is
the convex hull of the three points Pt, P2, and P3 (i.e., the triangle) and [-]PlP2P3P4

is the quadrangle formed by p~, P2, P3, P4 in clockwise order. / P ~ P 2 P 3 denotes
the angle with apex P2.

We assume throughout that the set of input points is in general position; i.e.,
no two points have the same x-coordinate, and no three points are in a line. The
first restriction can be treated simply by rotating the coordinate system so that
the new axes are not parallel to any line between two points; such a rotation can
be found and performed in linear time. Relaxing the second restriction requires
us to decide whether a convex k-gon is allowed to have some of its k vertices in
line with each other; either choice is reasonable, and leads to different optimal
polygons. We also repeatedly sort points by their angles around another point;
this order is not well defined when three points are in line, and we have to specify
what to do in this case. These modifications will be spelled out as appropriate.

2. The Number of Points in All Triangles

In this section we show how to preprocess the point set P in O(nZ.) time and O(n 2)
space such that the number of points inside any triangle in P can be determined
in constant time. This result is used in Section 4. The structure derived by the
preprocessing step is an array s t r ipe[p i , p j] that stores, for each pair of points
(pl, p~) in P, the number of points in the vertical stripe below the line segment p~pj.

For point sets not in general position, we also store the number of points lying
exactly on the line segment ~ . For a triangle A x y z with leftmost point x and
rightmost point z, the number of points in it is equal to the absolute value of
s t r i p e [x , y] + s t r i p e [y , z] - s t r i p e [x , z] (for an illustration, see Fig. 1).

To calculate the values in the array s t r ipe[* , *], we treat the line segments from
left to right, according to their right endpoint. Line segments with the same right
endpoint are treated in clockwise order. This gives the following algorithm (the
cases (dl) and (d2) are illustrated in Fig. 2):

48 D. Eppstein, M. Overmars, G. Rote, and G. Woeginger

Y

Fig. 1. The two possibilities for the triangle Axyz.

A l g o r i t h m 1 (Calculating the number of points below each segment)

(a) Initialization. Set all the elements stripe[., .] to zero.
(b) Sort the points in P by x-coordinate from left to right. This gives the

sequence Pl, P2 P,.
(c) For each point Pi ~ P, sort all the points lying left of pi in clockwise

order around Pi. This gives the sequences p'~, p~ Pl- 1-
(d) For p~:= Pz to p, do

F o r j : = 2 t o i - l d o
(dl) If p~ lies to the left of p~_ 1 then

stripe[p~, Pi] " = stripe[p~_ 1, Pi] q- stripe[p~, p~_ 1] + 1.
(d2) If p~ lies to the right of p~_ 1 then

stripe[p~, Pi] := stripe[p~_ l, Pi] - stripe[p~, p~_ 1].
endfor.

endfor.

The correctness of Algorithm 1 is obvious from Fig. 2: As the points p~ are
sorted in clockwise order around Pi and p~ is the direct successor of p~_ 1 in this
ordering, the triangle z~p~p~p~- 1 must be empty. Hence, stripe[p~, pJ is either the
sum (in the case (dl)) or the difference (in the case (d2)) of stripe[p~_ 1, Pl] and
stripe[p~, p~_ 1]- In the case (dl), the additional 1 appearing as a term in the sum
corresponds to the point p~-_ 1. Moreover, for the calculation of some element in
stripe, only values calculated previously are needed. The base cases of the
recurrence, entries stripe[p], pJ, are initialized to zero as part of step (a). Note
that step (d) of the algorithm only fills the entries stripe[pi, p~] with p~ left of p~.
The other entries can be filled at the same time.

Pl II I
Fig. 2. The cases (dl) and (d2) in Algorithm 1.

Finding Minimum Area k-gons 49

For point sets not in general position, the sorting by clockwise order is not
well defined. In this case we place nearby points earlier in the sorted order than
farther points. Then if p} and p}_ 1 are collinear with p~, the computation of stripe
[p}, pJ should be performed as in case (all) except that + l is not added. We also
remember the number of points on line segment p}p~; if p} and p}_ ~ are collinear
this is one plus the number for p}_ lp~, otherwise it is zero.

Next, we consider the time and space complexity: step (a) takes O(n 2) time and
space and step (b) takes O(n log n) time and linear space. Applying the results of
Edelsbrunner et al. [10], step (c) can be performed using only quadratic time and
space. Finally, step (d) consists of two nested for-loops, and each substep in the
loop is a simple addition or subtraction. Hence, step (d) costs at most O(n 2) time
and space, too.

Thus we have proved the following theorem:

Theorem 2.1. We can preprocess a point set P in the plane in O(n z) time and space,
such that afterward,Jbr each triangle in P, the number of points in it can be determined
in constant time.

3. Finding a Minimum-Area Four-Point Set

We now solve the minimum area convex k-gon problem for k = 4. We first consider
problem (3): Let P be a set of n points in the plane. Find a subset Q c P of four
points such that the area of cony(Q) is minimized. The following two observations
reduce the number of candidates for the set Q:

Observation 3.1. Let Q be the area-minimizing set of four points for the point set
P. Then the convex hull of Q does not contain any point of P - Q.

Proof. Assume that cony(Q) would contain at least five points in P. If we remove
some extreme point from Q, we get a smaller area set. []

Observation 3.2. The smallest area triangle in P containing at least one point is
the same as (one of) the smallest area triangle(s) in P containing exactly one point,
provided such triangles exist.

Proof. Suppose triangle Aabc contains at least two points d and e. Then the
point e would lie in one of the smaller triangles Aabd, Aacd, or ~bcd. []

Hence, it suffices to search for smallest empty quadrangles and for smallest
triangles with at least one other point in them. We first give a rough outline of
the algorithm:

50 D. Eppstein, M. Overmars, G. Rote, and G. Woeginger

Algorithm 2 (Calculation of the minimum-area four-point set)

(A) For each p ~ P, sort all other points by angle around p.
(B) For all pairs (x, y) of points in P do

Let P' be the set of points to the right of l(x, y).
(B1) Find the smallest area triangle A x y z with z e P' and at least

one other point u of P' in its interior.
(B2) Find the smallest area quadrangle Dxuyz with u ¢ P', z ~ P',

and all points above a horizontal line through y.
(C) Select the smallest area configuration of all the triangles Axyz and

all the quadrangles Dxuyz found in step (B).

Step (A) can be performed in time O(n2), but that algorithm uses O(n 2) space. To
reduce the space, we separately sort the points around each p, in time O(n log n);
therefore the total time is O(n 2 log n). At most one such sorted ordering will be
needed at a time. In the rest of this section we show how to carry out steps
(B1) and (B2) in linear time, using the results of the preprocessing step (A). Since
steps (B1) and (B2) are performed for each pair of points, step (B) takes O(n 3) time
all together. Step (C) uses O(n 2) time, as the minimum of O(n 2) values is calculated.
Therefore, the whole algorithm runs in time O(n3). For correctness, note that for
part (B1) there will always be two points x, y in the correct answer with the other
points of the answer to the right of l(x, y), and for part (B2) we can choose ~-y to
be the diagonal through the bottommost point of the appropriate quadrilateral.

Problem (B1) is easy to solve: We are given a line segment 2y and a point set
P'. We want to find a point z e P' such that A x y z contains at least one point of
P' and such that z minimizes the area of A x y z under this condition. A x y z contains
another point w e P' exactly when (1) w is counterclockwise from z around x, and
(2) w is clockwise from z around y. We step through the possible points z in
clockwise order around x, starting at y, so we will have previously seen exactly
those points satisfying condition (1). If any point w also satisfies condition (2), it
will be the one with the smallest angle Zxyw; this smallest angle can be easily
maintained as we step through the points. Therefore, our algorithm is as follows:

Algorithm 2.1 (Solution of problem (B1))

Initialization: Set MinAngle:= n and MinArea := ~ .
For each point z ~ P' in clockwise order around x do

MinAngle := min(MinAngle, Zxyz);
If MinAngle < /__ xyz, then

MinArea := min(MinArea, area of Axyz);
endif;

endfor.

In problem (B2) we are given a segment ~-~, and we wish to find the smallest
area convex quadrangle Fqxuyz with u to the left of l(x, y), z to the right of l(x, y),
and all points above a horizontal line through y. For each choice of z, the u
forming the minimum area quadrangle is found simply by selecting the point to

Finding Minimum Area k-gons 51

the left of I(x, y) giving the smallest area for Axuy. For the quadrangle to be
convex, we need a n g l e s / z x u and/_uyz to be convex; i.e., they must be less than re.

The requirement for / uyz will always be satisfied if points x, u, and z are above
y. The remaining requirement is that Lzxu be convex; this wilt be dealt with by
processing all points, u and z together, in order by the slope of lines t(x, u) or
l(x, z). If we sort these lines counterclockwise by slope, starting with lines nearly
parallel to l(x, y), then, for each point z to the right of fix, y), the points u already
processed will be exactly those ones forming a convex quadrangle with z. Thus
we need merely remember the u giving the smallest area triangle/X, xuy, and this
will also give the smallest quadrangle Dxuyz. The sorted order of line slopes we
use is not the same as the order of points around x, but one order can be generated
from the other in linear time; it also takes linear time to filter out those points
below y.

We now describe our algorithm more formally.

Algorithm 2.2 (Solution of problem (B2))

Initialization: Set TotaIMinimum := o0 and MinArea:= oo.
Generate list of points z above y sorted by slope of l(x, z).
For each point z in sorted order do

If z is to the right of l(x, y), then
TotalMinimum := min(TotaIMinimum, MinArea + area of Axyz);

else
U : : Z;

MinArea := min(MinArea, area of Axuy);
endif;

endfor.

The actual optimal quadrilateral can be found by maintaining which value of u
led to the current value of MinArea, and maintaining which values of u and z led
to the current value of TotaIMinimum.

Hence, we can give the following summarizing theorem:

Theorem 3.3. Let P be a set of n points in general position in the plane. There is
an algorithm that finds, in O(n 3) time and O(n) space, a subset Q of P of size four
such that the area of cony(Q) is minimized.

Proof. The time complexity is obvious, but the way the algorithm is stated above
requires O(n 2) storage. To get the claimed space complexity, we note that each
computation for segment ~-y only requires the sorted order of points around point
x. So for each point x we sort the other points in time O(n log n), then process all
segments x---~ in time and space O(n) each. This gives the claimed complexity. []

If the points are not in general position, the minimum k-point set may be four
points in a line, or a triangle with a point on one of the sides. Such a set can be
found analogously to the minimum area triangle algorithm [9], [101. We compute

52 D. Eppstein, M. Overmars, G. Rote, and G. Woeginger

the line arrangement dual to the point set; then four collinear points correspond
to four coincident lines. A minimum area triangle with a point on one side
corresponds to three coincident lines and the nearest line directly above or below
their point of intersection. These configurations can be found in O(n 2) time and
O(n) space using a topological sweep algorithm [9]. Algorithm 2.1 needs no
modification for this possibility, and Algorithm 2.2 needs only to ignore pairs (x, y)
having a third point on the segment ~-~.

Tu find the smallest area convex 4-gon, we simply skip step (B1). This also
gives the smallest area empty convex 4-gon, because the smallest area convex 4-gon
is necessarily empty (a property that does not hold for k > 4).

4. Finding Minimum-Area Convex k-gons

In this section we first show how to find a smallest area convex k-gon in O(kn 3)
time and O(n 2) space. This result is then extended to empty convex k-gons and to
convex hulls of k points. The algorithm is based on the following observation. Let
¢g be the minimum area convex k-gon. Let Pl be the bottommost vertex of cg and
let P2 and P3 be the next two vertices in counterclockwise order. Now we can
decompose cg into the triangle Aplpzp3 and the remaining (k - 1)-gon ~'. Now
obviously rg, is minimal among all (k - 1)-gons with Pl as bottommost vertex, P3
as next vertex, and all points on one side of the line l(p3, P2)- So we could compute
c~, for any possible Pl, P2, and P3 and take the minimum of all possibilities. This
suggests a dynamic programming approach.

To be precise, we construct a four-dimensional array AR such that the element
AR[pi, Pi, P~, m] contains the area of the smallest convex m-gon ~ such that (see
Fig. 3):

• point pi is the bottommost vertex,
• point pj is the next vertex in counterclockwise order, i.e., all points of cg lie

to the left of the line l(p~, p j), and
• all points of ~ lie on the same side of l(pi, Pl) as p~.

The minimum area convex k-gon is just the minimum of the O(713) values
AR[*, ,, ,, k]. Thus, our goal is to fill this array up to m = k. This is done in the
following way:

In the initialization step we set all array elements AR[,, ,, ,, 2] to zero (as the

Fig. 3. How to treat the point p~.

Finding Minimum Area k-gons 53

area of a 2-gon is always zero). Moreover, we sort, for each point p in P, all the
other points in clockwise order around p and store these orderings. As in
Algorithm 2.2, we do not sort the half-lines going from p through p~ by direction
but sort the lines going through p and p~ by slope, i.e., we do not distinguish on
which side of p the point Pi lies on l(p, Pi).

Now assume we have already filled all entries in AR with last index < m - 1.
We describe how to fill all the entries for m for some fixed points Pi and pj in
linear time (that means only the point Pt is left to vary). Obviously, this leads to
an O(kn 3) total time bound.

We treat the possible points p~ in clockwise order around Pi (in the ordering
by the slope of lines calculated in the initialization step). We start with the successor
of p~. The basic idea is that when we treat a point in this ordering as candidate
for Pz, the minimum m-gon corresponding to AR[p~, p~, pt, m] is either the same
as for pz's predecessor in the ordering or it involves Pt as a new neighbor of pj.
These two possible cases are shown in Fig. 3.

• If p~ lies to the right of the line segment pip j, then no new point can be used.
AR[pi, pj, Pl, m] is equal to AR[pi, pj, pred(pt), m] and nothing changes.

• If Pt lies to the left of P---~i, then Pt might be a vertex of the minimum area
polygon. In this case the area is composed of the triangle AP~P~Pz and
the minimum area (m - 1)-gon in AR[pi, p~,pj, m - 1] . Hence, we set
AR[pi, pj, Pl, m] to the minimum of this value and AR[_pi, pj, pred(p3, m].

Thus, for each point p~, we have to do 0(1) work checking the two areas
and this gives a total amount of O(n) time. Summarizing, the algorithm is as
follows:

Algorithm 3 (Finding the smallest k-gon)

TotaIMinimum := ~ ;
For all points Pi do

AR[pi, *, *, 2] := 0;
For m.'= 3 to k do

For all points pj above Pl, in clockwise order around pi, do
MinArea:= c~;
For all points pt, in clockwise order of the directions of the lines

l(pj, Pt), as described in the text, do
If Pt is to the left of p-~j, then

MinArea:= min(MinArea, AR[p, Pl, Pj, m - 1] + area of

APiPjPl);
endif;
AR[pi, Pi, Pt, m] := MinArea;

endfor;
endfor;

endfor;
TotaIMinimum := min(TotalMinimum, min AR[p i, *, *, k]);

endfor.

54 D. Eppstein, M. Overmars, G. Rote, and G. Woeginger

Theorem 4.1. The minimum area (1) convex k-gon, or (2) empty convex k-yon can
be found in O(kn 3) time and O(n 2) space. The minimum area (3) convex hull of k
points can be found in O(kn a) time and O(kn 2) space.

Proof. (I) The time complexity of O(kn 3) follows from above. For the space
complexity we observe that we do not have to store the complete four-dimensional
array AR: For the calculation of the values AR[pl, *, *, m] only the values
AR[pi, , , , , m -- 1] are needed. After having computed AR[pi, *, *, *] we can
compute the minimum of AR[pi, *, *, k] and recover the optimal solution by
backtracking the computation that lead to the optimal value. However, this would
lead to O(kn 2) space complexity. If we are only interested in the optimal value, we
can forget AR[pi, *, *, m -- 1] after computing AR[p i, , , , , m], which reduces the
storage by a factor of k. Alternatively, we could use a trick in order to get the
optimal solution with O(n 2) space: In a first pass, we compute the optimal value
as above. This tells us the indices i, j, and l for which AR[pi, p~, p~, k] is optimal.
Then we must backtrack through AR one step at a time in order to reconstruct
the optimal k-gon. Backtracking from AR[_p i, , , , , m] can be accomplished by
recomputing AR[p~, , , , , m -- 1], in time O(kn2). The total time to reconstruct the
solution is O(k2n 2) = O(kn3). The bound could be reduced to O(kn 2 log k) by
backtracking from m to m/2 and recursively solving two smaller backtracking
problems, as in [13], but this is not necessary here.

(2) The only difference from case (1) is that we have to take care that
the polygons we get are empty. Applying the results of Section 2, we preprocess
the point set P in O(n 2) time and space. Afterward, only empty triangles are used
to compose the minimum area polygons, i.e., the line (,) in the algorithm is
executed only when the triangle z~p~pipt is empty.

(3) In this case, the meaning of AR[pi, pj, Pl, m] has to be changed: The first
three indices have the same significance as previously, but m is the total number
of points contained in the polygon, i.e., vertices and points inside. We again
preprocess P in O(n 2) time and space to be able ~to determine the number of points
in each triangle in constant time. Then, in a similar way as above, we can calculate
the values AR[p~, , , , , m] from the values AR[pi, *, *, re'I, with m' < m. Line (,)
in the algorithm is replaced by

(,3

s := the number of points inside AP~PiPt;
if s < m then

MinArea := min(MinArea, AR[p i, Pt, P j, m -- s] + area of ,A, pip~pl);
endif;

This time we have to store the whole three-dimensional array
AR[p i, , , , , *] under all circumstances, even if we are only interested in the value
of the optimum. []

Let us finally examine the possibility that the point set is not in general position.
The main question is how to sort points Pt around p~ by the slopes of the lines

Finding Minimum Area k-gons 55

l(pi, p~), when some of those lines may be identical. It only matters whether to sort
the points left of I(p~, pj) before the points to the right, or vice versa; this is because
points on the same side of I(pi, p j) do not interact with each other. Placing the left
points first corresponds to allowing points to be counted as polygon vertices
when they are in the middle of a side. Placing right points first corresponds to
only counting vertices that have angles less than r~. For the k-point set and empty
convex k-gon problems, we check if the line segments bounding the possible
polygons contain any points, as described in Section 2, and take appropriate action
depending on whether we want to count such points as inside or outside the
polygon.

5. Other Weight Functions

The method presented in the previous section can be used to solve many
other types of minimization and maximization problems as well. To this end let
Wbe some weight function that assigns a real weight to any (convex) polygon oK.

Definition 5.1. A weight function W is called decomposable iff for any polygon
= (P l Pro) and any index 2 < i < m

w (~) = <>(W((p, p,)) , W ((p , , p,, p ,+, p. ,)) , p l , p,),

where ~ takes constant time to compute. W is called monotone decomposable iff
is monotone in its first (and, hence, in its second) argument.

In other words, when W is decomposable we can cut the polygon ~ in two
subpolygons along the line segment PlPl and obtain the weight of cg from the
weights of the subpolygons and some information on the cut segment. For
example, the area of a polygon is a monotone decomposable weight function with
~(x, y, p, q) = x + y. Many different monotone decomposable weight functions

exist. For example:

• The perimeter. Here ~(x, y, p, q) = x + y - 2lp-'ql.
• Sum of the internal angles. ~(x, y, p, q) = x + y. This turns out to be simply

(k - 2)n, so optimizing this quantity is not very interesting.
• Number of points of some set in the interior. ©(x, y, p, q) = x + y.
• Adding a weight w(p) to each point p we can take as the weight of a polygon

the sum of the weights of its vertices. ~ (x , y, p, q) = x + y - w(p) - w(p).
Similarly we can take the maximal or minimal weight of the points as weight

of the polygon.

Theorem 5.2. Let W be a monotone decomposable weight function. Let P be a set
o f n points. The (1) convex k-gon, (2) empty convex k-oon, (3) convex hull o f k points
in P that minimizes or maximizes W can be computed in time O(kn 3 + G(n)) time,
where G(n) is the time required to compute W for the O(n 3) possible triangles in the set.

56 D. Eppstein, M. Overmars, G. Rote, and G. Woeginger

Proof The method is the same as in the previous section with the obvious
modifications. The time bound follows. To prove the correctness, assume that
some polygon c~ is the optimal solution. Let ~ = (Pt Pk) with Pl the
bottommost vertex. Now split ~ in ~' = (pl, P3 Pk) and the triangle APlP2P3.
Because W is monotone c~, must be optimal among all k - 1 gons with p~
and P3 as first two vertices, to the left of l(p2, P3). Hence, the method correctly
finds ~. []

Note that monotonicity of W is essential for the method to be correct.
Decomposibility is also necessary: we can use various data structures to maintain
nondecomposible functions such as the diameter or the smallest angle, but the
proof above will fail because c~, need not be optimal.

The next result follows immediately from Theorem 5.2.

Corollary 5.3. The minimum perimeter (1) convex k-gon, (2) empty convex k-gon,
(3) convex hull of k points can be determined in time O(kn3).

The method can also maximize area or perimeter but the bounds will be worse
than the methods of [2].

Corollary 5.4. Given a set P of n points, the convex k-gon with vertices in P
containing the minimum or maximum number of points of P in its interior can be
determined in time O(kn3).

Proof From Theorem 2.1 it follows that G(n) = O(n3). []

All other weight functions listed above can also be minimized or maximized.
In all cases the time bound will be O(kn3). Storage for all these problems can be
kept to O(n 2) for problems (1) and (2), and to O(kn z) for problem (3).

With some slight modifications weight functions like the length of the longest
or shortest edge can also be treated (although they are not decomposable) in the
same bounds. The key insight is that, in our dynamic program, all edge lengths
of previous polygons are preserved except for the bottom right edge. If we maintain
the extremal edge length or angle among those in the rest of the polygon, this will
behave like a decomposable function for the purposes of our algorithm. Then
optimization of the bottom right edge can be included only in the last stage
of the dynamic program.

6. Conclusions

In this paper we have given O(kn 3) algorithms for solving three different types of
minimum area k-point set problems. The methods use O(n) storage when k = 4
and O(n 2) or O(kn 2) storage when k > 4. The methods are based on the dynamic
programming technique, using some special properties of minimum area polygons.

The technique was generalized to solve a large class of minimization (and

Finding Minimum Area k-gons 57

maximization) problems involving some weight function on the polygons obtained.
In this way, for example, solutions were obtained for the minimum perimeter
problem.

Many open problems remain. Although our method can solve many types of
minimization problems, as shown in Section 5, some problems cannot be solved
with it. In particular, problems with a nonlocal weight criterion, such as the
minimum diameter, do not fit in the scheme. It is open whether dynamic
programming can be used to solve those problems as well.

It is unclear whether our algorithms are optimal. The only lower bounds known
for the problems are f~(n log n). If all n points are extreme, it is easy to see that
the minimum area k-point sets can be found in O(kn 2) time. So improvement might
be possible. Also improving the space bound to O(n) for all k is open. Recently
the first author has made some progress: the minimum area k-point set and convex
k-gon problems can be solved for any fixed k in time O(n 2 log n) and space
O(nlog n) [11]. The minimum area empty convex k-gon problem, and the
problems of optimization with other weight functions, remain open.

A final open problem concerns nonconvex polygons. Rather than asking for
the minimum area convex k-gon we could simply ask for the minimum area k-gon.
For k > 3 this indeed need not be convex. As noted in the introduction, for k = 4
this problem is easy to solve in time O(nZ). At first glance a method similar to the
one proposed in Section 4 might seem to work for general k but this is not true.
The problem is that the polygon might become self-overlapping. Indeed, it is easy
to find examples where the smallest k-gon is self-overlapping. Avoiding these
polygons seems very hard.

Acknowledgments

We would like to thank Helmut Alt and Emo Welzl for many helpful discussions.

References

1. A. Aggarwal and J. Wein, Computational Geometry, Lecture Notes for 18.409, MIT Laboratory
for Computer Science, 1988.

2. A. Aggarwal, M. M. Klawe, S. Moran, P. Shot, and R. Wilber, Geometric applications of a
matrix-searching algorithm, Algorithmica 2 (1987), 195-208~

3. A. Aggarwal, H. Imai, N. Katoh, and S. Suri, Finding k points with minimum diameter
and related problems, Proc. 5th ACM Symp. on Computational Geometry, 1989, pp. 283-291.

4. D. Avis and D. Rappaport, Computing the largest empty convex subset of a set of points, Proc.
1st ACM Symp. on Computational Geometry, 1985, pp. 161-167.

5. J. E. Boyce, D. P. Dobkin, R. L. Drysdale, and L J. Guibas, Finding extremal polygons, SIAM
J. Comput. 14 (1985), 134-147.

6. D. P. Dobkin, R. L. Drysdale, and L J. Guibas, Finding smallest polygons, In: Advances in
Computing Research, Vol. t, JAI Press, Greenwich, CT, 1983, pp. 181--214.

7. D. P. Dobkin, H. Edelsbrunner, and M. H. Overmars, Searching for empty convex polygons, Proc.
4th ACM Syrup. on Computational Geometry, 1988, pp. 224-228.

8. H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical.
Computer Science, Springer-Verlag, Berlin, 1987.

58 D. Eppstein, M. Overmars, G. Rote, and G. Woeginger

9. H. Edelsbrunner and L. J. Guibas, Topologically sweeping in an arrangement, Proc. 18th ACM
Syrup. on Theory of Computing, 1986, pp. 389-403.

10. H. Edelsbrunner, J. O'Rourke, and R. Seidel, Constructing arrangements of lines and hyperplanes
with applications, SIAM J. Comput. 15 (t986), 341-363.

11. D. Eppstein, New algorithms for minimum area k-gons, Proc. 3rd A CM/SIAM Syrap. on Discrete
Algorithms, 1992, to appear.

12. J. D. Horton, Sets with no empty convex 7-gons, Canad. Math. Bull. 26 (1983), 482-484.
13. J. I. Munro and R. J. Ramirez, Reducing space requirements for shortest path problems, Oper.

Res. 30 (1982), 1009-1013.
14. M. H. Overmars, B. Scholten, and I. Vincent, Sets without empty convex 6-gons, Bull EATCS 37

(1989), 160-160.

Received April 6, 1989, and in revised form July 1, 1991.

