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Finding missed cases of familial hypercholesterolemia in health

systems using machine learning
Juan M. Banda 1,2, Ashish Sarraju3, Fahim Abbasi3, Justin Parizo3, Mitchel Pariani3, Hannah Ison3, Elinor Briskin3, Hannah Wand 3,

Sebastien Dubois1, Kenneth Jung1, Seth A. Myers4, Daniel J. Rader5,6, Joseph B. Leader7, Michael F. Murray8, Kelly D. Myers4,6,

Katherine Wilemon6, Nigam H. Shah1 and Joshua W. Knowles3,6,9

Familial hypercholesterolemia (FH) is an underdiagnosed dominant genetic condition affecting approximately 0.4% of the

population and has up to a 20-fold increased risk of coronary artery disease if untreated. Simple screening strategies have false

positive rates greater than 95%. As part of the FH Foundation′s FIND FH initiative, we developed a classifier to identify potential FH

patients using electronic health record (EHR) data at Stanford Health Care. We trained a random forest classifier using data from

known patients (n= 197) and matched non-cases (n= 6590). Our classifier obtained a positive predictive value (PPV) of 0.88 and

sensitivity of 0.75 on a held-out test-set. We evaluated the accuracy of the classifier′s predictions by chart review of 100 patients at

risk of FH not included in the original dataset. The classifier correctly flagged 84% of patients at the highest probability threshold,

with decreasing performance as the threshold lowers. In external validation on 466 FH patients (236 with genetically proven FH)

and 5000 matched non-cases from the Geisinger Healthcare System our FH classifier achieved a PPV of 0.85. Our EHR-derived FH

classifier is effective in finding candidate patients for further FH screening. Such machine learning guided strategies can lead to

effective identification of the highest risk patients for enhanced management strategies.
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INTRODUCTION

Familial hypercholesterolemia (FH) is an autosomal dominant
condition with an estimated prevalence of approximately 1 in
250,1 making it the among the most common morbid monogenic
disorders. Lifelong elevation of low-density lipoprotein cholesterol
(LDL-C) in individuals with FH cause up to a 20-fold excess risk of
atherosclerotic cardiovascular disease (ASCVD) versus those with
normal LDL-C levels.2,3 Importantly, the risk of ASCVD can be
largely ameliorated through early identification and treatment
with lipid-lowering therapies.1,4–6 In addition, because FH is highly
penetrant, once an individual with FH is identified, cascade
screening of relatives has been shown to be highly cost-effective
in reducing excess morbidity in family members.2,6–8 The
importance of differentiating FH from other causes of high LDL-
C is reflected by guidelines from multiple national and interna-
tional organizations, with FH-specific recommendations covering
diagnosis, treatment and cascade screening.1,5,6

Despite the morbidity and mortality associated with FH and the
clear benefits of timely management, it is estimated that less than
10% of persons with FH in the US have been diagnosed,1 with the
identification of index FH cases (probands) as a major bottleneck.
Currently, guidelines recommend the application of diagnostic
criteria (e.g., Dutch Lipid Clinic Network (DLCN) or Simon-Broome)
in adults for which there is high clinical suspicion, which is usually
based on untreated LDL-C values >190mg/dl plus a positive
family history of early onset ASCVD.1,5,6 However, there are
significant limitations to this approach. For instance, this strategy

is non-specific: While high LDL-C is a cardinal feature of FH, less
than 5% of adults with an LDL-C > 190mg/dl will be found to
harbor a causal FH gene mutation.3 In addition, this strategy
largely relies on the availability of untreated LDL-C values and
adequate family history information, either/both of which are
often unavailable to the healthcare provider.
We sought to develop a classifier that could prioritize

individuals within a healthcare system to undergo further
evaluation for FH, thereby enhancing the efficiency of case
identification. Machine-learning algorithms can analyze large
datasets and determine combinations of variables that consis-
tently classify or predict a certain outcome.9 Such models have
been widely applied in non-medical fields10 with nascent but
promising use in medicine.11,12 Widespread adoption of EHRs has
led to large collections of patient-level data being available for the
development of such algorithms.
As part of the FH Foundation′s FIND (Flag, Identify, Network,

Deliver) FH initiative, here we report the development and internal
validation of a supervised machine-learning algorithm to identify
probable FH cases based on EHR data from Stanford Health Care
as well as the external validation on this classifier using EHR data
from the Geisinger Healthcare System. The performance of the
classifier, which achieves a PPV of >0.8 across two independent
datasets, and the resulting reduction in testing cost as well as
case-finding burden, suggests that application of this classifier
could lead to increased efficacy of targeting these high-risk
patients for enhanced evaluation and intervention.
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RESULTS

Study design

Our classifier was built using both structured and unstructured
EHR data from Stanford as described in the methods. We
confirmed clinical utility at the local site via manual chart review
of patients flagged by the classifier and validated at an
independent site (Geisinger) with genetically confirmed FH cases
(Fig. 1).
As described in the methods, we developed a random forest

classifier13 due to their resistance to overfitting, model interpret-
ability, and ranking of important features. To quantify the
performance of the classifier, we used common information
retrieval metrics,14 namely positive predictive value (or precision),
sensitivity (or true positive rate), specificity (true negative rate) and
F1 score (or F-Measure). Our classifier obtained a positive
predictive value (PPV) of 0.88 and sensitivity of 0.75 (Fig. 1a and
Table 1) on a held-out test-set. We also report the area under the
receiver operator curve (AUROC) and the area under the precision-
recall curve (AUPRC), which is more informative for low prevalence
outcomes.15 We included F1 score and AUPRC as part of our
evaluation metrics since the F1 score summarizes model

performance at a specific probability threshold, in contrast, the
AUPRC value summarize the performance of a model across all
possible thresholds. Thus, F1 and AUPRC provide complementary
information. In the supplementary materials, under Random
Forest Classifier Error Analysis, we provide the classifier error
analysis and AUROC and AUPRC plots for clarity.

Evaluation via chart review

The classifier outputs the probability of each patient being a case.
Given the use case of the classifier—which is to drive screening
and further evaluation of flagged patients—we selected 100
patient records held out from the training data from multiple bins
of the classifier output ranging from probability 0.99–0.90,
0.89–0.80, 0.79–0.70, and 0.69–0.60 (Fig. 1b). We reviewed more
charts from the high probability cases, and fewer of those that
have a low chance of being a case to get the greatest granularity
on the predictions in the probability group that is most likely to be
put into practice.
Of the 56 predictions with a probability score of 0.99-0.90, 39

have a DLCN score of 3–5 (“possible” FH) and 5 of these would
meet MEDPED criteria, 7 have a DLCN score of 6–8 (“probable” FH)
and 3 of these would meet MEDPED criteria and 1 has a DLCN
score > 8 (“definite” FH). In other words, 47/56 have a DLCN score
of >=3 or are MEDPED positive (84%). In contrast: only 9/56 have a
DLCN score of 1 or 2 (unlikely)(16%). As expected, the rate of likely
cases diminishes in lower probability bins especially in those with
a probability score < 0.7 (graphically represented in Fig. 2 and
Supplementary Table 6).

External validation

We validated our classifier and its ability to detect FH patients by
evaluating it on an independent dataset from Geisinger (Fig. 1c).
This evaluation is performed by providing a set of 71 cases and
4970 controls to the Stanford classifier, ten times. We sample the
71 cases from the full set of 466 cases provided by Geisinger (see
dataset details in Methods). Directly classifying the Geisinger
dataset with its native 466:5000 case to non-case ratio would lead
to overly optimistic estimates of performance.
Table 1 shows classifier performance in terms of the PPV,

specificity, and sensitivity as well as the AUROC, AUPRC, and
F1 score. As expected, there is a slight drop in PPV, AUROC, and

Fig. 1 Classifier building followed by internal and external evaluation as well as evaluation via chart review for EHR-based FH case
identification

Table 1. Classifier performance at internal and external sites

Internal evaluation
(Stanford)

External evaluation
(Geisinger)

AUROC 0.94 0.94 (0.003)

AUPRC 0.71 0.68 (0.054)

PPV 0.88 0.85 (0.002)

Sensitivity 0.75 0.68 (0.002)

Specificity 0.99 0.99 (0.001)

F1 Score 0.81 0.75 (0.004)

For the internal evaluation, the table reports performance metrics on a

held-out test-set. For the external evaluation, the table reports the average

performance over 10 iterations of classifying randomly sampled 71 cases

and 4970 non-cases at 1:70 prevalence, which mirrors expected prevalence

in a lipid clinic. The numbers in the in parentheses are standard deviations

for each metric
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AUPRC, given the different operational practices between institu-
tions (coding, labs, clinical narratives). Limiting the analysis to just
the genetically confirmed cases has an F1 score of 0.82. The results
show that the classifier trained with Stanford data has good
external validity in identifying FH patients at a different institution.
For completeness, we also built a classifier using Geisinger data

(which had 0.88 PPV, 0.74 sensitivity, and 0.99 specificity) and
tested its ability to classify Stanford patients. This classifier
achieved a PPV of 0.83, sensitivity of 0.66 and specificity of 0.99.
Table 2 showcases the top 20 features used by the random

forest to assign a probability score to each patient for having FH.
These features are a vital part of the interpretability aspect of the
random forest models as they can be traced for every patient
assigned by the algorithm. The classifier uses a combination of
laboratory tests, text mentions, diagnosis codes and prescriptions
as the top features with many of them being related to cholesterol

levels and hyperlipidemia diagnosis. The list includes text
mentions about the disease (Lipid, Triglycerides) and possible
lifestyle adjustments (Red Meat), demonstrating the importance of
using statistical models on all the patient data available. One thing
to note is that all the laboratory tests selected as informative
features correspond to the high and very high bins created during
feature engineering, which capture the higher than usual total
cholesterol and LDL-C measurements.

DISCUSSION

The role of risk-stratification models and predictive algorithms to
identify “high-risk” patients is well-established in clinical medicine.
The 2013 American College of Cardiology/American Heart
Association Omnibus calculator to identify non-FH patients who
would benefit from statin initiation for primary prevention of

Fig. 2 Distribution of FH cases according to probability assigned by the random forest classifier as arbitrated by independent chart review at
Stanford

Table 2. Top 20 features in the classifier that flag patients with FH

# Feature_ID Source Feature explanation, and source

1 text:40094263 Unstructured Mention of LDL cholesterol in doctors′ notes

2 lab:3027114:BIN5 Structured Very high, Cholesterol value in Serum or Plasma. (note: the ranges for
very low, low, in-range, high, very high are learned during model training)

3 text:457658075 Unstructured Mention of a visit to a Cardiology clinic

4 cond:448359416 Structured A diagnosis code of Paroxysmal supraventricular tachycardia

5 drugEx:15459583 Structured A prescription of atorvastatin

6 lab:3028288:BIN4 Structured High, calculated LDL cholesterol in Serum or Plasma

7 drugEx:15264753 Structured A prescription of ezetimibe

8 text:40372345 Unstructured Mention of ‘Red meat′ (indicative of diet conversations)

9 lab:3028288:BIN5 Structured Very High, calculated LDL cholesterol in Serum or Plasma

10 lab:3009966:BIN4 Structured High, LDL cholesterol in Serum or Plasma by Direct assay

11 text:42897633 Unstructured Mention of ‘Lipid′ in doctors notes

12 lab:3025839:BIN5 Structured Very High, Triglycerides in Serum or Plasma

13 text:45957223 Unstructured A mention of ‘Triglycerides’

14 drugEx:15108133 Structured A prescription of rosuvastatin

15 cond:448369299 Structured Mixed hyperlipidemia

16 cond:448276299 Structured Other and unspecified hyperlipidemia

17 drugEx:13070462 Structured A prescription of Metoprolol

18 text:457636305 Unstructured A mention of Rosuvastatin

19 lab:3027114:BIN4 Structured High, Cholesterol value in Serum or Plasma

20 text:4230588 Unstructured A mention of ‘Cytologic’
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ASCVD stands as a key example of a risk-stratification algorithm
used in common practice.16

The advent of machine learning approaches presents an
opportunity to leverage EHR data to develop risk-stratification
and predictive models at scale.17 Notably, the ability of machine-
learning algorithms to be trained on both structured and
unstructured EHR data—such as free text—allows the use of
variables that may not be considered in traditional settings.
Machine-learning derived predictive models may be particularly
suited to address care gaps for treatable conditions that have
traditionally been underdiagnosed.
It is estimated that only ~10% of patients with FH are diagnosed in

the United States.7 After an index case with FH is identified, cascade
screening is highly effective in identifying affected family members.
An initial diagnosis of FH generally involves the use of the MEDPED
criteria, the UK Simon-Broome register criteria, and the DLCN criteria.
These clinical criteria require manual imputation of certain variables:
patient history including ASCVD events and pretreatment lipid levels,
physical examination findings such as tendon xanthomas and arcus
cornealis, family history details including LDL-C values of first-degree
relatives, and results of patient genetic testing. The utility of these
criteria is unclear given the real-world challenges in obtaining
detailed family histories, low prevalence of variables such as physical
exam findings like tendon xanthomas or elevated lipid levels and
ASCVD events in relatives.18–21

Therefore, there is a strong need to develop better approaches
to screen for FH. Given the widespread use of EHRs, a machine-
learning based approach could increase the rate of index FH case
identification at low cost. Indeed, among the patients flagged by
our random forest classifier for whom chart review confirmed a
likely diagnosis of FH, only 3 had been clinically diagnosed with
FH. The formal diagnosis of FH should lead to a greater focus on
effective management and more intensive therapy for LDL-C
reduction. Although it is not required for diagnosis, genetic testing
is a useful component of making a diagnosis of FH.22 Given the
low prevalence of the condition, routine universal genetic testing
of everyone with a high LDL-C is low yield and inefficient.
However, knowledge of genetically defined subgroups within
cohorts of clinically diagnosed FH cases is expected to ultimately
drive differential management strategies, and thereby increase the
value of genetic testing in this condition.
Recently, Safarova et al.23 described developing an automated

process to score patients using the DLCN Criteria using both
structured and unstructured EHR data. This process uses textual
reports to determine the family history of having a first-degree
relative with hypercholesterolemia or premature ASCVD, and to
determine the presence of characteristics such as tendon
xanthomas and corneal arcus. The quality of the text extraction
is validated by reviewing 20 randomly selected charts to have
sensitivity and specificity of 97 and 94%, with positive and
negative predictive values at 94 and 97%, respectively. Subse-
quently, the natural language processing (NLP) extracted variables
and other structured data elements are used to computationally
“apply” the modified DLCN criteria to obtain a score.
Our effort has a fundamentally different approach. We learn a

classifier that directly discriminates FH cases from non-cases
without computing DLCN criteria as an intermediate. Of the cases
our classifier flags, we evaluated them to be true or false based on
several criteria, including genetic testing at an independent site.
Our random forest classifier demonstrated good positive pre-
dictive value and sensitivity upon application to an unseen
internal test dataset (ppv 0.88, sensitivity 0.75) and an external
Geisinger EHR dataset (ppv 0.85, sensitivity 0.67) including those
with genetically confirmed FH. These findings point to the external
validity and overall potential utility of our EHR-based classifier to
screen for patients with a high probability of FH. In a similar vein,
Bastarache et al.24 have shown that it is possible to build
phenotype risk score for identification of patients with

underrecognized Mendelian disease patterns (though not for
FH) by leveraging EHR data.
It is also natural to ask why not use “deep learning”. Given the

small data size at hand and the chance for a deep neural network
to overfit, coupled with the desire to have an interpretable model
that would generalize across multiple sites, we used a simpler
modeling approach.25,26

In summary, the use of a classifier to detect putative cases of FH
from the EHR allows the identification of patients who have a
substantial probability of having the condition. Clinicians can then
perform targeted evaluation to confirm index FH cases, place
referrals to appropriate subspecialty clinics for additional evalua-
tion for FH, and eventually initiate therapy and cascade screening.
Additionally, developing machine-learning algorithms may allow
the identification of novel predictive variables. For instance, the
top 20 predictive concepts in our random forest classifier include
variables not used in the traditional FH clinical criteria, such as the
diagnosis codes for paroxysmal supraventricular tachycardia and
triglyceride levels (Table 2).
Our work has certain limitations. For the Stanford test dataset, we

used an (estimated) FH prevalence of 1:70 in the test-set, if the real-
life prevalence of FH cases in a lipid clinic is drastically different the
classifier performance will differ. Measuring downstream outcomes
such as the overall rates of FH diagnosis, cascade screening, ASCVD
events or survival would require longitudinal observation after
implementation of this algorithm and was not addressed in this
study. While we have demonstrated that this classifier ported well to
data from another health system, it is possible that we might see a
performance increases if we used the data from both sites in order
to train our classifier. We did not train using pooled data because
doing so would not allow the assessment of external validity of the
classifier. Finally, our sample of positive FH patients is relatively small
(n= 197 at Stanford); and as with most machine learning
approaches, having more training data would probably build a
better classifier. We anticipate continuously refining our classifier as
newly diagnosed cases accrue.
The ultimate utility of any screening test must be considered in

the context of its cost-effectiveness. While we report multiple
metrics of performance. In the current use case, due to the expense
of manual chart review and follow on genetic testing, we aim for
better PPV because it quantifies the frequency with which
predictions are relevant or ‘worth following up′. If the cost of the
follow-up action (chart review, and genetic testing) become
negligible in the future, it would make sense to aim for higher
recall at the expense of a lower PPV. For example, if FH occurs at a
probability of 1 in 70 in a cardiology clinic with costs of $1000 to do
genetic counseling and testing, and 15min to apply the screening
criteria, for each case found we would need to spend roughly
$70,000 in genetic testing and 1050min of clinician time. However,
after applying EHR-based screening, the chance that an individual
flagged by our algorithm has FH is 8 out of 10. As a result of this
massive chance in post-test prevalence, the cost to find one new
case drops to $1429 in genetic counseling and testing, and 21.4min
of clinician time. Therefore, compared to the implementation of
universal genetic testing or clinical criteria-based screening, the
economics of EHR-based detection of FH through machine-learning
are extremely favorable and can massively improve the ability of a
health system to find patients at risk. We believe the use of
supervised learning to build a classifier that finds undiagnosed cases
of FH is a compelling example of machine learning that matters.27

As a next step, we are working on deploying the model in a clinical
setting, at Stanford Healthcare and at additional sites in partnership
with the FH Foundation.
In conclusion, we have demonstrated that a supervised

machine learning approach to building a classifier for finding
patients that might have FH using EHR data is feasible with a
positive predictive value of 0.88, sensitivity of 0.75 and specificity
of 0.99. We validated our classifier by classifying 35,562 patients
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and reviewing predictions across a range of probability scores via
chart review, and by applying established criteria, such as DLCN
and MEDPED criteria, to determine the likelihood of the patients
flagged by our classifier to have FH. We used unseen FH and non-
FH patient data from the Geisinger Healthcare System to
demonstrate external validity of the classifier. Compared to
universal genetic testing or clinical criteria-based screening of all
comers, the use of EHR-based detection of FH through machine-
learning can massively improve the ability of a health system to
find patients at risk of FH. Such case finding is particularly relevant
because once a case is found, proven efficacious interventions
already exist that can prevent catastrophic cardiovascular events;
furthermore, that case can be used to ‘cascade′ to find multiple
other cases within an extended family. Applied broadly, using our
classifier to screen using EHRs could identify many thousands of
the undiagnosed patients with FH and lead to more effective
therapy and screening of their families.

METHODS

Study design

Our classifier was built using both structured (e.g., labs, procedures,
diagnostic codes) and unstructured (e.g., text from clinical notes and
radiology reports) EHR data from Stanford and validated with data from an
independent site (Geisinger) including a subset of genetically confirmed
cases (Fig. 1). We perform our work using data in the OMOP common data
model (OMOP-CDM). The building of the classifier is shown in Fig. 3.

A common data model and community tools

The Observational Health Data Sciences and Informatics (OHDSI) is a world-
wide collaborative which features over 140 collaborators in 16 countries

comprised of healthcare industry leaders, clinical researchers, computer

scientists, and biostatisticians. OHDSI′s vision is to improve health by

empowering a community to collaboratively generate evidence that

promotes better health decisions and better care.28 The community has

developed both a common data model (CDM), as well as a standard

vocabulary for consistent representation of EHR data across sites. The CDM

is comprised of 39 standardized tables that have gone through a

refinement process over 5 iterations initially through the OMOP initiative.29

Approximately 84 sites have converted their local data into the common

OHDSI CDM including both clinical and claims, totaling over 600 million

patients. APHRODITE30 is an open source software package for building

phenotype models using data in the OMOP CDM.

Dataset, Stanford Health Care

This dataset integrates patient data from Stanford Children′s Health (SCH)

and Stanford Health Care (SHC) hospitals (Fig. 3). We used data from 3.1

million patients, which includes 70 million clinical notes including

pathology, radiology and transcription reports, over 90 million coded

diagnoses and procedures, 269 million laboratory tests and 59.3 million

medication orders. From the clinical notes, we extracted over 7.8 billion

clinical terms using a custom text processing workflow which recognizes

present, non-negated mentions of terms from 22 clinically relevant

ontologies (SNOMED, Human Disease Ontology, MedDRA among others).

Each term is mapped to an UMLS CUIs while making sure that negative

term mentions are flagged using NegEx regular expressions.31 More details

about the text processing pipeline used can be found in ref. 32 The data

are mapped to the OHDSI CDM version 5.0 using vocabulary v5.0 11-MAR-

16. Newer versions might change the CDM structure, but the updates

are backwards compatible. In addition, the Aphrodite package will be

updated with CDM releases to make older phenotype models backwards

compatible.

Fig. 3 Learning and testing setup for the Stanford FH classifier. * One comorbidity from the following: hypertension, coronary atherosclerosis
(CAD), dyslipidemia, myocardial infarction; and had no history of nephrotic syndrome, or obstructive (cholestatic) liver disease
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Classifier building

We used the APHRODITE, and other R packages designed by the OHDSI
community, to extract all patient data, build patient feature matrices, and
train machine learning models from the data. As features, we used the
count of times a code, lab, drug prescription was found on the patient′s
record. We normalized features by length of patient follow-up in years,
removed features found in less than 10% patients, and excluded text
mentions that are not medical terms. Finally, we binned the lab values for a
given lab test in five discrete bins (very low, low, in-range, high, very high),
which allowed us to handle extreme lab values that are characteristic of
patients with potential FH. The bins are determined by acquiring the
minimum and maximum values for each specific lab and then splitting the
range in five equal bins.
To build our classifier, we used 197 known FH patients from Stanford

(Figs. 1a and 3). The demographics tables for these cohorts are found in
the Supplementary Appendix section (Supplementary Table 1). The FH
patients were followed at an FH-specific clinic and had been diagnosed as
probable or definite FH using existing diagnostic criteria including genetic
testing information when available.5,33–36 The application of these criteria
is done manually and takes upwards of 15–20min of clinician time. Among
these patients, the average pretreatment LDL-C was 258mg/dl. Sixty-six
were known to have a causal genetic variant in LDLR or APOB, 26 had
undergone genetic testing that did not identify a causal mutation and 105
had not undergone genetic testing. There were no patients that were
found to have causal PCSK9 variants. This is not unexpected as <1% of FH
patients harbor causal mutations in PCSK9.
To ensure relevance of our classifier for use on patients at a higher risk

for ASCVD for discerning between FH cases and similar non-FH cases “in
the wild”,37,38 and to ensure that trivial classification (e.g., healthy 25-year
olds classified as non-FH) does not produce optimistic results, we limited
our non-cases (“controls”) to patients that: (1) had more than one visit at
Stanford; (2) had at least one visit within the last 2 years; (3) had one
comorbidity from the following: hypertension, coronary atherosclerosis
(CAD), dyslipidemia, myocardial infarction. We also excluded patients with
nephrotic syndrome, or obstructive (cholestatic) liver disease because both
result in extremely elevated LDL-cholesterol levels for entirely different
reasons and do not convey the same risk of coronary artery disease. Before
training the classifier, we matched cases and controls by age, gender, and
length of record, in order to avoid trivial classification. On applying these
criteria, we had 35,562 patients as potential controls (Figs. 1a, b and 3).
Because the choices about disease prevalence affect classifier perfor-

mance, it is important to develop the classifier for the specific scenario in
which the classifier would be applied. While the population prevalence of
FH is approximately 1 in 250 individuals, it is known to be more twice or
three times as common in certain clinical settings such as in patients at
high-risk of ASCVD or with hypercholesterolemia. In our case, we believe
that this classifier would be most useful in flagging individuals within the
healthcare system with an enhanced risk of ASCVD, we set a prevalence of
1:70 for evaluation, which is a reasonable estimate given the known
prevalence of FH in individuals with hypercholesterolemia or increased risk
of ASCVD (Supplementary Table 1).3

However, 1:70 is still a severe class imbalance for training a good
classifier. Therefore, when training, we use a 1:30 prevalence, essentially
upsampling the rare class (i.e., the positive cases) and downsampling the
common class. Such upsampling (or downsampling) is a commonly used
technique in machine learning with severe class imbalance.39 When
evaluating the performance of the classifier, we use the 1:70 prevalence
which is closest to the environment in which the classifier will be used.
From the total cases (n= 197) and controls (n= 35,562), we down-

sampled the non-FH patients when training the classifier. We split the
positive cases into test (n= 17) and training (n= 180) sets. From the
potential controls (non-cases), we selected 5,400 random controls in the
training set (setting 1:30 prevalence for the positive class) and selected
1190 for the test-set (setting a 1:70 prevalence for the positive class)
(Fig. 2). We trained the classifier using 10-fold cross-validation, on the 1:30
prevalence training set, for parameter tuning. The best performing
classifier from this process was tested on the unseen 17 cases and 1190
controls with 1:70 prevalence. We repeated the entire process 10 times
(choosing different splits of the train/test sets). We selected the best
performing classifier from these ten runs for evaluation by chart review
and for external validation.
In previous work,40 we built and compared a logistic regression classifier

with the random forest classifier. The overall performance was lower than
the random forest, and in the current work, we only use the random forest
classifier.

Evaluation via chart review

As shown in Fig. 1b, we applied the random forest classifier to held out

patients from Stanford to flag potential FH cases, and evaluated the

predictions with manual chart review. We randomly sampled 100 cases

from those flagged by the classifier at different probability cutoffs. Our

sample contained 56 patients with a probability of being an FH case

between 0.99 and 0.90, 18 patients between 0.89 and 0.80, 16 between

0.79 and 0.70, and the remaining 10 from the probability ranges between

0.69 and 0.60 to perform a systematic chart review to assess the

predictions at different thresholds. Patients were then scored using

the DLCN or MEDPED criteria1,5 to determine the relationship between the

machine-learning algorithm and these widely used clinical criteria, which

are currently used to help inform choices about referral and clinical care.

When evaluating the identified patients via chart review, individuals were

judged to have FH if they met either DLCN or MEDPED criteria.
The DLCN criteria assigns points for based on clinical findings (e.g., LDL-

cholesterol levels, history of coronary artery disease, physical exam), family

history and genetic testing results (if known). Based on the score,

individuals are categorized as definite, probable, possible or unlikely FH.

Those with higher scores are more likely to have a causal mutation

identified on genetic testing. The MEDPED criteria are based on age-

adjusted cholesterol levels and factor into account family pedigree

information (if known) with cutoffs designed to identify individuals who

would have a causal mutation found on genetic testing.33

External validation in the Geisinger Healthcare System

The validation dataset contains a subset of the Geisinger data warehouse

containing a total of 33,086 patients, with 3 million clinical notes, 32 million

laboratory tests, 27 million medication orders. Geisinger investigators

provided full NLP extraction of clinical terms using their internal text

processing workflow for 5466 patients. The Geisinger data were mapped to

the OHDSI CDM version 5.0 using vocabulary v5.0 11-MAR-16. The data

contain 466 FH cases that have been diagnosed using the DLCN criteria,2

of which 236 FH cases were confirmed by genetic testing.
For external validation, we applied our Stanford classifier to unseen data

from Geisinger. Note that directly classifying the external dataset with its

native 466:5000 case to non-case ratio would lead to overly optimistic

estimates of PPV. Therefore, we used a subset (n= 71) of the 466 Geisinger

FH cases and controls (n= 4970) in a 1:70 ratio, to assess the ability of the

classifier trained at Stanford to discriminate true cases from non-cases. We

present the average results of the ten evaluation runs along with the

standard deviation of the different metrics.
For all patient data, we have complied with all relevant ethical

regulations and the study was approved by Stanford University′s

institutional review board with waiver of informed patient consent. The

model building was performed with de-identified data and only the

members of the chart review team were provided with access to medical

records. The study only made secondary use of already collected data. No

patient direct interaction was performed as part of this study.
In the Supplementary materials, we provide Supplementary Tables 2, 3

and 4, which include demographics details for our datasets.

Reporting Summary

Further information on experimental design is available in the Nature

Research Reporting Summary linked to this article.
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