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Abstract

We describe a randomized CRCW PRAM algorithm that
finds a minimum spanning forest of an n-vertex graph in
O(log n) time and linear work. This shaves a factor of 2log™ n
off the best previous running time for a linear-work algo-
rithm. The novelty in our approach is to divide the compu-
tation into two phases, the first of which finds only a partial
solution. This idea has been used previously in parallel con-
nected components algorithms.

1 Introduction

We describe the first work-optimal minimum spanning for-
est (MSF) algorithm that runs in O(log n) time. The algo-
rithm uses a random-sampling technique previously used by
Karger, Klein, and Tarjan in a sequential linear-time algo-
rithm and by Cole. Klein, and Tarjan in a parallel algorithm.

Philip N. Klein!
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These previous algorithms have the following form. Choose

a random subset of edges. and recursively calculate the MSF
of the sample graph, the graph consisting of the chosen edges.
Use the recursively calculated minimum spanning forest to
identify edges of the original graph that are guaranteed not
to belong to the MSF. Discard these edges. and recursively
calculate the MSF of the remaining graph.

Identifying the edges to be discarded seems to require
Of(log n) time; thus the time regunired by an algorithm hav-
ing the above form is O(log n) times the number of recursive
invocations. Previously [5], by varying the sampling prob-
ability depending on the recursion depth., we were able to
bound the number of invocations by O(2'°8" ™), but there
seems no way to reduce it further to a constant, which is
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what would be necessary to achieve Oflog n) time using this
approach.

In this paper we resolve this dilemma by breaking the
computation mto two phases. In the first phase, the number
of recursive invocations remains O(2'°5” "), but we manage
to reduce the time per invocation to something significantly
less than ©O(log n). The result of the first phase, however,
is not the entire MSF but only a subset of it. Ve then
contract the edges in this subset, and. in the second phase,
calculate the MSF of the contracted graph. The MSF of the
otiginal graph is the MSF of the contracted graph together
with the contracted edges. Because the contracted graph
is significantly smaller than the input graph. we can ensure
that the second phase consists of only a constant number
of invocations (each taking O(log n) time). Thus the overall
time bound for the two phases 15 O(log n).

The frst phase is the challenge. How can we reduce
the time per invocation? We modify the criterion by which
edges can be discarded. The intuition is as follows. In the
first recursive call (which operates on the sample graph),
why should we completely solve the MSFE problem when the
solution is only intended to help us discard edges? We for-
mulate a less ambitious goal—partial solution of the MSF
problem—and show that using a partial solution for the sam-
ple graph we can quickly identify edges of the original graph
that do not belong to the partial solution for the original
graph. We later define what we mean by *“partial solu-
tion.” For the moment, we remark merely that it is a “]large
enough” set of edges that is a subset of the MSF.

A technical difficulty arises in carrying out the modified
sampling approach. In the discarding step, we might discard
edges that belong to the MSF. For this reason, if we were not
careful in carrying out the second recursive call, we might
include in the partial solution edges that do not belong to
the MSF (“bad edges”). We therefore do not entirely dis-
card edges but rather designate them as “out-edges” for this
recursive call. The out-edges are used to guard against the
partial solution getting too big and including bad edges. We
show that the choice of out-edges ensures essentially that if
the partial solution is about to include an out-edge, it is
already big enough. We also show that the set of ont-edges
can be represented compactly, which is necessary for the
efficiency of our algorithm.

1.1 Previous work

Several researchers have addressed the problem of giving
a work-efficient parallel algorithmn for finding a minimum



spanning tree. Chin, Lam, and Chen [3] gave an algo-
nthm that runs in O(log® n) time using #°/log? n proces-
sors. Thus their algorithm achieves linear speed-up when
the input graph is a complete graph. However, it is not
very work-efficient for sparse input graphs. Awerbuch and
Shiloach [1] proposed a parallel algorithm for finding a min-
imum spanning tree; their algorithm requires O(log n) time
using m + n processors, where n and m are, respectively, the
number of vertices and edges of the graph. However, their
result assumes a model in which write-conflicts are resolved
by priority, where the priority of a processor is determined
by the weight of the edge assigned to it.

Cole and Vishkin [6] have claimed an algorithm running
on a CRCW PRAM that requires O(log n) time and O((n+
m)logloglog n/log n) processors. Their algorithm assumes
the same strong model as the algorithm of Awerbuch and
Shiloach.

Karger [17] has claimed an algorithm running on an EREW
PRAM that requires O(log n) time and m/logn+ n'*< pro-
cessors for any constant € > 0. Thus his algorithm is within
a constant factor of optimal for sufficientlv dense graphs,
and is within a fractional polynomial factor for very sparse
graphs.

A related but simpler problem is that of finding con-
nected components. Gazit [10] discovered a randomized
logarithmic-time, linear-work CRCW PRAM connected-
components algorithm. Halperin and Zwick [12] discovered
how to test connectivity on a CREW PRAM in the same
bounds using Gazit’s approach, and later refined their algo-
rithm to actually find connected components [13]. Gazit’s
approach was the inspiration for our two-phase MSF algo-
rithm: Gazit’s algorithm first builds pieces of components
and then combines them in a second phase Extending this
idea to the MSF problem is not straightforward and is where
the main technical contributions of our paper lie.

2 The top-level algorithm

We now give the top-level algorithm. It uses contraction of
edges. Contraction of an edge with endpoints u and v results
in removal of the edge and coalescing of the endpoints u
and v to form a new vertex. Every other edge that had as
endpoint either u or v has the new vertex as endpoint after
the contraction. Thus every edge that existed in the graph
before the contraction exists in the graph after contraction
{except for the edge contracted), albeit with new endpoints.

Let Go denote the input graph, and let m be the num-
ber of edges in Gy.

Let & := Vloglogm. Note: k is a parameter used in
the procedure FINDFOREST.

Call FINDFOREST(Go, log™ m).

Let G; be the graph obtained from Go by contracting
all edges designated as in-edges by FINDFOREST.

Call FinisHUP(G1).

Output the union of the in-edges of G: and the in-
edges of Go.

The algorithm uses two procedures, FindForest and Fin-
1sHUP. The call FINDFOREST(Go.log™ m) designates as in-
edges a subset of the edges of Go’s minimum spanning forest
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(MSF). Since (G is obtained by contracting these edges. it
follows that the MSF of G consists of these edges together
with the MSF of G;. The call FINISHUP({G, ) designates as
in-edges all the edges of G's MSF. Thus the set of edges
output by the algorithm is the MSF of Gy.

Now we preview the analysis. We show below that the
call FINDFOREST(GYq, log* m) results in O(2!°6" ™) recursive
invocations. Assume for simplicity that Go is connected.

Each invocation requires expected time O(log m log log log m/ log log n

so the total time is o(log m). We show that the total work
is O(m). We show also that in the forest of edges of Go des-
ignated as in-edges, each tree has at least & edges. Hence
the number of vertices in G is at most 1/k times the num-
ber of vertices in Go, and hence at most 1/k times m. The
procedure FINISHUP uses this fact to ind the MSF of G; in
Of(log m) time using linear work.

2.1 In-edges

One correctness condition for the algorithm is the in-edge
soundness condition:

all in-edges belong to the MSF.

To maintain this property, the algorithm uses the follow-
ing simple proposition. If all present in-edges belong to the
MSF, and an edge e is the cheapest edge incident to a com-
ponent of in-edges, then e is in the MSF (and can therefore
safely be designated an in-edge).

The algorithm keeps track of the components of in-edges,
which are trees, and the edges between these trees. When
an edge is newly designated an in-edge, the trees it connects
are merged into one.

2.2  Min trees

In order to precisely define the correctness condition for
FINDFOREST, we introduce some terminology about partial
solutions to the MSF problem.

Recall the following algorithm® for finding a minimum
spanning tree in a connected graph G. Initialize the set
S of spanned vertices to be {v} for some vertex v. Then
repeat the following step until S contains all the vertices of
G: select the cheapest edge vw incident to S, and add to S
whichever endpoint is not already in S. The set of edges vw
selected by the above algorithm is the minimum spanning
forest of G.

If k is smaller than the number of vertices in the graph,
the first k& edges selected by the above algorithm form a
tree containing x. We call this tree the k-rmun tree of u (in
G). The k** edge chosen by this algorithm is called u’s kit
min edge. If the connected component of G that contains u
consists of fewer than k& + 1 vertices, we define u’s k-Prim
tree to be the minimum spanning tree of that component.

Lemma 1 Suppose an edge e s incident to a vertex u in
G, and u’s k-mun tree does not contain e. Then e 1s costlier
than any edge in this tree.

The goal of FINDFOREST(G, i) is to identify a subset F' of
the MSF of G obeying the following completeness condition:

for each vertex v of (G, the k-min tree of v in G
is contained in F'.

1While commonly attributed to Prim, this algorithm appears in
papers by Jarnik [15] and Dykstra



It follows from the completeness condition that the forest
of in-edges of Gy designated by the top-level call,
FINDFOREST(Gy. log* ). consists of trees each of size at
least A, as required.

2.3 Out-edges

The efficiency of FINDFOREST is based on identifving edges
that are not necessary for completeness: the procedure desig-
nates these edges as out-edges. Thus the out-edge soundness
condition is.

each out-edge of GG does not belong to the k-
mintree of any vertex in G.

Note that an edge may belong to the MSF but not to any
vertex's k-min tree; hence even some MSF edges mught get
designated as out-edges. An edge that has not been desig-
nated an in-edge or an out-edge is said to be neutral.

One might think that out-edges could simply be deleted.
However, since they might belong to the MSF, deleting them
would cause FINDFOREST to misidentify some remaining
edges as MSF edges; the procedure would determine that
some edge was the cheapest neutral edge incident to a tree
of in-edges, and would infer that this edge belonged to the
MSF-though the cheapest edge incident to that tree might
be an out-edge. To prevent such misidentification. FIND-
FOREST represents out-edges as follows: for each tree of
in-edges, the procedure keeps track of the cheapest inci-
dent out-edge (if any). This representation can easilv be
updated when two such trees merge. There is no need for
explicit representation of out-edges.

2.4 Borivka steps

One basic operation used repeatedly by our algorithm is a
Boruvka step, which we adapt {from Borivka's algorithm for
finding a MSF[2]. Let G be a graph in which some in-edges
and out-edges have been designated. Call a tree of m-edges
wnactive if its cheapest incident edge has previously been
determined to be an out-edge (and active otherwise. In our
version of a Boruvka step, a subset I3,...,T; of active in-
edge trees are selected, and for each tree T, the cheapest
neutral edge e, is determined. If e, is cheaper than the
cheapest out-edge incident to 7, then e, is designated an
in-edge. Note that these edges belong to the MSF, so this
step preserves in-edge soundness. We require our Boruvka
step to satisfv two properties:

noninterference: For each tree T}, the endpoint of €, not
i Ii must not belong to another selected tree 7).

likelihood: For each tree T of in-edges, if T has an incident
edge then the probability is at least 1/8 that T is one
of the trees selected.

Such a Boravka step can be implemented to run in O(1)
expected time using a number of processors equal to the
number of active in-edge trees plus the number of neutral
edges incident to such trees [5].

3 The Phase | Algorithm: Overview

We now give the recursive procedure FINDFOREST. It refers
to m, which denotes the number of edges in the original in-
put graph. It also refers tu a global parameter & whose value
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is= loglog m. We use log'"’ m to denote the application to
m of the i-fold composition of log with itsclf, e.g. loglog m
can be written log'?' m. The procedure makes use of two
constants « and b such that « > 2b, and a few assorted con-
stants hidden by the big-Oh notation The second argument
to FINDFOREST is a descending counter that indicates the
depth of the recursion

FINDFOREST(G, 1)
Step 0: If : = 2 then call BASECASE(G) and return.

Step 1: Perform Oflog{(log"' ™" m)*}) Boruvka steps.

Step 2: Obtain graph G’ from ¢ by first includ-
mg in G all in-edges of G (designated as in-
edges of G') and not including any out-edges.
Each of the remaining, neutral edges of G is
included in G’ mdependently with probability

p=1/(log" ™ ' m)’.

Step 3: Call FINDFOREST(G', 1 — 1).

Step 4: Call FILTER(G, ('), designating some edges
of G as out-edges.

Step 5: Call FINDFOREST((L 1 — 1).

The procedure FINDFOREST depends on two subprocedures,
BASECASE and FILTER. The correctness condition for BASECASE(()

1s:

If G satisfies the in-edge and out-edge sound-
ness conditions then after the call BASECasg(G).
G satisfies the completeness condition and the
soundness conditions.

The correctness condrtion for FILTER(G, G') is as follows:

Suppose (' is a subgraph of G, and G and G’
satisfy the in-edge and out-edge soundness con-
ditions. Suppose moreover that G’ satisfies the
completeness condition. Then the edges of G des-
ignated as out-edges by FILTER satisfy the out-
edge soundness condition.

We give the details of BASEC'AsE and FILTER later, and
show they satisfy their correctness conditions. Assume for
now that these conditions hold.

3.1 Correctness of FINDFOREST

Finally, the correctness invariant for FINDFOREST(G. 1) is as
follows:

Suppose G satisfies the in-edge and out-edge sound-
ness conditions. Then after the call FINDFoOREST(G, 1),
G satisfies the completeness condition and the
soundness conditions.

We show by induction that the algorithm satisfies the above
invariant.

Suppose that G satisfies the soundness conditions, and
consider the call FINDFOREST(G, ). If 1 = 2 then it follows
from the correctness condition for BASECASE that after the
call BASECASE(G). G satisfies completeness and soundness.



Now suppose @ > 2. First consider the Bordvka steps
executed in Step 1 of FINDFOREST. These steps designate
some MSF edges as in-edges. preserving the soundness con-
ditions.

Next consider the graph G’ obtained from G in Step 2.
Since G’ is a subgraph of G’, every MSF edge of G that
appears in G’ is also an MSF edge of G'. The in-edges of
G’ are precisely the in-edges of G, which are MSE edges
of G by the in-edge soundness of . Thus the in-edges of
G are MSF edges of G’, so in-edge soundness holds for G'.
Out-edge socundness trivially holds for ¢’ since G’ has no
out-edges.

Next consider G' after the call FINDFOREST(G',1 — 1).
By the inductive hypothesis, G’ satisfies completeness and
soundness.

Next in Step 4 there is a call FILTER(G. G), designating
some of the edges of G as out-edges. By the correctness con-
dition of FILTER, these edges satisfv the out-edge soundness
condition.

We have seen that at the beginning of Step 5, G satis-
fies the soundness conditions. By the induction hypothesis,
therefore, after the call FINDFOREST(G, i — 1) in that step,
G satisfies completeness and soundness.

3.2 Bounds on graph parameters

Now we consider the resource requirements of FiNpDFor-
EST. The first step in the analysis is to prove bounds on the
number of neutral edges and the number of in-edge trees in
graphs arising at different levels of recursion. Consider a
call FINDFOREST(G, 1). We claim that the number of active
in-edge trees in G is at most m/(log!*’ m)* and the expected
number of neutral edges in ¢ is at most m/(logt" m)®. The
claim 1s trivially true for the initial call, since for that call
1 = log*m, so logt) = 1. We show that an invocation
FINDFOREST(G, 1} preserves the truth of the claim in its re-
cursive invocations. Each Boriivka step in Step 1 reduces
by a constant factor the expected number of active in-edge
trees in G. Since Step 1 performs O(log[(log"* ™% m)®]) such
steps, by choice of the constant hidden by the big Oh, the
expected number of trees after the step is at most the num-
ber before the step divided by 2(log!*~!) m}®, which in turn
is certainly at most m/{(log*™" m)¢. Now we consider the
number of edges.

The neutral edges of G’ are obtained from the neutral
edges of G by sampling with probability p = 1/(log!*~% m)®.
Thus the expected number of neutral edges in G’ is p times
the number of neutral edges in G. The number of edges in
G is certainly at most m, so the expected number of neutral
edges in G’ is at most pm, which is m/(logt* ™1 m)®. Thus
the recursive call in Step 3 satisfies the claim.

Next we consider the recursive call in Step 5. We use
a bound on the number of edges not designated out-edges
in Step 4. The following lemma is a generalization of the
lemma at the heart of the analysis of a linear-time random-
ized sequential algorithm for minimum spanning trees [19].

Lemma 2 Let n be the number of in-edge trees in G. After
the call FILTER(G, G'), the expected number of neutral edges
i G is at most 2n/p.

Since n < m/2(log"" ™ m)* and p = 1/(log""™" m)?, we
infer that the expected number of neutral edges in G after

246

(:=1)

Step 4 is at most m/(log m)®~®, which in turn is at most

m/(log" ™) m)® since a > 2.

3.3 Analysis of resource requirements of FINDFOREST

The depth of the recursion is log* m Hence the number of
invocations is 2'°6” 7. In each invocation the dominant step
is the call to FILTER. We show later that the time required
by FILTER is O(log m log log log m/ loglog m). and the work

is linear. Thus the total time is O(2!°5” ™ log m log log log m / log log m

which is o(log m).

Now we bound the work done. For each invocation, the
work done is linear in the number of neutral edges. Hence
at each level of recursion (each value of ¢), the work done
is linear in the number of neutral edges in graphs G that
appear as arguinents to invocations at that level. There is
one top-level call, two calls at the next level, four at the
next, and so on. Using the expected bounds on the sizes
of graphs that were derived in the previous subsection, we
infer that the total expected work is ) 2'0(m/(log*) m)®,
which is linear.

4 The subprocedure BAaseCase

We describe the subprocedure BaSECASE(G) used in Step
0 of FINDFOREST for the base case of the recursion. In this
case, it is assumed of the graph G that the number of trees
in the forest of in-edges is small compared to the number of
vertices in the original graph, and that the number of neu-
tral edges is small compared to the number of edges in the
original graph. Hence we can afford to use a fairly inefficient
algorithm for this case.

The subprocedure also constructs an auxiliary graph,
used by the subprocedure FILTER, consisting of a path Pr
for each tree T of edges that are in-edges at the beginning
of the call. Each such path is called the trunk of T

Let (3 be the graph obtained from G by contracting all
the in-edges. As mentioned in Subsection 2.1, the algorithm
keeps track of the components of in-edges and the edges
between them, so the contraction step is trivial. Fach tree
T of in-edges is contracted to a vertex v in G, called the
target of T. For each such vertex, we calculate an k-min
tree Ty of v. (If v's i*" min edge is an out-edge, we let Ty
be the (+ — 1)-min tree of v.) Finally, for each edge in such
a tree T,, we designate the corresponding edge in G as an
in-edge.

To find the trees T, we proceed as follows. Replace each
edge zy of G with two oppositely directed arcs, z — y and
y — x. Next, for each vertex z determine the k cheapest
outgoing arcs ¢ — y. Let (G be the graph consisting of the
union over all vertices z of the k cheapest outgoing arcs of z.
Next, for each vertex v we execute the following variant of
Prim’s algorithm. Initialize the set S, to {v}. Initialize the
trunk to consist only of the vertex v. Repeat the following
step k times: find the cheapest arc ¢ — y outgoing from
S,. Append it to the end of the trunk. If it is an out-edge,
halt. Otherwise, designate the corresponding edge zy as
belonging to Ty, insert y into Sy, and repeat.

Since S, never contains more than k + 1 vertices and
each vertex has at most k outgoing arcs, the minimum can

be found in O(k?) time. Thus the above loop takes O(k?)
time using one processor per vertex of G.



Lemma 3 BaseCasE(G) satisfies its correctness condition.

Proof sketch: We assume that G satisfies in-edge and out-
edge soundness before the call to BAsECase. By in-edge
soundness, the in-edges of G belong to the MSF. It follows
that the MSF of ¢ is contained in the MSF of G. Each
edge designated as an in-edge by the procedure belongs to
the MSF of G and hence of G. Thus in-edge soundness is
preserved. By out-edge soundness of G before the call, for
every vertex v, the k-min tree of v is contained among the
in-edges and neutral edges of G before the call. Let w be
the vertex into which v is coalesced by the contractions It
1s straightforward to show that each edge of v’s k-min tree
that is neutral before the call belongs to T, and is therefore
designated an in-edge. Thus the call achieves soundness. O

5 The FILTER subprocedure

The goal of FILTER(G, G') is to identify edges in G that
are not needed for completeness and can therefore be des-
ignated as out-edges without violating out-edge soundness.
To facilitate this task, the subprocedure uses the forest of
in-edges selected in the sample graph G’ during the re-
cursive call FINDFOREST(G',7 + 1) in Step 3. More pre-
cisely, FILTER uses the trunks constructed during the call
to BASECASE(G') and a forest, called the merge forest, de-
scribed in the next subsection, that is constructed during
the Bortivka steps. We refer to the nodes of the trunks and
the merge forest to distinguish them from the vertices of the
graphs.

5.1 The merge forest

We define a rooted forest M, called the merge forest, that
captures the effect of the Borlivka steps performed during
a call to FINDFOREST. This structure resembles closely the
Boriivka tree defined and used by King [21] for verification of
minimum spanning trees. (The differences reflect our mod-
ification of the Borivka step.)

‘The nodes of M correspond to in-edge trees in the graph,
and we use ¢ to denote the mapping from in-edge trees to
nodes of M. For each in-edge tree T arising during a call to
FINDFOREST, there is a node ¢(7'). If during a Borivka step
some in-edge trees 11, 73,..., Tt are merged to form a tree T
because some edges between them are designated in-edges,
then ¢(11),...,4(Tt) are the children of ¢(T) in the merge
forest M. For : = 1,....¢, if the new in-edge e incident
to 7. is the cheapest edge incident to 7, then the edge in
M from ¢(T,) to its parent ¢(7') is assigned the cost of ¢;
otherwise the edge in A/ is assigned cost negative infinity.
Construction of the merge forest can be incorporated into
the implementation of Borfivka steps.

Note that the depth of the merge forest for a graph
is bounded by the number of Boriivka steps executed on
that graph. The number of Borivka steps at level i is
O(log[(log"*~* m)?]), which is O(log!*) m), so the total num-
ber of Borivka steps executed on a graph is

O(log(e’) m -+ log(4) m+.-)

which is O(log!®! m).
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Figure 1: A filtering tree is obtained by attaching a stem to
a tree of the merge forest.

5.2 The Filtering Forest

The subprocedure FILTER(G, G’) builds a structure from the
merge forest Al and trunks resulting from the recursive call
FINDFOREST(G',z + 1) in Step 3. For each rooted tree 7" in
the merge forest, the filtering structure contains the rooted
tree obtained from T by attaching the first node of a trunk
P to the root of . The trunk P used is the trunk associated
with the in-edge tree corresponding to the root of 7. We call
the resulting tree a filtering tree, and the collection of these
trees is called the filtering forest.

We define a kind of least-common ancestor for the filter-
ing forest. Let Fy be the forest of in-edges before the call
FINDFOREST(G',1 + 1) in Step 3, and let F be the forest
after the call. For a vertex v of G, let Fy(v) denote the tree
of Fo that contains v, and similarly define F(v). Let P(v)
denote the trunk whose first node is the target® of F(v).

For vertices » and w of G', we define ancy(w) accord-
ing to the following three cases (depicted in Figure 5.2).
If F(w) = F(v) then ¢(Fo(v)) and ¢(Fo(w)) are nodes of
the same rooted tree of the merge forest Af. In this case,
anc,(w) is defined to be the least common ancestor of these
two nodes. Assume F(w) # F(v). Suppose that the tar-
get of I'(w) appears as a node in the trunk P(v). In this
case, anc,(w) is defined to be that node. Finally, suppose
that the target of F'(w) does not appear in the trunk P(v).
In this case, anc,(w) is the last node of the trunk attached
to M(v), i.e. the root of the corresponding filtering tree.
Note that in each of the tree cases, anc,(w) is a ancestor of
#(Fo(v)) in the filtering forest.

Define c,(w) to be the maximum cost of an edge on the
path in the filtering forest from ¢(F5(v)) to ancy(w).

Lemma 4 Suppose that after the call FINDFOREST(G, i+1)
in Step 3, G' satisfies soundness and completeness. Let vw
be an edge of G. If the cost of vw exceeds max cy(w), cy(v)
then vw is not in the k-min tree of any node in G.

The procedure FILTER designates as out-edges all those
edges of G that satisfy the condition of Lemma 4.

2 That 18, the result of contraction in BASECASE See Section 4.
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Figure 2: The three cases in the definition of anc,(w). In
the first case, v and w map to nodes of the same merge
tree. In the second case, w maps to a node on the trunk of
the merge tree containing v. In the third case, w does not
appear on either v’s merge tree or on the attached trunk.
combined tree is obtained by attaching a stem to a tree of
the merge forest.
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5.3 Efficient implementation of FILTER

We describe how to efficiently identify all edges vw that
by Lemma 4 can be designated as out-edges. First process
the filtering forest so that anc.{w) can be determined in
constant time for any vertices v and w

5.3.1 Structures for calculating anc,(w)

This step consists in processing the trunks and processing
the merge forest. For each trunk, build a perfect hash table
of the nodes comprising it. This can be done in time pro-
portional to the size of the trunk. (This step can be done
once during BASECASE(G').)

For the merge forest, build aleast-common ancestor struc-
ture [14, 27] for M so that, given a pair of nodes r and y,
the least common ancestor of r and y in M can be deter-
mined in constant time. We use the structure proposed by
Schieber and Vishkin, but to construct it we use an algo-
rithm whose running time depends on the height D of M.
It is straightforward to adapt their algorithm to run in time
O(Dlog n/loglogn) and work O(n), where n is the size of
3. The main difficulty in the Schieber/Vishkin algorithm
is to number the vertices in left to right order. but this can
be done by means of a sweep up the trees to compute the
size of the subtree of each node, followed by a sweep down
to calculate the numbering. Each step in the up-sweep is a
parallel prefix-sums computation.

Once these structures have been built. one can find anc,{w)
in constant time. If F/{(v) = F(w) then use the least-common-
ancestor structure for the merge forest. If F(v) # F(w)
then use the hash table associated with the trunk P(v) to
determine 1f the target of F(w) occurs in P(v). If so. that
occurrence is anc, (w) I[f not. then anc.(w) is the last node

of P(v).

5.3.2 Processing the lengths on trunk edges

Next, build a table for each of the trunks by traversing its
edges, first to last. For the o th edge, record the maximum
cost among edges 1 through :. This step takes time propor-
tional to the size of the trunk. (This step can also be done
during BaseCase(G').)

5.3.3 Determining costs on leaf-to-root paths of the merge
forest

Next, build a table for each node of the merge forest by
scanning down the merge forest starting at the roots. For
each node, record the maximum cost on the path from the
root to that node.

5.3.4 Determining ¢.(w): the easy case

For each edge vw, if anc,(w) belongs to P(v) then c,(w),
the maximum cost on the path from ¢{Fo(v)) to anc,{w).
can be determined in constant time by consulting the table
for the merge forest and the table for the trunk P(v).

5.3.5 Determining c,(w): the hard case

Use a parallel version of King’s algorithm [21] to determine
c(w) for each edge vw in G such that ¢(Fo(v)) and ¢{Fo(w))
occur in the same tree of the merge forest. King’s algorithm
consists primarily of scanning down the forest, assigning la-
bels to the nodes. The time per node is O(loglog n). At each



level, the work needs to be rebalanced among the processors
but this can be done in Ofloglog n) time using standard
techniques. The total time is thus O(D loglog n), where D
is the depth of the merge forest. The total work is linear
in the number of edges that need to be checked, which is
bounded by the number of neutral edges of G.

5.3.6 Designating out-edges

Finally, designate edges vw of G as out-edges in accordance
with Lemma 4: if the cost of vw exceeds c¢.(w) and cy(v)
then vw is designated an out-edge. To maintain the rep-
resentation of out-edges, calculate for each in-edge tree the
cost of the cheapest incident out-edge. This can be done in
O(log log n) time and linear work using the minimum-finding
algorithm of Shiloach and Vishkin [28].

5.3.7 Resource requirements

The most time-consuming step is constructing the least-
common ancestor structure. This takes time O(D log n/ log log n)
and O(n) work, where n is the size of the merge forest M,
and D is its depth. We showed that D = O(log!® m), and of
course n is the number of in-edge trees in G’ before the recur-

sive call FINDFOREST(G', i+ 1) in Step 3. The total time for
FILTER(G, G') is therefore O(log n log log log m /log log n). The
work is O(n + m), where m is the number of neutral edges.

6 The Phase Il Algorithm

The Phase II algorithm, FiNisSHUP(G), is much simpler. It
invokes a recursive procedure that resembles FINDFOREST;
however, each recursive call finds a minimum spanning for-
est. Edges can therefore be simply deleted instead of being
designated out-edges. Furthermore, the recursion depth is
constant. Here is the procedure FINISHUP(G):

Step 0: Let G’ be obtained from G by including each edge
of G independently with probability p = 1/\/%, where
k is as specified in the top-level algorithm.

Step 1: Call Basic(G/, 3) to obtain the MSF of G'.

Step 2: Use the minimum spanning forest of G’ to deter-
mine some edges of G that do not belong to the MSF
of G, and delete these edges from G.

Step 3: Call Basic(G, 3) to find the MSF of G.

The choice of edges to delete in Step 2 is based on a simpler
condition than that used in FILTER. For an edge vw of G, if
there is a path in the MSF of G’ that connects v to w, and
every edge on this path is cheaper than vw, then vw does
not belong to the MSF of G. Dixon, Rauch, and Tarjan [7]
have given a parallel algorithm to implement this check for
all edges of G in logarithmic time and linear work.

As in the main algorithm, we let m denote the number of
edges in the original input graph Go. Then at the beginning
of FINISHUP(G), the graph G certainly has at most m edges,
so the expected number of edges in the graph G’ is mp, which
is m/vk. Tt follows from the main lemma of [19] that the
expected number of edges in G after the deletions in Step 3
is at most n/p, where n is the number of vertices in G. As
we showed in Section 3, n < m/k, so the number of edges

in G after the deletions is at most m/V/%.

249

Now we give the recursive procedure Basic(@,i). We

assume that on entry the expected number of neutral edges
in G is O(m/log'*) m). This holds for the call Basic(G.3)
in Step 3 of FinisHUp. We show in the procedure that
consequently this invariant holds for recursive invocations
as well.

Step 0; Perform ©{log!") m) Borivka steps. The re-
sulting graph has expected O(m/(log""™!' m)?)
in-edge trees. If 1+ = 1 then the in-edges selected
comprise the MSF of G return in this case.

Step 1: Obtain G’ from G by randomly including
each edge independently with probability p =
1/log(’“1)m. The sample graph has expected
O(m/log!* ="' m) edges.

Step 2: Recursively call Basic(G',i—1) to designate
as in-edges all the remaining MSF edges of G'.

Step 3: Asin Step 2 of FINISHUP, use the MSF of G’
to determine which edges of G to delete. This
takes O(log m) time and expected O(m/ log['I m)
work. By the main lemma of [19], the ex-
pected number of remaining edges is the num-
ber of in-edge trees times 1/p. This product is
O(m/log*= m).

Step 4: Recursively call Basic(G, i — 1) to designate
as in-edges all the remaining MSF edges of G. of
G.

The work done by this procedure is linear in each invocation.
The time required is logarithmic. The number of recursive
invocations resulting from the top-level call Basic(G, 3} in
Step 3 of FINISHUP is seven. Thus the total time is loga-
rithmic and the work is linear.
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