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Abstract An extended depth-first-search (EDFS) algorithm
is proposed to solve the multi-constrained path (MCP) prob-
lem in Quality-of-Service (QoS) routing, which is NP-
Complete when the number of independent routing con-
straints is more than one. EDFS solves the general k-
constrained MCP problem with pseudo-polynomial time
complexity O(m2 · E N + N 2), where m is the maximum
number of non-dominated paths maintained for each desti-
nation, E and N are the number of links and nodes of a graph,
respectively. This is achieved by deducing potential feasible
paths from knowledge of previous explorations, without re-
exploring finished nodes and their descendants in the process
of the DFS search. One unique property of EDFS is that the
tighter the constraints are, the better the performance it can
achieve, w.r.t. both time complexity and routing success ra-
tio. This is valuable to highly dynamic environment such as
wireless ad hoc networks in which network topology and
link state keep changing, and real-time or multimedia appli-
cations that have stringent service requirements. EDFS is an
independent feasible path searching algorithm and decoupled
from the underlying routing protocol, and as such can work
together with either proactive or on-demand ad hoc routing
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protocols as long as they can provide sufficient network state
information to each source node.

Analysis and extensive simulation are conducted to study
the performance of EDFS in finding feasible paths that satisfy
multiple QoS constraints. The main results show that EDFS
is insensitive to the number of constraints, and outperforms
other popular MCP algorithms when the routing constraints
are tight or moderate. The performance of EDFS is compa-
rable with that of the other algorithms when the constraints
are loose.

Keywords Multi-constrained path selection . Depth-first
search . Success ratio . Existence percentage . Competitive
ratio

1. Introduction

Routing algorithms supporting QoS differentiation differ
from conventional routing algorithms in that, in QoS routing,
the path from the source to the destination needs to satisfy
multiple constraints simultaneously (e.g., bandwidth, relia-
bility, end-to-end delay, jitter and cost), while in conventional
routing, routing decisions are made based only on a single
metric. QoS-related routing metrics, as well as the corre-
sponding constraints associated with them, can be catego-
rized into minimal (maximal) metrics and additive metrics.
A typical minimal metric is bandwidth, for which the end-
to-end path bandwidth is determined by the minimal residual
bandwidth of the links along the chosen path. Given that the
global network state is known, it is relatively easy to deal with
a routing constraint on minimal metric, because all the links
whose residual bandwidth do not satisfy the requirement can
simply be dropped. However, it is well known that path se-
lection subject to two or more independent additive metrics
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is NP-complete [19], which means that there is no efficient
(polynomial) exact solution for the general k-constrained
multi-constrained path (MCP) selection problem. There also
exist multiplicative metrics, such as loss rate, for which the
end-to-end path loss is equal to the product of the loss rates
of all intermediate links. Multiplicative metrics can be trans-
lated into additive metrics, or vice versa, by taking logarith-
mic or exponential function respectively. Therefore, we only
consider additive QoS metrics and constraints in this work.

Amongst all MCP problems, routing subject to two con-
straints has drawn the most interest, which includes a special
case - the restricted shortest path (RSP) problem, where the
goal is to find the path that satisfies one constraint while
optimizes another metric simultaneously. The MCP (with
two constraints) and the RSP problems are not strong NP-
complete in that there are pseudo-polynomial running time
algorithms to solve them exactly, in which the computational
complexity also depends on the values of link weight in addi-
tion to the network size [7]. However, their complexity is pro-
hibitively high when the values of link weight become large.

Based on the latter observation above, Chen and Nahrstedt
[3] proposed to scale one component of the link weight down
to an integer that is less than #wi ·x

ci
$, where x is a pre-defined

integer and ci is the corresponding constraint on the weight
component wi . They prove that the problem after weight
scaling is polynomially solvable by an extended version of
Dijkstra’s (or Bellman-Ford) shortest path (SP) algorithm,
and any solution to the latter is also a solution to the original
MCP problem. The running time is O(x2 N 2) when the ex-
tended Dijkstra’s algorithm is used; and it is O(x E N ) when
the extended Bellman-Ford algorithm is used, where E and
N are the number of edges and nodes, respectively.

Another commonly used scheme for MCP is to define a
good link-cost (or path-weight) aggregation function based
on the routing metrics and the given constraints. Then any
shortest path algorithm can be used to compute the short-
est path w.r.t. the single aggregated metric. Jaffe [7] was the
first to use a linear link-cost function w(u, v) = αw1(u, v) +
βw2(u, v), in which α, β ∈ Z+. Ever since, both linear and
non-linear aggregation functions have been proposed. The
major limitation of this approach is that the ability to find fea-
sible paths based on an aggregated metric largely depends on
the quality of the functions being used, and most of them are
empirical heuristics. Consequently, the shortest path com-
puted w.r.t. the single aggregated metric may not simultane-
ously satisfy the multiple constraints being considered. Other
proposals for 2-constrained MCP problem and RSP can be
found in [8, 9, 11] and the references therein.

Compared with 2-constrained MCP or RSP, the general
k-constrained path computation has received far less atten-
tion. If a scheduling algorithm (e.g., weighted fair queuing)
is used, then queuing delay, jitter and loss rate can be de-
scribed as a function of bandwidth, such that the original

NP-Complete MCP problem can be reduced to a traditional
shortest path routing problem [12]. However, this is not true
for propagation delay and is only applicable to networks us-
ing specific scheduling mechanisms. Yuan [20] generalized
the ideas of link-weight scaling as the limited-granularity
(LG) heuristic, and also proposed the limited-path (LP)
heuristic in which x non-dominated paths are maintained
at each node. Then an extended Bellman-Ford algorithm
is used to work with one of them to solve the general k-
constrained MCP problem. The running time of Yuan’s al-
gorithm is |X | · N E , where |X | is the size of the table to
maintain, for LG; and it is x2 N E , where x is the maximal
number of non-dominated paths to compute, for LP. The per-
formance and complexity of Yuan’s heuristics depend on the
number of possible values to which link weight can be scaled
down, or the number of paths to maintain at each node.

Neve and Mieghem proposed TAMCRA [14], which uses
a modified Dijkstra’s algorithm to compute k non-dominated
paths for each destination, based on a non-linear path function
w(p) = max(wi (p)

ci
), where ci is the constraint on metric wi .

TAMCRA has computational complexity O(k Nlog(k N ) +
k3C E), where C is the number of routing constraints being
considered. Obviously, the performance and complexity of
this heuristic depend on the value of k, and better perfor-
mance can be achieved with a larger value of k at the cost of
more execution time. However, in the worst case, k can grow
exponentially large, and the performance of TAMCRA also
varies with the number of routing constraints.

Although much work has been done on QoS routing in
the Internet, they cannot be simply applied to mobile ad
hoc networks (MANETs) largely due to the dynamic and
resource-constrained nature of MANETs. In fact, most pro-
posed routing protocols supporting QoS provisioning for ad
hoc networks are derived from existing ad hoc routing pro-
tocols. For instance, QOLSR [1] is the QoS-aware version
of the optimized link state routing protocol (OLSR) [4], in
which paths are computed based on multiple performance-
oriented metrics such as bandwidth and end-to-end delay,
instead of the simple hop-count as being used by OLSR;
and a heuristic based on Lagrange Relaxation is applied to
approximating the NP-hard multi-constrained path selection
problem. QAODV [15] is the extension made to ad-hoc on-
demand distance vector routing protocol (AODV) [16], in
which desired service requirements (e.g., bandwidth and de-
lay), can be added to the routing messages during the phase
of route discovery. Because the specified requirements must
be met by nodes when they rebroadcast a route request or
return a route reply for a destination, a successfully received
route reply by the source node indicates that a feasible path
was found for the given routing request. Both QOLSR and
QAODV mainly focus on bandwidth-delay constrained rout-
ing problem, and do not address the general k-constrained
path selection problem.
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Chen and Nahrstedt [2] also proposed a flooding-based
QoS routing scheme for ad hoc networks, in which parallel
paths searching is achieved by flooding the network with a
number of probe tickets, and routing loops are detected and
avoided by restricting each node to further forward probe
tickets for the same destination at most once. The main ad-
vantage of this flooding based approach is that no global state
information needs to be disseminated throughout the network
or maintained at every node. However, high communication
overhead incurred by ticket flooding is the main drawback
of this approach. Moreover, because a confirmation message
must be sent back to the source for ensuring all the inter-
mediate nodes to reserve the required resources and setup
corresponding forwarding entries, the time to establish a fea-
sible path can be long when the communicating parties are
multiple hops away. Lastly, due to the flooding nature, when
multiple paths are discovered, the over-reservation problem
can occur because resources are reserved on every link of all
the discovered paths.

In this paper, we propose EDFS, an algorithm based on
depth-first search, to solve the general k-constrained MCP.
EDFS has time complexity O(m2 · E N + N 2), where m is
the maximum number of non-dominated paths maintained
for each destination. This performance is achieved by de-
ducing potential feasible paths from knowledge of previous
explorations without re-exploring finished nodes and their
descendants. One unique property of EDFS is that the tighter
the constraints are, the better the performance it can achieve.
In particular, EDFS can achieve almost the same success ratio
as an exact solution does (with exponential running time com-
plexity), while having less running time than that of Dijkstra’s
algorithm when the routing constraints are very tight. This
is valuable to QoS routing in highly dynamic environment
such as wireless ad hoc networks in which network topology
and link state keep changing, and real-time or multimedia
applications that have stringent service requirements. More
importantly, EDFS is an independent feasible path searching
algorithm and decoupled from the underlying routing
protocol, and as such can work together with either proactive
or on-demand ad hoc routing protocols as long as they can
provide sufficient network state information to each source
node.

The rest of the paper is organized as follows. First we give
the network model and notations we are using in our discus-
sion, including necessary background information about QoS
routing. Then we present the basic operations of the EDFS
algorithm, its pseudo-code specification, and how it can be
applied to QoS routing in wireless ad hoc networks. The time
complexity and performance of our algorithm are analyzed
and examined by extensive simulations, in which we show
how EDFS solves multiple-constrained path selection prob-
lem efficiently and effectively. To conclude, we summarize
our work at the end of this paper.

2. Network model and problem formulation

We model the network as a directed graph G = {V, L}. Here,
V is the set of nodes and L is the set of links interconnecting
the nodes. That is, for node u and v in V , the link lu,v is
in L if u and v are directly connected in G. N and E are
the cardinalities of V and L , i.e., N = |V | and E = |L|,
respectively.

In our discussion, we assume that each link lu,v is asso-
ciated with a link weight vector wu,v = {w1, w2 . . . wk}, in
which wi is an individual weight component. Accordingly,
any path from the source node to the destination node can
be assigned a path weight vector w(p) = {w p

1 , w
p
2 . . . w

p
k },

where w
p
i equals to the sum of the corresponding weight

components of all the links in the path.
It has been pointed out that only those non-dominated

paths (or incomparable paths) need to be maintained in multi-
constrained routing [13, 18]. Path p is dominated by path q
if

w
q
i ≤ w

p
i , for i = 1, 2 . . . k (1)

A path is called non-dominated if it is not dominated by
any other path. The concept of path domination allows us to
restrict the computational complexity by maintaining only
those non-dominated paths, because the capability of QoS
provisioning from the source node to the destination node can
be represented by the set of non-dominated paths. For exam-
ple, Fig. 1(a) shows a set of points in {Delay × Cost} repre-
senting the incomparable paths between a source-destination
pair when the link weights are cost and delay. In Fig. 1(a),
the path weight represented by point X is dominated by B,
which has shorter delay and less cost. However, there ex-
ists no clear better or worse relation between any two paths
of {A, B, C, D, E}, because none dominates another. Any
routing request falls in the feasible area (shadowed area I of
Fig. 1 (b)) can be supported by at least one of the incompa-
rable paths. The MCP problem can be formally formulated
as follows.
MCP: Given a directed graph G = {V, L}, where V is the
set of nodes and L is the set of links. each link {lu,v ∈ L}
is assigned a link weight vector wu,v = {w1, w2 . . . wk}. The
routing constraints are given as a vector C = {c1, c2 . . . ck},
the problem is to find a feasible path p from the source node
s to the destination node t such that

w
p
i ≤ ci for i = 1, 2 . . . k

where w
p
i !

∑

lu,v∈p

wi (u, v) (2)

QoS routing consists of disseminating a consistent view
of the network (including network topology and resource
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Fig. 1 Non-dominated (incomparable) paths in {Delay × Cost}

state information) to each router, and a QoS routing algo-
rithm responsible for finding feasible paths from the source
to each destination satisfying multiple constraints. In this
paper, we only consider the later, and assume that there
exists a link-state routing protocol that disseminates topol-
ogy and resource information to all routers in a timely
manner.

3. Extended depth-first search algorithm

3.1. Algorithm description

In depth-first search (DFS), edges (we use edge and link
interchangeably) are explored away from the most recently
discovered node v that still has unexplored adjacent outgo-
ing edges. When all of v’s edges have been explored, DFS
backtracks to explore unscanned edges leaving the node from
which v was discovered. This process continues, until all the
nodes that are reachable from the source are discovered. The
edges of a directed graph can be sorted into four groups w.r.t.
a DFS search on it: tree, backward, forward and cross edges.
An edge lu,v is a tree edge if node v was first discovered by
exploring lu,v , and the tree having all the tree edges is named
a DFS tree. Link lu,v is a back edge if lu,v leads u to an ances-
tor v in the DFS tree. Link lu,v is a forward edge if it connects
u to a descendant v in the DFS tree. All other edges are cross
edges.

Based on the type of edge explored in DFS (a good in-
troduction to DFS can be found in [5]), we extend DFS into
a multi-constrained path searching algorithm based on the
following observations. Because a tree edge always leads to
a newly discovered node ud , we can add the path from the
source to ud , together with its capability (path weight, more
specifically), into the routing table. Backward edges form

cycles and the search proceeds beyond a node that is already
in the tree, given that the metrics that we are considering
are additive. A forward or cross edge always leads to a fin-
ished node u f , which means that: (a) all the descendants of
u f have been discovered and finished in a previous explo-
ration away from u f , and (b) one or more paths to u f and
its descendants are already known, node u f is reached again
because a new path pnew to node u f is used (we call pnew

the active path). Therefore, non-dominated paths to u f and
its descendants can be deduced without exploring away from
u f once more. Consequently, we can tell if any improve-
ment on existing paths can be achieved by using pnew. This
is possible because routing metrics are additive, and paths
are comparable by using the concept of path domination.
Here we have three possibilities. First, the active path pnew

to the finished node u f is worse than any existing path pold

for u f . In this case, EDFS just ignores pnew and operates as
the basic DFS. Second, if pnew is an incomparable path from
the source to u f , then we can expect that new incomparable
paths may be found to the descendants of node u f by fol-
lowing pnew. Third, if the path pnew dominates (i.e. is better
than) the path pold , then better path to node u f and better
paths to its descendants can be obtained, if any.

Algorithm 1 shows the main procedures of the extended
version of depth-first search (EDFS), and Algorithm 2 defines
the functions called by EDFS. As we can see, one new struc-
ture - the descendant table dTable is used to keep track of the
descendants of each node in the process of DFS searching,
which enables us to deduce possible dominating or incom-
parable paths when meeting a finished node. Note that EDFS
specified in algorithm 1, 2 actually is able to find a set of
incomparable paths with different QoS provisioning capa-
bilities for each node reachable from the source. With minor
modification, EDFS can stop searching right after a feasi-
ble path to the specified destination was found satisfying the
given routing request.
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Fig. 2 Illustration of EDFS

Figure 21 illustrates the basic idea of EDFS, in which
we show how EDFS detects a routing loop, and finds dom-
inating or incomparable paths for finished nodes and their
descendants without exploring away from the finished nodes
again. We assume that each link is associated with two weight
components, and when exploring away from a node, the ad-
jacent outgoing edges are scanned alphabetically. Nodes are
colored white or black to tell whether they are undiscov-
ered or finished, and are double circled if they are discov-
ered but not finished. As depicted by Fig. 2, a routing loop
can be easily detected whenever a discovered node is re-
visited via backward edges. A cross or forward edge leads
the DFS search to a previously finished node u f . If the cur-
rent active path pactive

f to u f is dominating or incomparable
with any existing path pold

f to u f , given that routing metrics
are additive, we can have new dominating or incompara-
ble path pnew

d for each descendant d of u f by replacing the
subpath pold

f of the existing path pold
d for d with the active

path pactive
f , and compute the corresponding path weight as

follows.

w
(

pnew
d

)
= w

(
pold

d

)
+

[
w

(
pactive

f

)
−w

(
pold

f

)]
(3)

1 (a): Detect loop (2,g,4,i,5,j,2) when exploring backward edge j .
Find dominating path (1, b, 6, c, 2) to node 2 via cross edge c,
# = w(1, b, 6, c, 2) − w(1, a, 2) = (−1, −2). For each descendant
of node 2, improve w(1, a, 2, f, 3) + # = (6, 7) + (−1, −2) →
w(1, b, 6, c, 2, f, 3) = (5, 5) for 3; improve w(1, a, 2, g, 4) + # =
(8, 7) + (−1, −2) → w(1, b, 6, c, 2, g, 4) = (7, 5) for 4 improve
w(1, a, 2, g, 4, i, 5) + # = (10, 9) + (−1, −2) → w(1, b, 6, c, 2, g,
4, i, 5) = (9, 7) for 5. (b): Find incomparable path w(1, b, 6, e, 7) to
node 7 via forward edge e, # = w(1, b, 6, e, 7) − w(1, b, 6, d, 7) =
(−2, 2). For node 8, the descendant of node 7, compute new incom-
parable path w(1, b, 6, d, 7, h, 8) + # = (8, 7) + (−2, 2) → w(1, b,
6, e, 7, h, 8) = (6, 9).

Here ‘+, −’ are normal addition and subtraction operations
on vectors of real numbers.

3.2. Application to QoS routing in wireless ad hoc
networks

EDFS requires that global network state, including topology
and resource-state information, be available at every node
which performs the depth-first search. This can be achieved
by using an underlying ad hoc routing protocol to provide
timely complete or partial network state to every node in
the network, such as the optimized link state routing pro-
tocol (OLSR) [4], the source-tree adaptive routing proto-
col (STAR) [6], or the feasible label routing protocol (FLR)
[17].

To reduce the routing overhead, disseminating of par-
tial network state is preferred to that of the whole network
state. However, care must be taken when deciding which link
should be included in the state broadcasting messages. The
baseline is that nodes performing depth-first search should
have sufficient QoS oriented information to deduce feasible
paths for the arriving routing requests. For example, when
OLSR is used to disseminate the link state, bandwidth and de-
lay can be considered as the metrics when selecting the multi-
point relays (MPRs), instead of the simple hop number; while
in the case of STAR, the source trees communicated amongst
nodes should include all known non-dominated paths for
each destination, instead of a single shortest path in terms
of hops. Unlike OLSR and STAR, FLR is an on-demand ad
hoc routing protocol, in which routes are maintained only for
nodes for which there is traffic. To have necessary topology
and link-state information at the source node, route request
and route reply messages need to collect adjacent links state
when propagating towards or back from the specified desti-
nation node. Then the aggregation of link state returned by
all route reply messages can be used as the partial network
state for the source node to conduct the depth-first search.

As we can see, EDFS is an independent feasible path
searching algorithm and decoupled from the underlying rout-
ing protocol, and as such can work together with either proac-
tive or on-demand ad hoc routing protocols as long as they can
provide sufficient network state information to each source
node. One unique property of EDFS is that the tighter the
constraints are, the better the performance it can achieve, in
terms of both time complexity and routing success ratio, as
we will show shortly in Section 6. This is valuable to highly
dynamic environment such as wireless ad hoc networks in
which network topology and link state keep changing, and
real-time or multimedia applications that have stringent ser-
vice requirements. Due to the space limitation, in this paper,
we only focus on the algorithm itself, and will study the com-
bination of EDFS and specific ad hoc routing protocols in our
future work.
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4. Computational Complexity

In this section, we obtain the worst case running time com-
plexity of EDFS. In Algorithm 1, the loop on lines 2–5
of EDFS takes O(N ) time for initialization. The function
EDFS Visit is called exactly once for each node u ∈ V , be-
cause EDFS Visit is invoked only on white nodes and the
first thing it does is to paint the node Grey. During an exe-
cution of EDFS Visit, the loop on lines 12–27 of EDFS Visit
is executed |Ad j[u]| times, where |Ad j[u]| is the number of
adjacent outgoing edges of u. Because

∑

u∈V

|Ad j(u)| = $(E) (4)

the total cost of executing lines 12–27 of EDFS Visit is O(E).
Therefore, within the loop on lines 12–27, function UpdateR-
outeEntry on line 23 is called at most O(E) times, while out-
side the loop on lines 12–27, the function UpdateRouteEntry
and MergeDescendant are called exactly once for each node
because each node is painted Grey and Black only once. In
Algorithm 2, the function UpdateDesctRoutes is called at
most m times by UpdateRouteEntry, where m is the maxi-
mum number of non-dominated paths we maintain for each
node. The nested loops on line 19–27 take time O(m N ) to
update existing paths to each descendant of node u. Because
the push and pop operation take constant time, the loop on
lines 31–33 of MergeDescendant costs at most time O(N ).
Summarily, we have

O(EDFS) = O(N ) + O(N ) + O(E · m · m N ) + O(N 2)

= O(m2 · E N + N 2) (5)

To verify the correctness of our analysis, we conduct sim-
ulations running EDFS on networks of different sizes ranging
from 10 nodes up to 5000 nodes. The network topologies in
the simulations are randomly generated graphs (Pure-random
graphs with pr = 0.11, as described shortly), and we do not
limit the number of incomparable paths maintained for each
node. The number of constraints is three and the source-
destination pairs of requests are randomly chosen from the
network. As shown in Fig. 3, the simulation time of EDFS
matches the trend of polynomial function O(E N + N 2) for
all configurations with different number of nodes. Because
we do not limit the number of incomparable paths maintained
for each node, our finding actually further confirms the re-
sults obtained by Kuipers and Mieghem [10], where they have
shown that, in practice, the worst case under which the num-
ber of non-dominated paths grows exponentially large hardly
happens. However, to guarantee that the running time is poly-
nomially bounded, we must specify the maximum number
of incomparable paths maintained for each node. It is again a
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Fig. 3 Time complexity of EDFS

trade-off between performance and complexity. In what fol-
lows, we assign m = 5 in all our simulation configurations
unless it is specified otherwise. Simulation results show that
this is sufficient to achieve satisfactory performance in most
scenarios.

5. Extensions to the basic Algorithm

5.1. Exploring with different sequences

For a given network, the DFS tree can be different if we
scan the outgoing links at each node with different orders.
As a consequence, from the same source, we may have a
different set of incomparable paths for each reachable node
with a different exploring sequence of nodes. By executing
EDFS multiple times with different exploring sequences and
combining the results of them, we will find better or more
incomparable paths for nodes reachable from the source. As
we will see shortly, Only one to three runs of EDFS are

Fig. 4 ANSNET, 32 nodes and 54 links
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sufficient to achieve nearly optimal solution when the rout-
ing constraints are tight, while three to five runs of EDFS are
needed to achieve satisfactory performance when the con-
straints are loose.

5.2. Crankbacking

If the constraints are known in advance, it is intuitive that
we do not need to go further deeper when we detect that the
current active path has already violated the given request. It
follows immediately that we can either continue to scan the
next unexplored outgoing edge of node u, or crankback to the
predecessor from which u was first discovered when there is
no outgoing edge of u we can use to extend the current active
path. Based on our simulations, crankbacking has two effects
on the performance of EDFS. First, it cuts down the running
time of EDFS by orders of magnitude, especially when the
constraints are tight. Secondly, the success ratio of EDFS
can be improved significantly. Simulation results show that
the increase of the success ratio can be as much as 8 to 10%
even with only a single execution of EDFS. The reason is
that crankbacking actually equals to guiding EDFS searching
to avoid unnecessary exploration, from which considerable
time is saved, and also the feasible path is more likely to be
discovered in the first place. As a result, this allows us to run
more executions of EDFS with different exploring sequences
within the same time limit, such that higher success ratio can
be achieved.

5.3. Sorting links

When the time does not allow running EDFS multiple times,
it is critical to decide which outgoing edge to explore first at
each node u. It is preferable for the new active path (obtained
after extending it with one outgoing edge of u) to have as large
a margin for the given constraints as possible. However, this
is hard to tell without actually searching into the network. To
deal with this problem, we sort the outgoing edges of every
node u w.r.t. a certain parameter - normalized margin (NM),
which is defined as follows

N M =
k∏

i=1

(
1 − wi (p)

ci

)
(6)

where p is the new active path after extending one outgoing
edge of node u. The outgoing edge with the maximal N M
is explored first. In our simulation, we find that a 3 to 5%
increase of success ratio can be achieved when the number
of EDFS we execute is small (1 to 3 runs). The performance
improvement becomes negligible when EDFS is called more
times because most of the possible exploration sequences are
exploited in the first few runs.

6. Performance Evaluation

6.1. Performance comparison with two constraints

Three topologies and corresponding results are chosen to
present here from all topologies we simulated: ANSNET,
Pure-random graph and Waxman graph. ANSNET (32 nodes
and 54 links) is widely used by Chen and Nahrstedt [3] and
other researchers to study QoS routing algorithms. In pure-
random graphs, the existence of the link between any two
nodes is determined by a pre-defined constant probability
{pr | 0 < pr < 1}. It is purely random in the sense that pr

is independent of any other factors, such as the distance be-
tween the two nodes. However, this usually is not true be-
cause, in practice, the probability for two nodes at far apart
to have a direct connection is much lower than that for two
nodes close by. Waxman’s model takes this into account, in
which the probability pr is defined as

pr = αe− d
βL , 0 < α, β < 1 (7)

where d is the distance between these two nodes and L is the
maximal distance between any two nodes in the graph.

For the Waxman and pure-random graphs used in simula-
tion, the field size of the simulation is a 15 × 10 rectangle,
and the number of nodes is determined by the Poisson distri-
bution with modified parameter λA, where λ is the original
intensity rate and A is the field size. All nodes are randomly
distributed within the simulation field at randomly chosen po-
sitions. Again, the main goal of our simulation is to study the
performance of EDFS as an independent feasible path search-
ing algorithm. We will implement and investigate EDFS in
the context of wireless ad hoc networks in our future work.

As the first step, we compare the performance of different
MCP algorithms subject to only two constraints. The MCP
algorithms we use to compare with EDFS are CN (Chen and
Nahrstedt [3]), KKT (Korkmaz, Krunz and Tragoudas [9])
and JSP (a variation of Jaffe’s algorithm: Dijkstra’s short-
est path algorithm w.r.t. the aggregated link cost function
w(u, v) = [w1(u,v)

c1
+ w2(u,v)

c2
]). As we mentioned early, CN

maps the original MCP problem into a scaled version, in
which one of the link weight components is scaled down
within the range of (0, x] by w′

i (u, v) = #wi (u,v)·x
ci

$. They
prove that there exists polynomial solution to the scaled ver-
sion of MCP, and any solution to the latter is also a solution
to the original MCP problem. The basic idea of KKT is to run
Dijkstra’s SP algorithm w.r.t. a linear aggregation function
of the two link weight components {w′

u,v = wi + k ∗ w j , i =
1 or 2}, and the coefficient k is self-adjustable according to
whether the algorithm can find a feasible path for a given
request with current values of i and k. Another execution
of Dijkstra’s algorithm is invoked with new i and k if no
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Table 1 Success ratio (SR) and running time, ANSNET

EDFS CN
KKT (Korkmaz’s alg.)
JSP (Jaffe’s alg.), CN (Chen’s alg.) Exact #1 #2 JSP KKT x = 3 x = 10

c1 ∼ unif [50, 65] SR 0.2486 0.2480 0.2486 0.2422 0.2480 0.1890 0.2274
c2 ∼ unif [200, 260] time 37.39 0.2893 (1) 0.8262 (3) 1 5.855 11.91 98.37

c1 ∼ unif [75, 90] SR 0.5078 0.4966 0.5060 0.4896 0.5052 0.3294 0.4522
c2 ∼ unif [300, 360] time 37.76 1.177 (2) 2.318 (4) 1 5.31 11.95 99.01

c1 ∼ unif [100, 115] SR 0.7522 0.7352 0.7471 0.7224 0.7470 0.4460 0.6664
c2 ∼ unif [400, 460] time 38.34 2.649 (3) 4.379 (5) 1 4.08 12.11 101.3

c1 ∼ unif [125, 140] SR 0.9438 0.9048 0.9256 0.9214 0.9388 0.5422 0.8580
c2 ∼ unif [500, 560] time 39.35 3.588 (3) 5.882 (5) 1 2.263 12.22 102.3

c1 ∼ unif [150, 165] SR 0.9880 0.9602 0.9720 0.9714 0.9848 0.6142 0.9232
c2 ∼ unif [600, 660] time 38.18 4.116 (3) 6.699 (5) 1 1.804 12.37 103.6

feasible path was found with current values. As the baseline,
we also implement an exact solution, which has exponen-
tial running time, but can give all feasible paths for a given
routing request.

For ANSNET, the first link weight component is uni-
formly distributed in (0, 50], while the second is uniformly
distributed in (0, 200]. For the pure-random and Waxman
networks, both link components are uniformly distributed in
(0, 20]. The performance of MCP algorithms is measured by
success ratio (SR), which is defined as follows

S R = number of routing requests being routed
number of total routing requests

(8)

We also record the running time for each of the algorithms
under consideration. As the baseline, we take the running
time of Dijkstra’s (i.e., JSP) as one, then the running time of
other algorithms is measured by their multiples of the base-
line: Dijkstra’s algorithm. The results for ANSNET, pure-

random and Waxman networks are presented in Tables 1,
2 and 3 respectively. The source and destination nodes are
randomly chosen in all simulation configurations, and all
the results presented here are averaged over 5000 randomly
generated routing requests for different ranges of the rout-
ing constraints. For different ranges of constraints, the first
row gives the success ratio (S R) and the second row gives the
corresponding running time. For EDFS, the number in paren-
thesis indicates the number of executions of EDFS (with dif-
ferent exploring sequences).

As we can see, CN generally performs well only when the
x is large enough, configurations with small values of x lag
far behind all other algorithms in all simulation scenarios.
Extremely high computational complexity is the main draw-
back of CN and makes it infeasible in practice. Note that, in
our implementation, we only choose w2 to be scaled down,
and it turns out that the time complexity of CN is already
far more expensive than the other algorithms. According to
Chen and Nahrstedt [3], another run of the algorithm must be

Table 2 Success ratio (SR) and running time, Pure-random graph

EDFS CN
pr = 0.11
(39 nodes and 75 links) Exact #1 #2 JSP KKT x = 3 x = 10

c1, c2 ∼ unif [10, 20], SR 0.0985 0.0980 0.0985 0.0975 0.0985 0.0780 0.0920
time 37.08 0.1674 (1) 0.4892 (3) 1 4.882 11.52 94.71

c1, c2 ∼ unif [20, 30], SR 0.3810 0.3720 0.3805 0.3655 0.3755 0.2405 0.3355
time 36.61 0.5851 (1) 1.669 (3) 1 5.913 11.61 95.48

c1, c2 ∼ unif [30, 40], SR 0.6715 0.6105 0.6640 0.6385 0.6635 0.3925 0.5880
time 42.12 1.091 (1) 3.114 (3) 1 4.665 11.69 96.47

c1, c2 ∼ unif [40, 50], SR 0.9325 0.9100 0.9195 0.9075 0.9245 0.5925 0.8765
time 35.98 4.749 (3) 7.813 (5) 1 2.372 11.83 98.37

c1, c2 ∼ unif [50, 60], SR 0.9880 0.9670 0.9770 0.9770 0.9845 0.7145 0.9650
time 37.56 5.43 (3) 8.925 (5) 1 1.722 11.97 99.58
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Table 3 Success ratio (SR) and running time, Waxman graph

EDFS CN
α = 0.45, β = 0.25
(40 nodes and 95 links) Exact #1 #2 JSP KKT x = 3 x = 10

c1, c2 ∼ unif [10, 20], SR 0.1130 0.1125 0.1130 0.1120 0.1130 0.9350 0.1080
time 73.72 0.2134 (1) 0.6156 (3) 1 5.711 11.46 93.6

c1, c2 ∼ unif [20, 30], SR 0.4665 0.4455 0.4625 0.4410 0.4615 0.3130 0.4050
time 74.63 0.8363 (1) 2.424 (3) 1 5.885 11.58 94.49

c1, c2 ∼ unif [30, 40], SR 0.8650 0.7930 0.8520 0.8065 0.8405 0.5415 0.7870
time 75.19 1.739 (1) 4.979 (3) 1 2.968 11.67 96.53

c1, c2 ∼ unif [40, 50], SR 0.9920 0.9800 0.9865 0.9755 0.9870 0.7130 0.9675
time 75.2 6.909 (3) 11.37 (5) 1 1.721 11.83 98.21

performed in which another weight component w1 is scaled
down instead, if we cannot find a feasible path when w2 is
scaled. The performance of CN can catch up by specifying
larger x or invoking another execution with w1 being scaled
down, as shown by the work done by Chen and Nahrstedt [3]
and other researchers [9], at much higher cost of execution
time. KKT seems to be the best when the constraints are very
loose (when more than 90% routing requests are actually
routable), which is mainly due to the self adaptation of the
coefficient k in the linear aggregation function.

Korkmaz et al. [9] show that the worse case complexity of
their algorithm is bounded by log(B(E + N log(N )), where
{B = N · max(wi (u, v)), i = 1 or 2, lu,v ∈ E}. However, in
our experiments, we notice that the running time of the algo-
rithm becomes unpredictable when the basic approximation
proposed by Korkmaz et al cannot find a feasible path to a
destination. The reasons for this are the following. When the
constraints are tight, multiple calls to the Dijkstra’s shortest
path algorithm must be made, until the proper coefficient k
is found. The tighter the constraints are, the more calls we
need to make. If no feasible path can be found by the basic
KKT, two heuristic extensions will be invoked , for which
the running time is no long bounded by logarithmic times
calls to Dijkstra’s shortest path algorithm. This explains why
KKT generally takes a long time to find a feasible path when
the routing constraints are tight.

Our algorithm EDFS outperforms all the other algorithms
when the routing constraints are tight and moderate w.r.t.
running time, success ratio S R or both. As noted before,
KKT performs better when the routing constraints are very
loose. One unique property of EDFS is that the tighter the
constraints are, the better its performance becomes. Partic-
ularly, EDFS takes even less time than Dijkstra’s algorithm
to achieve nearly optimal success ratio (compared with the
exact algorithm) when the constraints are very tight. We at-
tribute this to the three extensions we made to the basic
EDFS algorithm, especially crankbacking. Although KKT

performs better when the constraints are very loose, its run-
ning time can become unpredictable when the basic approxi-
mation does not work. More importantly, KKT can deal only
with 2-constrained MCP problems, while EDFS can solve the
general k-constrained MCP. We also note that, in all simula-
tion configurations, it takes at least 10 times (up to 30 times)
longer than EDFS for the S R of KKT to be comparable with
that of EDFS when the constraints are very tight, while EDFS
lags no more than 1.3% of S R behind KKT by using 7 times
longer time than KKT does at most, when the constraints
are very loose. Surprisingly, Dijkstra’s algorithm has good
performance at the lowest cost (except when the constraints
are very tight, EDFS takes less time than JSP), even w.r.t.
a simple linear link cost function w(u, v) =

∑ wi (u,v)
ci

, with
which the gap of S R between Dijkstra’s algorithm and the
exact algorithm is no more than 6% for all configurations.

6.2. Performance with multiple constraints

In this section, we investigate the performance of EDFS sub-
ject to three or more constraints. Two new metrics are used
to measure the performance of EDFS, which were first in-
troduced by Yuan [20]. The first metric is the existence per-
centage E P , which is defined as

E P = number of requests routed by exact algorithm
number of total routing requests

(9)

E P actually equals to the success ratio of an exact algorithm,
and indicates how likely a feasible path can be found to meet
the given request. Small E P means that it is difficult to find a
feasible path for the given constraints. Secondly, competitive
ratio C R is defined as

C R = number of requests routed by heuristic algorithm
number of requests routed by exact algorithm

(10)
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Fig. 5 Competitive ratio (CR) of EDFS with three constraints

C R indicates how well a heuristic algorithm can work
against the exact algorithm with the same E P . In what fol-
lows, we use ANSNET as the simulation topology yet with
three weight components for each link, and each of them
is uniformly distributed in (0, 20]. Different constraints are
chosen such that the existence percentage varies from 0.06
to 0.98, then the corresponding competitive ratios of EDFS
with one, three and five executions are measured and plot-
ted respectively in Fig. 5. For each point in Fig. 5, we use
routing requests (source and destination are randomly cho-
sen) with the same constraints over 2000 randomly gener-
ated ANSNET configurations (link weights are different for
each configuration). As we can see, EDFS again performs
well when the constraints are tight. One execution of EDFS
almost has 100% C R when E P is less than 25%, and three
runs of EDFS is sufficient to achieve competitive ratios
that are no less than 95% when the constraints are very
loose.

To study the impact of the number of constraints on the
performance of EDFS, we also conduct two sets of simula-
tions on ANSNET, with the number of constraints varying
from two to eight. In the first set of simulations, constraints
are chosen such that the existence percentages are low, which
are between 0.21 and 0.33. While in the second set, the ex-
istence percentages are high, which are between 0.71 and
0.82. The results are shown in Figs. 6 and 7 respectively.
Again, every point is the average of requests using the same
constraints over 2000 different ANSNET configurations.

As we can see from Figs. 6 and 7, when the E Ps are low
(tight constraints), one execution of EDFS can achieve no less
than 98% competitive ratios for all numbers of constraints,
while three executions of EDFS already can have almost
100% competitive ratios. When the E Ps are hight (loose
constraints), three executions of EDFS are enough to have
about 98% competitive ratios when the number of constraints
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Fig. 6 Low existence percentage (EP) ∼ [0.21, 0.33], ANSNET
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Fig. 7 High existence percentage (EP) ∼ [0.71, 0.82], ANSNET

varies from 2 to 8. Another advantage of EDFS is that its
performance is insensitive to the number of constraints. Both
the CRs with high E Ps and CRs with low E Ps do not vary
much with different number of constraints. This is superior to
approaches using link weight scaling or limited granularity
heuristic, whose performance may drop drastically as the
number of constraints increases, as shown by Yuan [20].

7. Conclusion

We present EDFS, where the key idea is to maintain the
descendant table dT able to deduce possible dominating or
incomparable paths to a finished node and its descendants,
without exploring away from the finished node again. The
running time of EDFS is polynomially bounded by O(m2 ·
E N + N 2). We showed through extensive simulations that
EDFS outperforms other popular MCP algorithms when the
routing constraints are tight or moderate, and is comparable
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with them when the constraints are loose, and its performance
is insensitive to the number of constraints. Another attractive
aspect of EDFS is that the tighter the constraints are, the better
the performance it can achieve, w.r.t. both time complexity
and routing success ratio (running time is even less than that
of Dijkstra’s algorithm when the constraints are very tight).

EDFS is an independent feasible path searching algorithm
and decoupled from the underlying routing protocol, and as
such can work together with either proactive or on-demand
ad hoc routing protocols as long as they can provide sufficient
network state information to each source node.
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