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Abstract 
The problem of efficiently finding images that are similar to a 

target image has attracted much attention in the image 

processing community and is rightly considered an 

information retrieval task. However, the problem of finding 

structure and regularities in large image datasets is an area in 

which data mining is beginning to make fundamental 

contributions. In this work, we consider the new problem of 

discovering shape motifs, which are approximately repeated 

shapes within (or between) image collections. As we shall 

show, shape motifs can have applications in tasks as diverse 

as anthropology, law enforcement, and historical manuscript 

mining. Brute force discovery of shape motifs could be 

untenably slow, especially as many domains may require an 

expensive rotation invariant distance measure. We introduce 

an algorithm that is two to three orders of magnitude faster 

than brute force search, and demonstrate the utility of our 

approach with several real world datasets from diverse 

domains.  
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1. Introduction 
The classic information retrieval task of efficiently 

locating images that are similar to a target image (i.e. 

query-by-content) has attracted much attention in the 

image processing community in the last decade 

[1][20][41]. However, the problem of finding structure and 

regularities in large image datasets is an area in which data 

mining is only just beginning to make contributions [30]. 

In this work, we consider a new image mining problem, 

the task of discovering approximately repeated shapes 

within an image/shape database. We call such repeated 

shapes image motifs. 

To enhance the reader’s intuition of image motifs, we 

begin with a simple concrete motivating example. Figure 1 

shows a subset of a collection of petroglyphs. 

 

Figure 1: Five abstract petroglyphs from southwestern United 

States (the images have been filtered to enhance contrast) 

Petroglyphs are images that are carved or abraded into 

stone. The outer patina covered surface of the parent rock 

is removed to expose the usually lighter stone underneath. 

It has been estimated that there may be several million 

petroglyphs in North America alone [31][38]. These 

artifacts are a potential goldmine for anthropologists 

studying the spatiotemporal spread of cultures and 

peoples. While there has been an increasing effort to 

digitally document this valuable cultural resource, the 

sheer volume of data involved is a bottleneck to 

researchers. An important first step in exploring these 

massive image collections is to find repeated images or 

“motifs”. Some petroglyphs motifs, such as images of 

bighorn sheep, are well known. However much less is 

known about the bewildering assortment of abstract 

images that abound. We have built a tool (explained in 

detail below) to allow rapid discovery of potential motifs 

in any collection of images. We applied this tool to a 

collection of 1,800 petroglyphs images, which includes the 

five images in Figure 1. The most promising motif is 

shown in Figure 2. 

 

Figure 2:  Two of the petroglyphs shown in Figure 1. To 

make the similarities of the two shapes clear, one is rotated 

and both shapes are mapped to one-dimensional 

representations. Top) From 15 miles west of Blythe, 

California. Bottom) From Cinder Cone Volcanic field, 

located 15 miles east of Baker, California 

Remarkably, the dataset contains two examples of a shape 

consisting of three overlapping rings. While none of the 

anthropologists we showed this finding to could explain 

this (several tentatively suggested astronomical 
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significance
1
), they considered the finding interesting and 

novel. 

While this simple example introduces and motivates the 

idea of image motifs, it also hints at the difficultly in 

finding them. The naïve brute force algorithm to find the 

closest matching pairs requires an all-to-all comparison of 

everything in the database. Furthermore, if, as in this case, 

we need to discover motifs with invariance to rotation, 

each comparison will require an expensive calculation, 

because most rotation invariant distance measures are 

quadratic. Many researchers have already noted (in the 

context of query-by-content) “rotation is always 

something hard to handle compared with translation and 

scaling” [24]. 

Most attempts to handle the rotation alignment problem 

work by aligning all the shapes to some cardinal 

orientation, typically the major axis. This approach may be 

useful for the limited domains in which there is a well-

defined major axis, perhaps the indexing of long bones. 

However there is increasing recognition that the “…major 

axis is sensitive to noise and unreliable” [41]. For example 

a recent paper shows that under some circumstances, a 

single extra pixel can change the rotation by ± 90 degrees 

[43]. 

In this work, we introduce a linear time, rotation invariant 

algorithm to discover image motifs. While our algorithm is 

approximate, we will show with comprehensive 

experiments that it can find motifs with very high 

precision. Our approach works for most popular shape 

representations, for example, one-dimensional transforms 

of the original two-dimensional representations 

[1][3][5][12][32][41]. We will demonstrate the utility of 

image motifs in tasks as diverse as anthropology, crime 

prevention, and historical manuscript mining. 

The rest of paper is organized as follows. In Section 2, we 

review related work and discuss some background 

material. In Section 3 and Section 4, we first give a 

generic framework for image motif discovery, and then 

introduce our techniques to speed up the search. Section 5 

sees an extensive empirical evaluation. Finally Section 6 

offers some conclusions and suggestions for future work.  

2. Background and Related Work 

2.1 Notation 
Recall that in Figure 2 we emphasized the similarity 

between two shapes by comparing their one-dimensional 

representations. This is more than a visualization trick; this 

representation is at the heart of our approach. We first 

convert images into pseudo “time series” by measuring the 

distance from the centroid to all points on the shape 

boundary. Figure 3 offers a visual explanation. 

                                                                 

1 This is not as implausible as it first seems; just before this paper was 

submitted, astronomer John Barentine presented strong evidence 

that a petroglyph in Arizona records a supernova that occurred in 

1006 AD. 

 

Figure 3:  A visual explanation of how to convert a two-

dimensional shape to a one-dimensional pseudo “time series” 

Note that this 1-D representation of shape is only one of 

many proposed in the literature, however it does have the 

advantage of being simple and completely parameter free. 

Note that each 1-D representation is Z-normalized, 

removing the effects of scale or offset within the image 

(rotation invariance is considered below). At first glance, it 

may appear that this representation is too simple to really 

capture the true essence of a shape. However, a recent 

paper [20] compared this representation to state-of-the-art 

“sophisticated” representations on six diverse 

classification problems and found that it is at least as 

accurate, in spite (or perhaps, because) of its simplicity. 

For brevity and simplicity we will refer to “time series” 

from now on, however the reader is aware that this 

representation can always be mapped back to the original 

shape. For concreteness, we begin with the definition of 

time series. 

Definition 1. Time Series: A time series T = (t1,t2,…,tn) 

is an ordered set of n real-valued variables. In our case 

the ordering is not temporal but spatial; it is defined by a 

clockwise sweep of the shape boundary.  

Recall that we want to find approximately repeated images 

in an image database, which we formally define as image 

matches.  

Definition 2. Image Match: Given two image time 

series T1, T2, and a threshold ξ > 0, if D(T1 , T2) < ξ, then 

T1 is a match of T2. 

Note that the distance between T1 and T2 can be measured 

by any of the common distance measures for time series, 

including Euclidean distance, Longest Common 

Subsequence, Dynamic Time Warping, etc. We will 

specify the distance function D() in Section 4. 

In some domains we may wish to exclude the possibility 

of certain items being matched together. For example, as 

illustrated in Figure 4, adjacent image frames in a video 

clip are usually very similar and are not interesting to us. 

We call such matches trivial matches. 

Definition 3. Image Trivial Match: Given two adjacent 

image frames Ti, Ti+1, and a threshold ε > 0 (ε < ξ), if 

D(Ti , Ti+1) < ε, Ti trivial matches with Ti+1. 
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Figure 4: An illustration of a trivial match. The similarity 

between shapes A and C is interesting, because it suggests 

that the actor returned to a particular pose after a few 

minutes. In contrast, the similarity between shapes A and B is 

simply a result of the fact that they are adjacent frames 

We are finally in a position to formally define motifs 

within an image dataset.   

Definition 4. Inner-class K-Motifs: Given an image 

dataset Ω = {Ti}, i = 1 … N,  and a threshold ξ, the most 

significant image motif in Ω (called 1
st
-Motif) is the 

image Tj that has the highest count of non-trivial 

matches. The K
th 

most significant motif in Ω (called 

thereafter K
th
-Motif) is the image Tk with the k

th
 highest 

count of non-trivial matches.  

There is a simple generalization of this definition that can 

be very useful in some domains. Given two image datasets 

we may be interested in discovering if there are any shapes 

that occur in both datasets. Such an operation resembles a 

join over two image databases. Concrete examples of how 

this might be useful include: 

• Anthropology: Given a set of petroglyphs (or 

arrowheads) from two regions or time periods, we 

may wish to find all examples that occur in both 

datasets. Such images may hint at cultural transfer 

[14] (cf. Figure 5). 

• Palaeography (Study of old texts): Given a collection 

of shapes from an old manuscript and a set of modern 

images from the same domain, link all matching 

images. This linking can help annotate and give 

context to the older document (cf. Figure 11 and 

Figure 12). 

• Zoology: Given a collection of shapes from two 

distinct taxonomic groups (i.e. Class, Order, Family, 

Genus etc), link all matching shapes. This linking 

may help identify organisms that look similar because 

of convergent evolution or mimicry (cf. Figure 10). 

• Law Enforcement: Graffiti, which may be seen as an 

unwelcome successor to the petroglyphs discussed 

above, is the major source of intelligent for many law 

enforcement agencies [21]. An occurrence of a “tag” 

repeated in two distant locations may signal an 

attempt by a gang to take over a new territory [13].  

We formalize these ideas with the definition of inter-class 

motifs.  

Definition 5. Inter-class K-Motifs: Given two image 

datasets Ω = {Ti}, Ψ = {Tj}, and a threshold ξ, the most 

significant image motif (called 1
st
-Motif) is the image 

pair (Tp,Tq), Tp ∈ Ω, Tq ∈ Ψ, which is the image match 

between these two image datasets with the shortest 

distance D(Tp, Tq). The K
th 

most significant motif (called 

thereafter K
th
-Motif) is the image pair (Ti,Tj), Ti ∈ Ω, Tj ∈ 

Ψ, having the k
th 

shortest distance in all image matches. 

2.2 Related Work 
To the best of our knowledge, the discovery of image 

motifs is a new problem. However, in order to frame our 

contribution in its proper context, we will briefly consider 

related work and discuss their differences to our work.  

It is important to recognize that image motif discovery is 

very different to the superficially similar sounding 

replicate image [7] or near-duplicate image detection [16] 

problems. In these research efforts, the problem is to 

detect copied images that are slightly altered by some 

transformations, e.g., changing exposure, contrast, color, 

saturation, cropping, or scaling. The typical application is 

detection of copyright violation or forged images 

[4][11][42].  

These works usually first extract signatures invariant to 

transformation from images, then find replicates by 

comparing signatures. This body of work does not offer a 

solution to the task at hand, as we are interested in image 

motifs which ignore color and texture information, and 

consider only shape. For example in Figure 5, we are 

interested in automatically annotating centuries old 

documents [9] and finding evidence of cultural transfer 

between two locations. In both cases only shapes contain 

relevant information, colors and textures are not only 

irrelevant, but positively misleading. 

 

Figure 5: A visual explanation of why existing “near 

duplicate image detection” algorithms cannot be used for the 

task at hand. A) An 1839 lithograph by Cuvier of a 

flamingo’s skull [9]. B) A 2006 X-ray CT scan of a 

flamingo’s skull (lateral slice). C) A collection of arrowheads 

found in Texas. D) An anthropologist’s field sketch of some 

arrowheads in southwestern United States  

Image motif discovery must be robust to many distortions, 

especially rotation, which is generally agreed to be 

difficult to handle.  A large number of papers achieve fast 

rotation invariant matching by extracting only rotation 

invariant features and indexing them with a feature vector 

[5]. This feature vector is often called the shapes 

“signature”. There are literally dozens of rotation invariant 

features, including ratio of perimeter to area, fractal 

measures, elongatedness, circularity, min/max/mean 

curvature, entropy, perimeter of convex hull etc. In 

addition, many researchers have attempted to frame the 

shape-matching problem as a more familiar histogram-

matching problem. For example in [29] the authors built a 
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histogram containing the distances between two randomly 

chosen points on the perimeter of the shapes in question. 

The approach seems to be attractive, for example it can 

trivially also handle 3D shapes. However it suffers from 

extremely poor precision. For example, it cannot 

differentiate between the shapes of the lowercase letters 

“d” and “b”, or “p” and “q”, since these pairs of shapes 

have identical histograms. In general, all these methods 

suffer from very poor discrimination ability [5]. Our 

experience with these methods suggests that they can be 

useful for making quick coarse discriminations, for 

example differentiating between skulls and arrowheads. 

However they could not make the fine distinctions to 

meaningfully match similar shapes of one class, for 

example arrowheads.   

There are a handful of papers that recognize that the above 

attempts at approximating rotation invariance are 

unsatisfactory for most domains/applications, and they 

achieve true rotation invariance by exhaustive brute force 

search, testing all possible rotations. This robustness 

comes at the expense of computational efficiency 

[1][2][3][12]. For example, paper [1] also matches shapes 

in the time series domain. While they note that most 

invariances are trivial to handle in this representation, they 

state “rotation invariance can (only) be obtained by 

checking all possible circular shifts for the optimal 

diagonal path.” Similarly paper [37] notes “in order to 

find the best matching result, we have to shift one curve n 

times, where n is the number of possible start points.”. Our 

application potentially suffers even more from the high 

computational complexity of true rotation invariant 

matching, because brute force motif discovery would 

require O(|Ω|
2
) calls to the expensive rotation invariant 

comparison. As we shall see, our image motif discovery 

does use this brute force rotation alignment, but we are 

able to achieve enormous speedup by avoiding a large 

fraction of the expensive comparisons.  

3. A Review of SAX 
To avoid the high computational cost, our solution uses the 

idea of hashing to quickly locate potential motifs. 

However raw time series cannot be meaningfully hashed, 

because it is real-valued and high dimensional data. Thus 

the first step of our approach is to convert time series to 

symbolic representations. While there are at least 200 

different symbolic representations of time series in the 

literature, the SAX (Symbolic Aggregate approXimation) 

representation is unique in that it supports both 

dimensionality reduction and lower bounding for 

Euclidean distance. In recent years, SAX has been widely 

used in anomaly detection [19], visualization [23][26], 

time series repeated pattern discovery [8][34], feature 

extraction [22], and many other data mining applications. 

In this section, we will briefly review the SAX 

representation, which is at the heart of our solution to the 

image motif discovery problem. 

3.1 SAX Notation  
A time series T of length n can be represented in a w-

dimensional space by a vector 
wttT ,...,1= . The i

th 
element 

of T is calculated by the following equation: 

∑
+−=

=
i

w

n

i
w

n
j

ji t
n

w
t

1)1(

   (1) 

In other words, the time series is divided into w equal 

sized segments and the dimensionality of time series is 

decreased from n to w. The mean value of each segment is 

calculated and a vector of these values becomes the 

dimensionality-reduced representation. This simple 

representation, known as Piecewise Aggregate 

Approximation (PAA) [17], has been shown to rival more 

sophisticated dimensionality reduction techniques like 

Fourier transforms and wavelets [6] for the task of 

indexing and compressing time series [18].  

Having transformed a time series into the PAA 

representation, we apply a further transformation to obtain 

a discrete representation. It is desirable to have a 

discretization technique that will produce symbols with 

equiprobability [8][19]. After performing extensive 

experiments on more than 100 datasets, we discovered that 

normalized time series have highly Gaussian distribution 

[25]. Based on this observation, we can simply determine 

the “breakpoints” that will produce equal-sized areas 

under a Gaussian curve.  

 Definition 6. Breakpoints: breakpoints are a sorted list 

of numbers B = β1,…,βa-1 such that the area under a 

N(0,1) Gaussian curve from βi  to βi+1  = 1/a (β0 and βa 

are defined as -∞ and ∞, respectively, a is the size of the 

alphabet).  

These breakpoints may be determined by looking them up 

in a statistical table. For example Table 1 gives the 

breakpoints for values of a from 3 to 6.  

Table 1: A lookup table that contains the breakpoints that 

divide a Gaussian distribution into an arbitrary number (from 

3 to 6) of equiprobable regions 
 

It is important to note that the assumption of Gaussian 

distribution is not critical to our work, and deviations from 

this distribution will only affect the efficiency of our 

algorithms, not their correctness.  

Once the breakpoints have been obtained we can discretize 

a time series in the following manner. We first obtain a 

PAA of the time series. All PAA coefficients that are 

below the smallest breakpoint are mapped to the symbol 

“a”, all coefficients greater than or equal to the smallest 
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breakpoint and less than the second smallest breakpoint 

are mapped to symbol “b”, etc. Figure 6 shows the idea.  
 

Figure 6: A time series (heavy blue line) is discretized by 

first obtaining a PAA approximation (shaded region) and 

then mapped to symbols (bold letters) using predetermined 

breakpoints. In this example, with n = 240, w = 6, and a = 4, 

the time series is mapped to the word cbadab 

Note that in this example the four symbols, “a”, “b”, “c”, 

and “d” are approximately equiprobable as we desired. We 

call the concatenation of symbols a word. 

 Definition 7. Word: A time series T of length n can be 

represented as a word 
wttT ˆ,...,ˆˆ

1=  as follows. Let αi 

denotes the i
th 

element of the alphabet, i.e., α1 = a and α2 

= b. Then the mapping from a PAA approximation T to 

a word T̂  is obtained as follows: 

jiji tt ββα <≤= 1-j   iff     ˆ   (2) 

We have now completely defined our symbolic 

representation, then simply need to define an 

appropriated distance measure on it. By far the most 

common distance measure for time series is the Euclidean 

distance [18]. Given two time series T1 and T2 of the 

same length n, Eq. 3 defines their Euclidean distance. 

  
∑
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If we further transform the time series into the symbolic 

representation, we can define a MINDIST function that 

returns the lower bounding distance between the original 

time series of two words:  

∑
=

=
w

i
ii

ttdist
w

n
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1
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2121 ))ˆ,ˆ(()ˆ,ˆ(
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The function resembles Eq. 3 except for the multiplication 

by the square root of the compression rate, and the fact 

that the distance between individual points has been 

replaced by the sub-function dist(). The dist() function can 

be implemented using a table lookup as shown in Table 2. 

Table 2: A lookup table used by the MINDIST function. This 

table is for an alphabet of size 4. The distance between two 

symbols can be read off by examining the corresponding row 

and column. For example dist(a,b) = 0 and dist(a,c) = 0.67 

 

The value in cell (r,c) for any lookup table can be 

calculated by the following expression. 

⎩
⎨
⎧

−
≤

=
otherwise

  if |r-c| 
cell

cr

cr    ,

1   ,0

),min(1-c)max(r,

, ββ
 (5) 

For a given alphabet size a, the table needs only be 

calculated once, then stored for fast lookup. 

4. Image Motif Discovery 
Although SAX has proven to be a very effective method in 

finding motif subsequence from long time series 

[8][26][34], none of this work applies to the task of image 

matching/querying, given that it is hard to handle rotation 

invariance. In this section, we first show how to adapt 

SAX to handle shape matching with arbitrary rotations, 

and then show how to apply it in motif discovery problem.  

Recall that the distance measure in definition 2 can be any 

common distance measures for time series. We use 

Euclidean distance in this work. If the shapes in question 

are rotationally aligned, Euclidean distance will reflect the 

intuitive similarity. However if the shapes are not 

rotationally aligned, the corresponding time series will 

also be misaligned. In this case, Euclidean distance can 

produce extremely poor results. To overcome this problem, 

we need the distance function to be rotation invariant. To 

achieve this, we need to hold one shape fixed, rotate the 

other, and record the minimum distance of all possible 

rotations. We accomplish this in the time series space by 

representing all rotations of a shape in a rotation matrix. 

Definition 8. Rotation Matrix: Given a time series T of 

length n, all its possible rotations (i.e. circular shifts) 

constitute a rotation matrix RT of size n by n. 

 
 
 

    (6) 

Each row of the matrix is simply a time series shifted 

(rotated) by one from its neighbors. For notational 

convenience, we denote the i
th
 row as T

i
, which allows us 

to denote the rotation matrix in the more compact form of 

RT = {T
1
, T

2
,…, T

n
}. 

Note that we do not need to actually build the full matrix if 

space is premium, however doing this simplifies the 

notation and allows some optimizations [20]. 

As we have already seen in Figure 1 and Figure 2 (and as 

we shall see again in Figure 11 and Figure 12), we cannot 

generally expect images be perfectly aligned. We therefore 

define the Rotation invariant Euclidean Distance between 

two time series. 

Definition 9. Rotation invariant Euclidean Distance: 

Given two time series T1 and T2 of length n, the rotation 

invariant Euclidean distance between them is defined as 

),(min),( 21
1

21

j
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=         (7) 

The rotation invariant Euclidean distance provides an 

intuitive measure of the distance between two shapes, at 
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the expense of efficiency. The time complexity to compare 

two time series of length n is O(n
2
). Note that this rotation 

invariant Euclidean distance is denoted as “D(Tk, Ti)” in 

definition 4 and 5. 

4.1 Min-error SAX 
As illustrated in Figure 6 we can convert any time series 

into a SAX word. The conversion of time series into SAX 

is at the heart of dozens of research efforts 

[8][19][22][26][34] and a well-understood process. 

However in the special case that the time series comes 

from a shape, we are offered a unique chance to improve 

the quality of approximation with no space overhead. 

Recall that, as illustrated in Figure 3, we convert shapes 

into time series with a simple “unwinding” process. Note 

that the starting point for this process is completely 

arbitrary. This observation allows an optimization, because 

it may happen that some of the arbitrary starting points 

will lead to better SAX approximations.  

For example, assume we have two arrow images A and B, 

where B is simply A being rotated by 15
 
degrees. Their 

time series and corresponding SAX representations are 

shown in Figure 7.  

 

Figure 7: An arrowhead image with different rotations. Top) 

The first SAX symbol c approximates the first 40 data points 

perfectly. Bottom) However the same plateau time series is 

divided into two parts (the first and last segments of time 

series) 

At the first sight, they look similar. But note that for in the 

top version of the arrowhead, the first symbol c matches 

perfectly with a plateau in the time series, while in the 

bottom version of the arrowhead, this plateau segment 

spreads across two segments (the first and the last 

segments). Intuitively, we may expect that the SAX word 

cbadab gives better approximation than bottom one 

cadcac. In fact, this is the case; the reconstruction errors 

are 106.35 and 144.65 respectively (see Appendix A for 

definition of SAX reconstruction error). Based on this 

observation, every time we convert a shape time series into 

a SAX word, we test all possible circular shifts of the time 

series and choose the one that has the smallest 

reconstruction error. We apply this optimization 

throughout the paper. 

4.2 Random Projection Motif Discovery 
The image motif discovery problem lands itself to a simple 

brute force solution. We simply need to compare each 

shape in Ω to every other shape using rotation invariant 

Euclidean distance, and record all those shapes that are 

within threshold ξ of each other. This can be trivially 

achieved with a pair of nested loops. The problem with 

this solution is its high time complexity O(|Ω|
2
n

2
) , which 

is clearly intractable for large datasets. Note that O(n
2
) is 

the time for a single rotation invariant comparison. There 

are some optimizations for rotation invariant comparison 

to reduce its complexity close to linear for most datasets 

[20]. It is the quadratic dependence on |Ω| that makes the 

brute force algorithm untenable for larger datasets. 

We propose a motif discovery algorithm which reduces the 

number of rotation invariant comparisons as much as 

possible. The intuition of our solution is that two similar 

shapes are likely to have similar SAX representations (for 

the moment ignores the problem of rotation invariance). 

Actually this observation is at the heart of dozens of 

research efforts [8][22][25][26].  

Our algorithm takes advantage of techniques that can 

efficiently find approximately repeated patterns in discrete 

strings [36]. The work of Tompa and Buhler and follow-

up work by many researchers show that approximately 

repeated patterns can be found by hashing randomly 

“masked” versions of the strings in question. Information 

about which strings collide with others can then be used to 

prune the search space. Here “masked” simply means that 

one or more positions in the strings are ignored during the 

hashing process. The idea is that two words might be 

similar, but differ in just a few locations, as in abca and 

aaca. By randomly masking and therefore ignoring some 

positions, the algorithm has a chance to ignore the 

“misspelled” position and discover the similarities. A 

surprising fact is that only a small constant number of 

iterations of masking and hashing are needed to find all 

motifs with high probability [36]. 

This solution, known as random projection, requires two 

modifications before we can apply it to image motif 

discovery. First, we need to do some modification to make 

it be able to find rotation invariant similarities between 

time series or circular shifts of SAX words. Second, unlike 

the usage of random projection on DNA strings, we are 

not finished after discovering motifs in SAX words. We 

must check the raw time series pointed by the SAX words 

to make sure they are true motifs.  

As the first modification, for each SAX word T̂  

corresponding to an image, we add every possible circular 

shift of it to the list of words to be hashed. We call this list 

the rotation matrix RT. So that if two images Ti and Tj are 

similar, but are rotated differently, they may still be 

similar under some circular shifts. For example in Figure 

8, the i
th
 shape in the arrowheads datasets maps to the SAX 

word T̂ = bacb, so we add bacb, acbb, cbba, and bbac to 

the rotation matrix.  
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Figure 8: An example of representing an image with rotation 

variant SAX words. Because the length of SAX string is 4, 

every image time series has four possible rotations 

The redundancy of having all possible circular shifts may 

appear to hurt the space complexity, but recall that a SAX 

word only requires ⎡ ⎤aw  bits. With all possible circular 

shifts this becomes ⎡ ⎤aw2  bits per original shape. This is 

still much smaller than the raw time series, and completely 

inconsequent compared to the raw images. 

After getting all possible circular shifted SAX words for 

each image time series, we start random projection. As in 

[36], several randomly chosen columns are masked off, 

and the rest columns are hashed into the buckets. At the 

same time, a collision matrix is maintained to keep record 

of collisions. Because similar shapes have high possibility 

to be hashed to the same bucket, after many times of 

random projections, these similar pairs will have larger 

values in collision matrix. Figure 9 illustrates the random 

projection process. 
 

Figure 9: Random projection performed on SAX words. The 

mask size is 2 and the (randomly chosen) mask is {2, 4}.  

Columns 2 and 4 are masked off and the substrings at column 

{1, 3} are hashed to buckets. The value in collision matrix at 

the bottom right records the number of collisions between 

arrowheads Ti and Tj after one projection 

In order to give the algorithm a high probability to ignore 

“misspelled” positions, we need to perform several 

iterations of random projections. A natural question is 

when to stop. The simplest stopping criterion is user 

interruption. We can treat the random projection process 

as an anytime algorithm, letting user interrupt the 

execution at any time and retrieve the best-so-far result. 

Another stopping criterion will be keeping random 

projection until collision matrix requires more than linear 

space. In this case, the number of iterations can be O(|Ω|). 

But in practice generally it is significantly smaller than 

O(|Ω|). According to our experiments, 20 to 100 iterations 

are enough to catch similar images. So we hardcoded 

number of iterations to 30 for experiments in this paper. 

During the random projection, we change mask size 

dynamically. Initially mask size is set to zero, which 

means at the beginning all SAX words are compared in 

full length. Then in each iteration, the mask size increases 

by 1. The iteration repeats until the user issues an 

interruption or the predefined number of iterations is 

reached. After projection, if some cells have values that 

are significantly larger than the average in collision 

matrix, we treat them as motif candidates. We then 

calculate the rotation invariant Euclidean distance between 

the original time series of these candidates. Thanks to the 

lower bounding property of SAX representation, the last 

step can be conducted very efficiently. If MINDIST( 
it̂ ,

jt̂ ) 

≤ ξ, we only need to check 
kt̂ if and only if 

MINDIST(
it̂ ,

kt̂ ) ≤ ξ or MINDIST( 
jt̂ ,

kt̂ ) ≤ ξ.  We will 

show in Section 5 that our algorithm is very effective in 

catching image motif candidates during projection step 

and locating true motifs by examining these candidates. 

Note that we only consider the image pairs that have the 

largest collision value as candidates. As we will show in 

Section 5, the number of these ties is less than 0.1% of 

total number of pairs |Ω|
2
, and it is enough to give us high 

precision of true motifs. Table 3 outlines our motif 

discovery algorithm, where Ω is the image dataset, K is 

the number of motifs to be mined, and ξ is distance 

threshold for image motifs.  

Table 3: Motif Discovery Algorithm 

1 

2 

3 

4 

5 

6 

7 

8 
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10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Function {K-motifs} = Motif-discover(Ω, K, ξ, i )  
{ T̂ j } = SAX(Ω) ;            //convert image time series to SAX 

generate RT (T̂ j) ;     // rotation invariance matrix in fig. 8 

K-moifs = Ø ;  

iteration = 0; 

M = zeros;          // initialize collision matrix as zero matrix 

while iteration  ≤ i  and user_not_interrupt 

    Random_Projection(RT) ; 

    Update(M) ;                           // update collision matrix M   

    iteration = iteration + 1; 

end; 

Sort(M) ;  

k = 0; 

for each (p,q) in M that has the largest value 

     if {p,q} ∩ {k-motif} != Ø and RED(Tp, Tq) < ξ 
         add p, q to {k-motif} 

     else if k < K 

         k = k + 1; 

         add p, q to {k-motif} 

     end; 

end; 
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4.3 Time and Space Complexity 
Motif discovery is generally computationally expensive, 

which in worst case needs O(N
2
) time, where N is the size 

of dataset. In this subsection, we will show that our motif 

discovery algorithm requires only linear space and time.  

We first look at space complexity. Assume we have N 

image time series of length n, with corresponding SAX 

words of length m. As illustrated in Figure 8, the rotation 

matrix RT has m*N rows and m columns. Note that 

although the length of time series varies from one hundred 

to several thousands, its SAX word length is much shorter, 

usually from 10 to 100 based on our experiments. 

Furthermore, each SAX word only needs m*log2a bits (a 

is the alphabet size, usually from 3 to 5), so the actual size 

of RT is in linear space, and much less than original size of 

dataset. In addition, collision matrix M is implemented as 

sparse matrix, which takes up much smaller size compared 

to full matrix. Although in the worst situation, the matrix 

will be filled with i*|RT| non-zero values (i is the number 

of iterations), from our experiments and also as pointed in 

[8], i is usually a small value from 20 to 100.  

The most time-consuming part of our algorithm is the 

random projection with collision recording process. Its 

time complexity is O(i*|RT|), which is linear.  

5. Experimental Evaluation 
In this section, we demonstrate the utility of image motifs 

and provide a detailed study of the effectiveness and 

efficiency of our algorithm.  

5.1 Mining Butterfly Images 
There is an increasing interest in using computers to aid in 

the study of zoology, particularly in morphometrics, the 

study of organism shape and form [33]. This is especially 

true in entomology because entomologists are challenged 

by the extraordinary number of insect species, with more 

than 925,000 species described — more than all other 

animal groups combined. Even if we were to limit our 

attention to just the order of Lepidoptera (butterflies and 

moths), we must deal with more than 20,000 species. 

To demonstrate the potential utility of motifs in 

entomological morphometrics, we performed a simple 

experiment. The experiment was contrived in that we had 

a strong suspicion as to the final result, however it at least 

hints at the utility of our ideas. 

We chose to work with an extraordinarily diverse group 

with about 5,000 members, the Nymphalidae, one of the 

five families of butterflies. Within Nymphalidae there are 

12 subfamilies, including Danainae and Limenitidinae. We 

collected several hundred examples of each group and 

performed motif join. The 1
st
 Inter-class motif is shown in 

Figure 10. 

The fact that the Inter-class 1
st
-Motif pair is not only 

similar in shape, but in color and pattern is at first 

surprising, given the extraordinary variation that exists 

within both subfamilies. However this convergence in 

physical appearance is not a coincidence, but rather an 

example of Müllerian mimicry. Müllerian mimicry is a 

result of the evolutionary pressure for toxic species mimic 

each other to display similar warning signals 

(aposematism) because predators that better associate 

these signs with unprofitability have higher survival rates 

than those that do not.  Mulerian mimicry drives the 

evolution and establishment large regional mimetic rings 

often seen in tropical habitats, made up from the 

summation of tens of mimicry rings, each containing 

dozens of species, most belonging to Nymphalidae 

butterflies, but a few species belonging to other butterfly 

families (e.g., Papilionidae, Pieridae, Arctiidae and others) 

[15]. 

 

Figure 10: Top) Some examples from two subfamilies of 

Nymphalidae, Limenitidinae and Danainae. Bottom) The 

Inter-class 1
st
-Motif pair is not only similar in shape, but in 

color and pattern, a fact which can be explained by Müllerian 

mimicry 

5.2 Annotating Historical Manuscripts   
In this experiment, we demonstrate one potential 

application of inter-class K-Motifs, mining historical texts. 

The need for algorithms to automatically index and 

annotate old manuscripts has been brought to the forefront 

by Google’s announcement of a long term plan to digitize 

tens of millions of old texts in the next decade [35]. While 

the bulk of the old volumes will contain nothing but text, 

we can expect millions of images will also be digitized and 

benefit from enhancement of annotation.  

We consider a classic text, British Desmidiaceae, vol. 2 

(1905) by the father and son team, West & West [39]. This 

is a fundamental work on desmids (single-celled 

freshwater green algae). The book was published when 

microscopy was a mature science, but before microscopic 

photography was possible. It contains color and 

monochrome drawings of exceptional quality. 
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Approximately 1,150 taxa are described in the five 

volumes. 

The modern reader is impressed by the quality of the 

illustrations, and stunned by the diversity of algae shapes. 

However they cannot help but curious if the alien looking 

illustrations are faithful reproductions of reality or fanciful 

imaginings
2
. To test this we used our algorithm to find 

Inter-class K-Motifs between two image datasets, Ω is the 

set of pages from the text in question, and Ψ are the results 

of a Google image query for “Desmidiaceae, Micrasterias, 

Closterium, Euastrum” (keywords used in the original 

text). Figure 11 shows one page from the text, and three of 

the linked images from the web. 

 

Figure 11: Right) Plate 41 from the classic text, British 

Desmidiaceae, vol. 2 (1905) by West & West. Left) After 

finding the Inter-class K-Motifs, individual figures have been 

linked to images returned by a Google image query. Only 

three linked images are shown for clarity 

Note that the algorithm only considered the shape 

information, however the color and texture similarity of 

many of the matches, for example “B” in Figure 11, 

strongly suggests that the results are not spurious. In 

Figure 12 we give a visual intuition as to why two shapes 

are considered so similar in the time series representation.   

                                                                 

2  Note that contemporary publications using the microscopes 

astronomical analogue, the telescope, had “discovered” and 

detailed complex systems of canals on Mars [10]. 

 

Figure 12: A visual explanation of why two shapes from 

Figure 11 were linked as Inter-class Motifs. The real image 

was taken by Fabio Rindi and David John (who retain the 

copyright). It shows a Micrasterias oscitans found in a bog 

pool in Galway, Ireland on 22
nd

 of Sep 2005 

In Figure 13 we show another example on a page featuring 

drawings of the genus Closterium. 

 

Figure 13: Left) Plate 11 from British Desmidiaceae, vol. 2 

(1905) by West & West. Right) After performing a shape-

motif-join, individual figures have been linked to images 

returned by a Google image query ‘Closterium’ 

Note that in all these examples, the need for rotation 

invariance is apparent. 

5.3 Efficiency of Motif Discovery Algorithm 
In the previous subsections, we have shown that our motif 

discovery algorithm is very effective in finding image 

motifs. In this subsection, we will further demonstrate that 

our approach is not only effective but also efficient, which 

allows us to discover motifs in linear time with high 

precision. All the datasets used here are freely available at 

our website [40]. 

We test on six image datasets, including SQUID
3
 [27], 

mpeg-7 shapes
4
, yoga, chicken [28], Swedish-leaf, and 

MNIST. SQUID contains 1,100 different sea animal 

                                                                 

3 www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html 

4 www.cis.temple.edu/~latecki/research.html#shape 

A

B

C

A

B

C

Micrasterias 

oscitans
British 

Desmidiaceae, 

vol. 2 (1905), 

plate 41, fig. 5

Micrasterias 

oscitans
British 

Desmidiaceae, 

vol. 2 (1905), 

plate 41, fig. 5

Micrasterias 

oscitans
British 

Desmidiaceae, 

vol. 2 (1905), 

plate 41, fig. 5



images. Mpeg-7 shapes dataset consists of 1,400 different 

shapes of animals, insects, crafts etc. Yoga dataset is 

generated from video sequences of male and female 

performing yoga actions. Chicken dataset has images of 

chicken legs, breasts etc. with different rotations. Swedish 

leaf dataset has 15 species of leaves. MNIST contains 

10,000 instances of handwriting number ‘0’ to ‘9’. There 

are several reasons why we choose these datasets to test. 

Firstly, all these datasets contain rotated shapes. We can 

verify that our motif discovery algorithm is able to locate 

similar shapes with different rotations. Secondly, each of 

these datasets has very similar shapes, which guarantees 

that they contain image motifs. Finally, these diverse 

datasets include different kinds of images, such as marine 

animals, human actions sequences, and Arabian numbers 

etc. Figure 14 shows example images from these six 

datasets.  
 

Figure 14: Examples of shapes from six datasets, A - mpeg-7 

shapes, B - SQUID, C - yoga, D - chicken, E - Swedish 

leaves, F -  MNIST 

We randomly select 1,000 instances from each dataset. 

Chicken dataset has only 446 images, so we make 1,000 

instances by rotating them with random angles. These 

6,000 images are converted into time series. Because the 

lengths of these time series vary from 128 to 3,280, we 

unify their lengths to 1,024.  

We compare three strategies for motif discovery: brute 

force method, brute force with early abandon, and our 

motif discovery described in Section 4. Brute force method 

performs an exhaustive search, computing rotation 

invariant Euclidean distance for each pair of images. 

Suppose we have N image time series of length n, then 

brute force requires N
2
 rotation invariant comparisons. 

Brute force with early abandon prunes distance 

computation by the threshold (best-so-far minimum 

distance in the computation). We randomly select 500, 

1000, 2000 and 4000 instances from all 6000 instances, 

execute three methods ten times to get the average results. 

Both the number of rotation invariant Euclidean distance 

computations and the running time of the three strategies 

are given in Figure 15.  

 

Figure 15: Compared to brute force method, only 0.076% 

distance computations are needed by our motif discovery 

algorithm. The running time is 2 to 3 orders of magnitude 

shorter  

We can see that the motif discovery algorithm prunes more 

than 99.99% computations of the brute force method, and 

only takes about 3% to 7% computation of the early 

abandon method. For running time, we record time spent 

on motif discovery from three parts: converting time series 

to SAX, random projection, and searching true motif in 

candidate time series. Although the first part can be done 

offline, we still include it in execution time because it is 

nearly constant. The time spent on the second part is 

almost constant, since in practice we simply set length of 

SAX word m to 20 and the iteration number i to 30 (user 

can use different parameter settings in a certain range, but 

according to our experiments, it will not affect much of the 

accuracy in motif discovery). Actually the most time-

consuming part is in phase three, finding true motifs from 

candidates. Notice that as shown in the right of Figure 15, 

SAX projection pruned more than 99.99% computations, 

indicating that the third part is also very efficient. Overall, 

our motif discovery algorithm is 2 to 3 orders of magnitude 

faster than brute force method, which is clearly shown in 

the left of Figure 15.   

In addition to efficiency, the motif discovery is very 

effective in finding true motif images.  We compare the 

motifs found by our algorithm with those found by brute 

force method, which guarantees to catch all true motif 

images. Table 4 shows that our method achieves very high 

accuracy (the ratio that number of true motifs found by our 

method over the number of true motifs found by brute 

force method).  

Table 4: Accuracies of motif discovery algorithm. Because 

the number of motifs is averaged over ten times run, we 

record them as real values. ξ is the distance threshold given 

in definition 2 

500 1000 2000 4000 
Dataset size 

ξ = 1.0 ξ = 1.0 ξ  = 0.5 ξ  = 0.3 

Brute force 5.9 16.4 18.3 17.2 Number 

of 

motifs 
Motif 

discovery 

5.2 15.8 18.2 17.2 

Accuracy (%) 

(motif discovery/brute force) 
85.14 95.31 99.83 100 
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6. Conclusions 

We have introduced the new problem of finding 

approximately repeated shapes in large image databases. 

Although the brute force approach needs quadratic time, 

we propose a novel algorithm that uses random projection 

to identify potential image motifs efficiently. Experimental 

results show that our approach can efficiently find image 

motifs with high precision.  

Ongoing work includes collaboration with anthropologists 

on a detailed study of projectile-point cultural artifact 

transfer, and an application to the study on convergent 

evolution in the order Coleoptera (beetles). We are also 

considering combing the shape information currently used 

with (appropriately weighted) information about color and 

texture to find image motifs.  
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Appendix A: SAX Reconstruction Error 
In the main text we made reference to SAX reconstruction 

error. While the term “reconstruction error” is well defined 

for other representations such as wavelets and Fourier 

approximations, it is not generally used for symbolic 

representations of discrete data. Here we show that we can 

quantitively measure the reconstruction error of SAX 

representation. 

By converting time series to SAX words, we reduce the 

dimensionality of time series. Clearly some information is lost 

during the conversion. To measure how well the SAX 

representation approximates the original time series, we 

define SAX reconstruction error. The SAX reconstruction 

error is the sum of the distance between each data point in the 

time series and the middle line of the SAX symbol that the 

data point maps, or more formally as: 

∑
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−−=
n
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i i
terror

1

2
12 )( αβ   (8) 

where it  is the ith data point of the time series, iα  is the SAX 

symbol that it maps to, and 
12 −iαβ is the value that divides the 

region of SAX symbol iα into two equiprobable parts. For 

example, in Figure 16, a time series is converted into SAX 

word cadcac. The alphabet size is four. According to Table 1, 

the breakpoints are (-0.67, 0, 0.67), as shown by the left Y-

axis of Figure 16. The values that divide each symbol region 

to two equiprobable parts are (-1.15, -0.32, 0.32, 1.15), shown 

in the right Y-axis of Figure 16. These can again be looked up 

from Table 1 since dividing each region (the shaded area in 

Figure 16) to two parts is equivalent to doubling the alphabet 

size to eight.  

 

Figure 16: A visual illustration of SAX reconstruction error. 

The reconstruction error is calculated as the sum of the 

distance between each data point and the middle line (the dot 

line) of the SAX symbol that the data point maps to 
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