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Abstract

In a genomewide association study (GWAS), investigators typically focus their primary analysis 

on the direct (marginal) associations of each SNP with the trait. Some SNPs that are truly 

associated with the trait may not be identified in this scan if they have a weak marginal effect and 

thus low power to be detected. However, these SNPs may be quite important in subgroups of the 

population defined by an environmental or personal factor, and may be detectable if such a factor 

is carefully considered in a gene-environment (G×E) interaction analysis. We address the question 

“Using a genome wide interaction scan (GWIS), can we find new genes that were not found in the 

primary GWAS scan?” We review commonly used approaches for conducting a GWIS in case-

control studies, and propose a new 2-step screening and testing method (EDG×E) that is optimized 

to find genes with a weak marginal effect. We simulate several scenarios in which our 2-step 

method provides 70–80% power to detect a disease locus while a marginal scan provides less than 

5% power. We also provide simulations demonstrating that the EDG×E method outperforms other 

GWIS approaches (including case only and previously proposed 2-step methods) for finding genes 

with a weak marginal effect. Application of this method to a G × Sex scan for childhood asthma 

reveals two potentially interesting SNPs that were not identified in the marginal-association scan. 

We distribute a new software program (G×Escan, available at http://biostats.usc.edu/software) that 

implements this new method as well as several other GWIS approaches.
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Introduction

Many trait-related variants have been discovered through genomewide association scans of 

direct (marginal) effects [Hindorff et al., 2009]. However, after accounting for variants that 

have been identified, there remains a significant amount of heritability left unexplained for 

most traits. One reason we may not detect important SNPs is that the trait-related variant 

may only elevate risk in a subgroup of the population (e.g. only smokers), or there may be 

opposite genetic effects in different subgroups. Either situation is likely to produce a weak 
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marginal effect that is unlikely to be detected at a genome wide significance level. We will 

show that a genomewide interaction scan (GWIS) using an efficient testing method has the 

potential to identify such SNPs.

It is well known that a standard case-control (CC) analysis of G×E interaction using logistic 

regression generally has poor power. A case-only (CO) analysis [Piegorsch et al., 1994] can 

provide substantially greater power [Yang et al., 1997] but is only valid if G and E are 

independent in the source population. However, if G and E are not independent the CO 

analysis can have an unacceptably high false positive rate. A variety of approaches have 

been recently proposed in an attempt to provide greater power than a CC analysis without 

the potential type I error inflation of a CO analysis. These include empirical Bayes analysis 

[Mukherjee and Chatterjee, 2008], Bayes Model Averaging [Li and Conti, 2009], and 

various two-step approaches that include a screening and a testing step[Kooperberg and 

LeBlanc, 2008; Murcray et al., 2009; Murcray et al., 2011; Hsu et al., 2012]. Each of these 

two-step methods uses information in the case-control data to form a test statistic in the 

screening step that is independent of the test statistic in the testing step. In this paper, we 

describe a novel two-step approach that has greater power than all previously developed 

methods in many circumstances, particularly for a variant with a weak marginal effect that is 

likely to be missed in the primary scan.

Methods

Consider a case-control study consisting of N subjects, with N1 cases and N0=N – N1 

controls, and let Di, i=1,…,N be indicators of disease status. We define Ei, i=1,…N, to be an 

environmental factor, where “environment” is loosely defined to include an exogenous 

environmental variable (e.g., sunlight, air pollution), personal exposure (e.g., smoking, 

dietary fat), or other personal characteristic (e.g., sex, age). We assume for now that E is a 

binary indicator of ‘exposure’ with PE = Pr(E=1) denoting the population exposure 

prevalence. We furthermore assume that M single nucleotide polymorphisms (SNPs) have 

been genotyped on each of the N study subjects. We let qA denote the frequency of the 

minor (less common) allele “A” for a given SNP and let “a” denote the more common allele. 

For use in a statistical model, each SNP will be denoted Gi, i=1,…,N. In a GWAS, G is 

often coded according to an additive model, specifically G = 0, 1, or 2 for genotype aa, Aa, 

or AA, respectively. However, G could also be coded according to a dominant (G indicates 

AA or Aa genotype), recessive (G indicates AA genotype), or codominant (pair of indicators 

coding the 3 genotypes) model. For simplicity, we assume there is a single disease 

susceptibility locus (DSL), although the methods we develop can uncover multiple DSLs if 

they exist.

Marginal (G) association

In a case-control study, the marginal effect of a gene (G) on disease (D) is typically 

measured by the genetic odds ratio ORG, which can be obtained as exp(λG) from a logistic 

regression model of the form:

(1)
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Additional adjustment covariates can be included in this model if needed. A standard 

GWAS of marginal effects is conducted by testing the null hypothesis λG=0 for each of M 

SNPs in turn, for example using a likelihood ratio chi-squared test (SDG) and significance 

level chosen to preserve the family-wise error rate (FWER). In the presence of an exposure 

factor (E) and a gene-environment (G×E) interaction, ORG is a weighted average of the 

corresponding genetic odds ratios in each exposure group (ORG|E) if G is independent of E. 

If G is associated with E, then ORG is also a weighted average if one includes E in Equation 

1 as a covariate. The same magnitude of ORG can result from quite different underlying 

patterns for the interactive effects of G and E on D.

Case-control (CC) test of G×E

In follow-up to the primary scan, one could augment the model in Equation 1 to test each 

SNP in turn for a multiplicative G×E interaction using the model

(2)

based on testing the null hypothesis βG×E=0 using test statistic SG×E. The quantity 

ORG×E=exp(βG×E) is the interaction odds ratio, the genetic effect in exposed individuals 

relative to the genetic effect in unexposed (i.e. ORG|E=1 / ORG|E=0). We denote analysis 

using this model as the standard case-control (CC) approach.

Case-only (CO) analysis

A more powerful test of G×E interaction can be obtained using a case-only (CO) analysis, in 

which association is tested between E and each SNP in affected individuals. Assuming a 

binary exposure factor, case-only analysis can be based on the model

(3)

The quantity exp(γG×E) is a consistent estimator of the G×E relative risk ratio[Piegorsch et 

al., 1994; Yang and Khoury, 1997] provided G and E are independent in the source 

population. A GWIS using the CO approach tests the null hypothesis that γG×E = 0 for each 

of the M SNPs, with correction to preserve the FWER. A CO analysis can be substantially 

more powerful than a CC analysis [Yang et al., 1997], being equivalent to a comparable case 

control analysis with infinitely many controls, but it depends critically on the assumption of 

population-level G-E independence. Population-level G-E association can occur for SNPs 

that have a real effect on E, for example for gene variants that affect smoking behavior 

[Hodgson et al., 2012]. However, a factor (e.g. population sub-structure) that is associated 

with both E and SNP allele frequencies, can also induce spurious G-E associations. Either 

situation leads to invalid CO analysis and can produce an unacceptably high false positive 

rate [Mukherjee et al., 2012].

Empirical Bayes (EB)

Bayesian approaches, including Bayes model averaging [Li and Conti, 2009] and empirical 

Bayes (EB, [Mukherjee et al., 2010]), have been proposed for integrating direct information 

from a CC model with G-E correlation from a CO analysis. For example, in EB analysis a 
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Wald test statistic SEB is formed based on a weighted average of βG×E and γG×E with 

variance that is a function of the corresponding variances of these estimators. While both 

Bayesian approaches can provide greater power than a CC analysis, they can also have 

inflated Type I errors (though not as highly inflated as a CO analysis) in the presence of 

population-level G-E correlation [Mukherjee et al., 2010; Murcray et al., 2011]. For 

additional details see Mukherjee and Chatterjee [Mukherjee and Chatterjee, 2008].

Existing 2-step methods

Several two-step methods have been proposed to conduct a GWIS [Kooperberg and 

LeBlanc, 2008; Li and Conti, 2009; Murcray et al., 2009; Gauderman et al., 2010; 

Mukherjee et al., 2010; Murcray et al., 2011; Mukherjee et al., 2012], all of which generally 

provide greater power than a CC analysis while preserving the Type I error rate. A key 

requirement for any of the two-step methods is independence of the Step 1 screening and 

Step 2 testing statistics. All of the 2-step methods described below achieve this 

independence [Dai et al., 2012].

2-Step, DG | EB—Kooperberg and LeBlanc [Kooperberg and LeBlanc, 2008] proposed a 

2-step procedure that uses the marginal DG association statistic SDG to screen SNPs at 

Step-1 significance level α1. They proposed testing the subset m << M SNPs that pass the 

Step-1 screen using Step-2 test statistic SG×E, with Bonferroni-corrected significance level 

α/m to preserve the FWER. This ‘DG|G×E’ approach was found to be less powerful than an 

alternative, DG|EB, in which screening is still based on SDG but EB analysis is used for 

Step-2 testing[Hsu et al., 2012]. We implement the latter in our comparisons.

2-Step, EG | G×E—Murcray et al.[Murcray et al., 2009] demonstrated that in the presence 

of G×E interaction, there is an induced correlation between G and E in the combined case-

control sample. In other words, based on the model

(4)

applied to the full sample of cases and controls, one can expect δG ≠ 0 in the presence of 

G×E interaction. As a Step 1 screen, they proposed testing H0:δG = 0 at significance level α1 

using a likelihood ratio chi-squared test statistic (SEG). As in the DG approach, they 

proposed testing the subset m << M SNPs that pass the screen using Step-2 test statistic 

SG×E at significance level α/m. The use of the model in Equation 4 rather than the case-only 

model in Equation 2 preserves the necessary independence between Steps 1 and 2[Dai et al., 

2012]. Murcray et al. also proposed a hybrid method (H2) that involved running both the 

DG and EG screening approaches in parallel, and adjusting the second step significance 

level to account for both sets of tests[Murcray et al., 2011].

2-Step, ‘Cocktail’—Hsu et al.[Hsu et al., 2012] proposed a different type of hybrid 

approach that mixes the different screening and testing statistics in an attempt to maximize 

efficient use of the data. In their ‘Cocktail I’ approach, they proposed a screening statistic 

SCT = SDG if the p-value corresponding to SDG is less than some threshold (they suggest 

0.001), and SCT = SEG otherwise. The Step-2 test is based on the test statistic (SEB) from an 

EB analysis if SCT=SDG and on SG×E if SCT=SEG. The use of different statistics in Step 2 is 
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required to guarantee independence of the Step 1 and 2 tests. They furthermore suggested 

the use of weighted hypothesis testing[Ionita-Laza et al., 2007] (described below) in Step 2 

rather than testing only a subset of SNPs that pass a Step-1 threshold. They showed that 

Cocktail I provides greater power than all of the approaches described above for most of the 

models they considered. They also proposed a variant on this approach (Cocktail II) based 

on defining SCT as the maximum of SDG and SEG. In general, though, they found Cocktail I 

to have greater power than Cocktail II. We implement Cocktail I (called simply Cocktail) in 

our comparisons.

New 2-Step Method: EDG×E

The motivation for this new method comes from inspection of the standard retrospective 

likelihood for case-control data, which is based on the following conditional probability:

(5)

Here ‘Asc’ denotes the ascertainment scheme used to obtain cases and controls. The first 

factor on the right hand gives rise to the model in Equation 2, and thus parameterizes both 

DG association and G×E interaction. The second factor can be expressed by the model in 

Equation 4 and captures EG association induced by the oversampling of cases from the 

source population. Previously proposed 2-step methods use different parts of the information 

contained in this likelihood to enhance power over a simple test of only G×E. For example, 

Kooperberg and LeBlanc[Kooperberg and LeBlanc, 2008] use DG information to screen and 

G×E to test, while Murcray et al.[Murcray et al., 2009] use EG to screen and G×E to test. 

The H2 hybrid method [Murcray et al., 2011] and Cocktail method[Hsu et al., 2012] 

consider both DG and EG information in screening, but ultimately use one or the other 

source of information to prioritize SNPs for testing in Step 2.

We propose a novel 2-step approach that uses all available surrogate information, i.e. both 

EG and DG association information combined, to screen SNPs. Specifically, for each of the 

M SNPs, we propose computing Step-1 screening statistic SEG+DG = SEG + SDG, i.e. the 

sum of the EG and DG statistics described above. The two test statistics SEG and SDG are 

independent[Dai et al., 2012], and each follows a central chi-squared distribution with 1 

degree of freedom (df) under their respective null hypotheses. Thus, SEG+DG follows a 

central chi-squared distribution with 2 df under the joint null H0: λG = δG = 0. The Step-2 

test is based on SG×E, which is independent of (SEG, SDG) [Dai et al., 2012] and thus is also 

independent of their sum SEG+DG. The name EDG×E derives from Eg+Dg screening, with 

G×E testing. One can use either subset testing or weighted hypothesis testing in Step 2 (see 

below).

Hypothesis testing approaches in Step 2

As described above, some have proposed the use of subset testing and others weighted-

hypothesis testing in Step 2. In the former, the analyst specifies α1, the significance 

threshold to pass Step 1. A larger value of α1 will increase the chance of passing a truly 

associated SNP into Step 2, but at the cost of also increasing the number of unassociated 
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SNPs that pass into Step 2. A lower value of α1 leads to lower m and thus greater power in 

Step 2, but at the potential cost of screening out a true SNP.

Rather than restrict Step-2 testing to a subset of the SNPs, one can test all M SNPs in Step 2 

using a weighted significance level based on the ordered p-values from Step 1. The 

weighting scheme is designed to allocate a larger fraction of the genomewide significance 

level α to the most significant SNPs in Step 1. As proposed by Ionita-Laza et al.[Ionita-Laza 

et al., 2007], the B most significant (lowest p-value) SNPs based on Step 1 are evaluated in 

Step 2 at significance level (α/2)/B, the next 2B SNPs are evaluated at (α/4)/(2B), the next 

4B at (α/8)/(4B), etc. For example, when B=5 and α=0.05, the top 5 SNPs from Step 1 are 

tested in Step 2 at significance level 0.005, the next 10 at 0.00125, etc. This weighting 

scheme guarantees that the overall significance level for the entire procedure does not 

exceed α Under this weighting scheme, the top SNPs from Step 1 are tested at a more liberal 

significance threshold than the standard 5 × 10−8 level required in a standard exhaustive 

scan of all M SNPs (using CC, CO, or EB), and probably also a more liberal level than the 

threshold α/m required in subset testing. However, for the majority of SNPs not in the top 

bins, weighted testing will have a more stringent threshold than 5 × 10−8. This indicates the 

importance of using an efficient Step-1 screening approach with strong likelihood of highly 

ranking any SNP with a true interaction.

Simulation Study

We use simulation to confirm the Type I error rates and to compare power of all of the 

above procedures. In all simulations we generated 2,000 replicate datasets, each consisting 

of equal numbers of cases and controls, and M=1 million SNPs. One SNP was designated as 

the DSL, assumed to have a G×E interaction effect on the trait. We considered two types of 

interaction models: 1) a modest interaction effect size (ORG×E=1.5), with marginal 

environmental effect size ORE=1.2, common exposure (pE=0.4), and common variant 

(qA=0.225, yielding 40% carriers under a dominant model), and 2) a stronger interaction 

effect (ORG×E=2.0), with ORE=1.25 and less common exposure (pE=0.10), and variant 

(qA=0.134, yielding 25% carriers). For each of these interaction models, we performed 

multiple simulations varying the magnitude of the marginal genetic effect (ORG) from 1.0 to 

1.35. These settings yielded a wide range of underlying disease risk models, encompassing 

both qualitative (effects of G in opposite directions depending on E) and quantitative (effects 

of G in the same direction but of differing magnitudes across levels of E) models of G×E 

interaction (Table 1). For each of the remaining M – 1 loci, we randomly sampled an allele 

frequency from a uniform distribution on the range 0.10 to 0.40. In our base model, none of 

these loci was associated with E or with disease. However, we considered alternative models 

in which 0.00001 or 0.00005 (corresponding to 10 or 50) of the 1 million SNPs were 

correlated with E in the population. We also considered an alternative model in which 10 

loci had a marginal (but no G×E) association with disease, with odds ratios for these 10 loci 

randomly sampled from a uniform distribution on the range 1.1 to 1.5. For all of the two-

step methods (DG|EB, EG|G×E, H2, Cocktail, and EDG×E), we adopted weighted 

hypothesis testing in Step 2 and assumed an initial bin size of B=5 SNPs.
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For each replicate data set, we performed genomewide analyses of G×E interaction using all 

of the methods described above. A dominant risk model was assumed in all analyses. The 

Type I error rate for each method was estimated as the proportion of replicates in which at 

least one of M – 1 non-DSL SNPs was declared statistically significant at a FWER of α = 

0.05. Power for each method was estimated as the proportion of replicates in which the DSL 

was identified as statistically significant. For each model, we also estimated power to detect 

the marginal effect of the DSL, based on Equation 1, to quantify the chance that the locus 

would have been identified in the primary G only scan. To explore the robustness of our 

power comparisons, we varied selected model and method settings around a base model 

with ORG×E=1.5, ORG=ORE=1.2, qA=0.225, and pE=0.4.

Asthma Analysis

Asthma is the most common chronic disease in children, with an estimated prevalence of 

12.5% for diagnosis by a doctor before age 18[Merrick et al., 2005]. Prior GWAS scans 

have identified several loci that have a marginal association with asthma[Moffatt et al., 

2010; Torgerson et al., 2011]. Asthma prevalence in children is known to vary by sex, 

particularly at young ages, with males exhibiting greater prevalence than females[Osman et 

al., 2007]. It is possible that this difference in prevalence is partly due to sex-specific effects 

of some genetic variants, for example if some sex-related personal characteristic such as 

hormone level has an effect on gene penetrance, or if there is a sex-specific difference in an 

environmental exposure that modifies gene penetrance. Thus, in an attempt to identify 

additional SNPs not found in the primary scans, we used the methods described in this paper 

to conduct a genomewide scan for G×Sex interaction.

We use data from the Children’s Health Study (CHS) to conduct this analysis. The CHS is 

an ongoing cohort study spanning 16 southern California communities, investigating both 

genetic and environmental factors related to childhood asthma[McConnell et al., 2006] and 

lung function growth[Gauderman et al., 2007]. The CHS GWAS was based on a nested 

case-control sample selected from the Hispanic White (HW) and non-Hispanic White 

(NHW) children within the CHS cohorts. Based on questionnaire responses by parents, the 

presence or absence of doctor-diagnosed asthma, and for asthmatics the age of onset, were 

determined. For our analysis of G×Sex interaction, we focused on the subset of early-onset 

asthmatics, defined as reported asthma diagnosis prior to age 6. Controls were defined as 

subjects that were asthma free at age 6. A total of 2,382 HW or NHW subjects, including 

631 cases and 1,751 controls were included in the analysis. Study samples were genotyped 

at the University of Southern California Genomic Center using the Illumina HumanHap550 

or Human 610 Quad BeadChip microarrays. After quality control, a total of 536,857 SNPs 

were available for analysis. The CHS protocol was approved by the institutional review 

board for human studies at the University of Southern California, and written consent was 

provided by a parent or legal guardian for every study participant.
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Results

Simulation Study

The CC and all 2-step methods achieved the nominal Type I error rate, whether or not some 

of the non-DSL SNPs had population level G-E correlation or marginal associations with 

disease (Table II). As expected, the CO analysis had unacceptably high Type I error rates 

when even a small fraction of the SNPs had G-E correlation in the population, but achieved 

nominal levels in the absence of such correlation. All 2-step methods also achieved the 

nominal Type I error rate using subset testing and for several alternative settings of model 

parameters (e.g. pE, ORE, data not shown).

Power to detect an interaction of magnitude ORG×E=1.5 with 3,500 cases and 3,500 controls 

was quite low using the standard CC method (Figure 1a). As expected, a case-only analysis 

provided substantially higher power than a CC analysis, and EB provided power that was 

midway between CO and CC. Power for all three of these exhaustive approaches was nearly 

independent of the size of the marginal G effect (ORG). On the other hand, power of the 2-

step methods that utilize marginal G information in their screening step (DG|EB, H2, 

cocktail, and EDG×E) depended strongly on the size of ORG. Of these 2-step methods, 

EDG×E was the most powerful when the magnitude of ORG was small to moderate (in the 

range 1.10 to 1.25). For example, when ORG=1.2, power for EDG×E was 85% compared to 

70% for Cocktail, 68% for H2, 63% for EG|G×E, and 66% for DG|EB. The EDG×E method 

was also more powerful than a case-only scan when ORG > ~1.12. Power for DG|EB and 

Cocktail was about 5% higher than EDG×E when ORG > 1.35, although at this and larger 

magnitudes of ORG it is likely that the DSL would be identified in the marginal G-only 

scan. Similar trends were observed when the interaction effect size was larger (ORG×E=2.0, 

Figure 1b), with EDG×E providing more power than other 2-step alternatives for a wider 

range of ORG (1.10 to 1.30).

All 2-step methods provided greater power than the exhaustive CC or EB scans over a wide 

range of models (Table III). The H2, Cocktail and EDG×E methods also outperformed the 

case-only analysis in most scenarios. The improved power for EDG×E over other 2-step 

methods when ORG=1.2 (Base model) was robust to variations in DSL allele frequency 

(qA), exposure frequency (pE), exposure effect size (ORE), bin size for weighted testing (B), 

and the presence of 10 additional loci with an effect on disease (G-D associations). Power 

for EDG×E was also greater than other 2-step methods if 10 SNPs were correlated with E in 

the population (G-E association), and greater than all but DG|EB if 50 SNPs were correlated 

with E. Power of all 2-step methods was higher if there was a positive correlation between 

the DSL and E in the population (ORDSL-E=1.2), but much lower if there was a negative 

correlation (ORDSL-E=0.8).

It is clear from Table III that the Cocktail and EDG×E methods are generally the most 

powerful methods across a range of scenarios. To further compare these two methods, we 

examined the ability of each to place the DSL among the highest ranked SNPs based on 

their respective Step 1 screens. For each of the models shown in Table III, Table IV shows 

the geometric mean rank of the Step-1 DSL p-values across replicate data sets, as well as the 

distribution across replicates of the DSL into Step-2 testing bins 1, 2, etc. As an example, for 
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the base model, the geometric mean Step-1 rank of the DSL was 2.3 (out of 1 million) using 

the EDG×E screen while it was 42.4 for the Cocktail screen. In addition, the DSL was 

among the top 5 SNPs (and thus in Bin 1 with most liberal Step 2 significance threshold) for 

82% of the replicates using the EDG×E screen but for only 30% using the Cocktail screen. 

In general, the EDG×E screen more effectively ranked the DSL at the top of the Step 1 list 

than the Cocktail method across a wide range of models.

All of the above results were based on weighted hypothesis testing in Step 2. For the 

EDG×E method we also examined the power using subset testing, considering a range of 

possible settings of α1, the Step-1 significance threshold (Table V). Across most models, the 

highest power for subset testing occurred when a relatively small subset of markers (in the 

range of 10 to 100) was passed to Step 2. Note that power was significantly reduced with α1 

set to 0.05 or 0.01, thresholds that have been suggested in prior 2-step methods [Kooperberg 

and LeBlanc, 2008; Murcray et al., 2009]. However, except when there was a substantial 

number of markers with G-E correlation in the population, no choice of α1 led to as much 

power as could be achieved using weighted testing.

Asthma Analysis

Exhaustive CC, CO, and EB scans for G × Sex interaction related to early-onset asthma did 

not produce any associations close to being genome-wide significant (Figure 2). The QQ 

plots for these analyses provide evidence that p-values were conservatively estimated for 

SNPs yielding more extreme configurations of G, E, and D (and thus the lowest p-values), 

likely due to our modest sample size. The QQ plot for the Step 1 screen of the EDG×E 

method (Figure 3) demonstrates that the p-values corresponding to the SDG+EG statistic are 

consistent with the assumed 2-df chi-squared distribution. Indirectly, this QQ plot also 

shows that linkage disequilibrium among SNPs (present in these real data) does not affect 

the validity of the EDG×E screening test. Beginning at the upper end of this Step-1 QQ 

distribution, SNPs are placed by their rank-order into bins for Step-2 weighted hypothesis 

testing (we assume initial Bin size of 5). As shown in the Manhattan plot of Figure 3, one 

SNP in the first bin and one SNP in the second bin are close to their respective bin-specific 

significance thresholds. The first-bin SNP is rs6842542 (MAF=0.17), located on 

chromosome 4 near the GRIA2 locus, with Step-1 screening p-value 2.9×10−6 and Step-2 

testing p-value 0.011 (Table VI). This locus exhibits a qualitative interaction, with 

ORG | sex=F = 1.13 per allele for females and ORG | sex=M = 0.69 for males. The second-bin 

SNP is rs7000310 (MAF=0.20) and has Step-1 screening p-value 1.1×9×10−5 and Step-2 

testing p-value 0.0017. This SNP is located on chromosome 8q24 near the TNFRSF11B 

locus, a member of the TNF-receptor super-family. This locus exhibits a pure interaction, 

with no effect in females (ORG | sex=F = 0.99) and a strong effect in males (ORG | sex=M = 

1.78). Neither of these SNPs or regions has been previously identified in marginal-effects 

scans of asthma, and although neither achieved 2-step genomewide significance, they are 

candidates for further investigation (e.g. in-silico replication analysis) in independent 

samples.
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Discussion

We have presented a variety of scenarios for G×E interaction that produce a small marginal 

genetic effect. These kinds of loci are exactly the ones that are likely to be missed in our 

primary GWAS scans. While the potential importance of G×E interaction has been 

recognized for many diseases, poor power of a CC analysis and the potential biases in a CO 

analysis have likely reduced enthusiasm by investigators to conduct GWIS in their available 

samples. Prior investigations have shown that two-step methods can provide greater power 

than a CC analysis, and often greater power than a CO analysis. In this paper, we introduced 

a novel 2-step GWIS method that generally provides greater power than any other 2-step 

GWIS method when the marginal effect is small (ORG is less than 1.3). This new approach 

may therefore provide the best opportunity to identify novel loci via GWIS analysis. We 

have developed a comprehensive and computationally efficient G×E analysis program that 

implements all of the methods described in this paper (G×Escan, available at http://

biostats.usc.edu/software). For example, G×Escan required only 30 minutes on a single PC 

processor to conduct all analyses for the G×Sex scan in the CHS.

While we described the EDG×E method in the context of a binary environmental factor, we 

note that ‘E’ can be replaced by a quantitative exposure (e.g. air pollution), a personal factor 

(e.g. sex), or even a pre-specified candidate gene (e.g. GSTM1 genotype). An important 

concern in a GWIS is the availability of additional studies with comparable exposure data 

that can be used to replicate top G×E signals. Factors such as BMI or ever/never smoking 

are likely to be widely available, while variables such as dietary fat intake or pack-years of 

tobacco smoking may only have been measured in a limited number of studies. The 

investigator considering a GWIS needs to think carefully about the tradeoff between a high-

quality exposure variable that may have little hope of being replicated compared versus a 

cruder exposure variable that may carry less information but be more widely available. In 

practice, it might be useful if results using the cruder but more widely available measure are 

routinely provided in an online supplement to enable meta-analyses of G×E interaction.

Instead of testing for G×E interaction, investigators may choose to simply repeat their 

marginal-effects scan focused on a specific exposure subgroup (e.g. a GWAS in smokers 

only). However, a genetic effect may be concentrated in either the exposed (e.g. smokers) or 

unexposed (e.g. non-smokers) subjects. Performing scans in both subgroups would 

ultimately reduce the power to detect G within either subgroup because of the additional 

multiple-testing correction required. On the other hand, power to detect a G×E interaction 

does not depend strongly on the direction of the effect.

For the models we considered, we have shown that adding Step-1 statistics (SDG + SEG) 

provides a more efficient screen than the Cocktail approach of using the maximum of the 

SDG and SEG statistics. When an interaction induces both a DG association and an EG 

correlation, our summation screen effectively uses both sources of information to prioritize 

SNPs for Step 2 testing. By taking only the maximum statistic to prioritize, the interaction 

information carried by the remaining statistic is not being utilized. There are alternative 

approaches one might adopt for combining Step-1 statistics, and we suggest this as a topic 

for future investigation.
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The resources needed to conduct a GWIS are a proverbial drop in the bucket given the very 

large financial investment that has already been made in GWAS genotyping. We have 

highlighted the potential of a GWIS to identify novel SNPs. A fringe benefit of conducting 

GWIS is the potential to identify genes with modifiable effects and potentially susceptible 

subpopulations that would benefit from exposure modification. Successful identification of a 

G×E interaction may be the first step in learning about an important pathway, or may lead to 

additional studies, for example targeted sequencing, gene expression, or epigenetic studies 

focused on exposed or unexposed subjects. Although more efficient, the EDG×E approach 

still requires substantial sample sizes to achieve good power for detecting modest-sized 

interactions. For many traits, use of data from a consortium of genomewide association 

studies may provide the best opportunity for conducting a GWIS to uncover novel SNPs.
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Figure 1. 

Power to detect G×E interaction across a range of magnitudes for the marginal G effect 

(ORG) for several 2-step and exhaustive scan methods, with 3,500 cases and 3,500 controls 

(see Table 1 for additional details).

A) Moderate interaction with common G and E (ORG×E=1.5, qA=0.23, pE=0.40)

B) Strong interaction with less common G and E (ORG×E=2.0, qA=0.14, pE=0.10)
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Figure 2. 

Quantile-quantile and Manhattan plots for case-control (CC), case-only (CO), and empirical-

Bayes (EB) analysis of 536,857 SNPs for G × Sex interaction with young-onset childhood 

asthma.
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Figure 3. 

Analysis of 536,857 SNPs for G × Sex interaction with young-onset childhood asthma using 

the EDG×E method. Shown are the QQ plot from Step 1 and the Manhattan plot from 

weighted Step-2 testing, with testing-bin assignment in Step 2 determined by Step-1 

screening p-value. The initial bin size is B=5 SNPs, and each successive bin includes twice 

as many SNPs as the preceding bin.

Gauderman et al. Page 15

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gauderman et al. Page 16

T
a
b

le
 I

M
o
d
el

s 
o
f 

G
×

E
 i

n
te

ra
ct

io
n
 t

h
at

 p
ro

d
u
ce

 t
h
e 

in
d
ic

at
ed

 m
ar

g
in

al
 g

en
et

ic
 e

ff
ec

t 
si

ze
 (

O
R

G
)

O
R

G
×

E
=

 1
.5

O
R

G
×

E
=

 2
.0

O
R

G
O

R
G

|E
=

0
O

R
G

|E
=

1
T

y
p

e
O

R
G

|E
=

0
O

R
G

|E
=

1
T

y
p

e

1
.0

0
0
.8

3
1
.2

7
0
.9

1
1
.8

4

1
.0

5
0
.8

8
1
.3

3
0
.9

5
1
.9

2

1
.1

0
0
.9

2
1
.3

9
1
.0

0
1
.9

9

1
.1

5
0
.9

6
1
.4

4
1
.0

5
2
.0

8

1
.2

0
1
.0

0
1
.5

0
1
.0

9
2
.1

5

1
.2

5
1
.0

4
1
.5

5
1
.1

4
2
.2

3

1
.3

0
1
.0

8
1
.6

1
1
.1

8
2
.3

0

1
.3

5
1
.1

2
1
.6

7
1
.2

3
2
.3

8

E
x
p
o
su

re
-s

p
ec

if
ic

 g
en

et
ic

 o
d
d
s 

ra
ti

o
s 

(O
R

G
|E

) 
th

at
 p

ro
d
u
ce

 t
h
e 

in
d
ic

at
ed

 m
ar

g
in

al
 O

R
G

, 
fo

r 
a 

m
o
d
er

at
e 

(O
R

G
×

E
=

1
.5

, 
w

it
h
 q

A
=

0
.2

3
 a

n
d
 p

E
=

0
.4

) 
an

d
 s

tr
o
n
g
 (

O
R

G
×

E
=

2
.0

, 
w

it
h
 q

A
=

0
.1

4
 a

n
d
 p

E
=

0
.1

0
) 

in
te

ra
ct

io
n
. 
T

h
e 

T
y
p
e 

sh
o
w

s 
th

e 
p
at

te
rn

 o
f 

ri
sk

 f
o
r 

ca
rr

ie
rs

 (
G

=
1
, 
d
as

h
ed

 l
in

e)
 r

el
at

iv
e 

to
 n

o
n
ca

rr
ie

rs
 (

so
li

d
 l

in
e)

 i
n
 s

u
b
je

ct
s 

w
it

h
 E

=
0
 (

le
ft

 s
id

e 
o
f 

ea
ch

 g
ra

p
h
) 

o
r 

E
=

1
 (

ri
g
h
t 

si
d
e)

.

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gauderman et al. Page 17

T
a
b

le
 I

I

T
y
p
e 

1
 e

rr
o
r 

ra
te

s 
fo

r 
te

st
s 

o
f 

G
×

E
 i

n
te

ra
ct

io
n
 a

cr
o
ss

 s
ev

er
al

 m
et

h
o
d
s

E
x
h

a
u

st
iv

e 
S

ca
n

s
2
-S

te
p

 M
et

h
o
d

s

M
o
d

el
C

C
C

O
E

B
D

G
|E

B
E

G
|G

×
E

H
2

C
o
ck

ta
il

E
D

G
×

E

B
a
se

*
0
.0

4
1

0
.0

5
7

0
.0

4
6

0
.0

4
6

0
.0

5
2

0
.0

4
5

0
.0

4
8

0
.0

4
5

P
o
p

u
la

ti
o
n

 G
-E

 A
ss

o
ci

a
ti

o
n

&

1
0
 S

N
P

s
0
.0

4
2

1
.0

0
0

0
.0

4
2

0
.0

4
8

0
.0

4
8

0
.0

4
5

0
.0

5
0

0
.0

4
6

5
0
 S

N
P

s
0
.0

4
2

1
.0

0
0

0
.0

4
8

0
.0

4
5

0
.0

4
4

0
.0

4
8

0
.0

4
6

0
.0

5
1

G
-D

 A
ss

o
ci

a
ti

o
n

&
&

1
0
 S

N
P

s
0
.0

3
9

0
.0

3
7

0
.0

3
8

0
.0

4
2

0
.0

4
6

0
.0

4
7

0
.0

4
4

0
.0

4
8

B
o
th

 G
-E

 a
n

d
 G

-D
 A

ss
o
c

1
0
 G

-E
 S

N
P

s,
 1

0
 G

-D
 S

N
P

s
0
.0

4
9

1
.0

0
0

0
.0

4
6

0
.0

4
0

0
.0

4
8

0
.0

4
2

0
.0

4
8

0
.0

5
0

5
0
 G

-E
 S

N
P

s,
 1

0
 G

-D
 S

N
P

s
0
.0

4
9

1
.0

0
0

0
.0

4
6

0
.0

4
3

0
.0

4
6

0
.0

4
8

0
.0

4
4

0
.0

4
9

E
ac

h
 e

st
im

at
e 

o
f 

T
y
p
e 

I 
er

ro
r 

is
 b

as
ed

 o
n
 t

h
e 

p
ro

p
o
rt

io
n
 o

f 
2
,0

0
0
 r

ep
li

ca
te

 d
at

as
et

s 
fo

r 
w

h
ic

h
 t

h
e 

in
d
ic

at
ed

 p
ro

ce
d
u
re

 i
d
en

ti
fi

ed
 a

t 
le

as
t 

o
n
e 

st
at

is
ti

ca
ll

y
 s

ig
n
if

ic
an

t 
re

su
lt

 a
m

o
n
g
 9

9
9
,9

9
9
 n

o
n
-D

S
L

 S
N

P
s.

 S
ee

 

M
et

h
o
d
s 

fo
r 

d
es

cr
ip

ti
o
n
 o

f 
ea

ch
 a

p
p
ro

ac
h
.

* T
h
e 

B
as

e 
m

o
d
el

 i
s 

d
es

cr
ib

ed
 i

n
 M

et
h
o
d
s 

an
d
 h

as
 n

o
 S

N
P

s 
w

it
h
 G

-E
 o

r 
G

-D
 a

ss
o
ci

at
io

n

&
N

u
m

b
er

 o
f 

n
o
n
-D

S
L

 S
N

P
s 

si
m

u
la

te
d
 t

o
 h

av
e 

a 
p
o
p
u
la

ti
o
n
-l

ev
el

 a
ss

o
ci

at
io

n
 w

it
h
 E

&
&

N
u
m

b
er

 o
f 

n
o
n
-D

S
L

 S
N

P
s 

si
m

u
la

te
d
 t

o
 h

av
e 

an
 e

ff
ec

t 
o
n
 d

is
ea

se
 r

is
k
 (

b
u
t 

n
o
 G

×
E

 i
n
te

ra
ct

io
n
)

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gauderman et al. Page 18

T
a
b

le
 I

II

P
o
w

er
 t

o
 d

et
ec

t 
th

e 
D

is
ea

se
 S

u
sc

ep
ti

b
il

it
y
 L

o
cu

s 
(D

S
L

) 
ac

ro
ss

 a
 r

an
g
e 

o
f 

m
o
d
el

s 
an

d
 m

et
h
o
d
s

E
x
h

a
u

st
iv

e 
S

ca
n

s
2
-S

te
p

 M
et

h
o
d

s

M
o
d

el
*

C
C

C
O

E
B

D
G

|E
B

E
G

|G
×

E
H

2
C

o
ck

ta
il

E
D

G
×

E

B
a
se

**
0
.0

9
3

0
.6

7
9

0
.4

0
0

0
.6

6
2

0
.6

2
9

0
.6

8
3

0
.7

0
3

0
.8

4
7

q
A

0
.1

5
0
.0

5
1

0
.5

2
3

0
.2

5
9

0
.5

1
8

0
.4

7
3

0
.5

2
1

0
.5

6
3

0
.7

2
7

0
.3

0
0
.1

0
0

0
.6

6
1

0
.3

8
1

0
.6

5
4

0
.6

0
8

0
.6

7
6

0
.7

1
1

0
.8

4
5

p
E

0
.2

5
0
.0

3
6

0
.4

7
4

0
.2

3
3

0
.5

4
6

0
.4

1
2

0
.4

9
9

0
.5

6
5

0
.6

9
8

0
.5

0
0
.0

9
8

0
.6

7
5

0
.3

8
8

0
.6

6
8

0
.6

2
1

0
.6

8
6

0
.7

1
7

0
.8

3
9

M
a
rg

in
a
l 

O
R

E

1
.5

0
.0

9
7

0
.6

8
9

0
.3

8
1

0
.6

5
7

0
.6

9
3

0
.7

2
4

0
.7

3
2

0
.8

5
6

1
.8

0
.1

0
6

0
.6

6
6

0
.3

8
2

0
.6

2
6

0
.7

1
0

0
.7

1
4

0
.7

0
7

0
.8

5
2

B
in

 s
iz

e 
(B

)

1
0

0
.0

9
6

0
.6

6
6

0
.3

8
0

0
.6

6
9

0
.6

1
3

0
.6

7
3

0
.7

1
6

0
.8

1
1

2
0

0
.0

9
9

0
.6

8
1

0
.3

7
2

0
.6

8
8

0
.6

2
6

0
.6

6
2

0
.7

3
3

0
.8

0
0

D
S

L
-E

 A
ss

o
ci

a
ti

o
n

**
*

O
R

D
S

L
-E

=
0
.8

0
.0

8
6

0
.0

0
3

0
.0

3
1

0
.2

3
4

0
.0

0
4

0
.3

0
9

0
.1

9
0

0
.2

5
8

O
R

D
S

L
-E

=
1
.2

0
.0

8
4

0
.9

9
9

0
.1

5
1

0
.5

6
8

0
.9

0
8

0
.8

6
7

0
.7

0
5

0
.9

0
8

G
-E

 A
ss

o
ci

a
ti

o
n

&

1
0
 S

N
P

s
0
.0

9
7

N
A

0
.3

6
5

0
.6

5
4

0
.5

5
8

0
.6

3
0

0
.6

7
8

0
.7

4
7

5
0
 S

N
P

s
0
.0

9
3

N
A

0
.3

9
4

0
.6

4
8

0
.4

3
5

0
.5

4
7

0
.5

5
3

0
.6

0
0

G
-D

 A
ss

o
ci

a
ti

o
n

&
&

1
0
 S

N
P

s
0
.0

8
8

0
.6

8
3

0
.4

0
0

0
.6

3
8

0
.6

2
6

0
.6

8
1

0
.6

9
4

0
.8

3
1

E
ac

h
 e

st
im

at
e 

o
f 

p
o
w

er
 i

s 
b
as

ed
 o

n
 t

h
e 

p
ro

p
o
rt

io
n
 o

f 
2
,0

0
0
 r

ep
li

ca
te

 d
at

as
et

s 
fo

r 
w

h
ic

h
 t

h
e 

in
d
ic

at
ed

 p
ro

ce
d
u
re

 a
ch

ie
v
ed

 s
ta

ti
st

ic
al

 s
ig

n
if

ic
an

ce
 f

o
r 

G
×

E
 i

n
te

ra
ct

io
n
 a

t 
th

e 
D

S
L

* E
ac

h
 m

o
d
el

 v
ar

ie
s 

th
e 

in
d
ic

at
ed

 p
ar

am
et

er
 f

ro
m

 t
h
e 

B
as

e 
m

o
d
el

 s
et

ti
n
g
. 
A

ll
 r

es
u
lt

s 
ar

e 
b
as

ed
 o

n
 a

 s
am

p
le

 s
iz

e 
o
f 

3
,5

0
0
 c

as
es

 a
n
d
 3

,5
0
0
 c

o
n
tr

o
ls

 a
n
d
 a

 t
o
ta

l 
o
f 

1
 m

il
li

o
n
 S

N
P

s

**
T

h
e 

B
as

e 
m

o
d
el

 h
as

 q
A

=
0
.2

3
, 
p
E

=
0
.4

0
, 
O

R
G

×
E

=
1
.5

, 
O

R
G

=
1
.2

, 
O

R
E

=
1
.2

, 
In

it
ia

l 
B

in
 s

iz
e 

B
=

5
 S

N
P

s,
 n

o
 D

S
L

-E
 a

ss
o
ci

at
io

n
, 
an

d
 n

o
 a

d
d
it

io
n
al

 S
N

P
s 

w
it

h
 G

-E
 o

r 
G

-D
 a

ss
o
ci

at
io

n

**
* O

d
d
s 

ra
ti

o
 b

et
w

ee
n
 t

h
e 

D
S

L
 a

n
d
 E

 i
n
 t

h
e 

p
o
p
u
la

ti
o
n

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gauderman et al. Page 19
N

A
 N

o
t 

ap
p
li

ca
b
le

 s
in

ce
 T

y
p
e 

I 
er

ro
r 

ra
te

 i
s 

in
fl

at
ed

&
N

u
m

b
er

 o
f 

n
o
n
-D

S
L

 S
N

P
s 

si
m

u
la

te
d
 t

o
 h

av
e 

a 
p
o
p
u
la

ti
o
n
-l

ev
el

 a
ss

o
ci

at
io

n
 w

it
h
 E

&
&

N
u
m

b
er

 o
f 

n
o
n
-D

S
L

 S
N

P
s 

si
m

u
la

te
d
 t

o
 h

av
e 

an
 e

ff
ec

t 
o
n
 d

is
ea

se
 r

is
k
 (

b
u
t 

n
o
 G

×
E

 i
n
te

ra
ct

io
n
)

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gauderman et al. Page 20

T
a
b

le
 I

V

D
is

tr
ib

u
ti

o
n
 o

f 
th

e 
D

S
L

 r
an

k
 b

as
ed

 o
n
 t

h
e 

S
te

p
-1

 s
cr

ee
n
in

g
 t

es
t 

fr
o
m

 t
h
e 

E
D

G
×

E
 a

n
d
 o

ck
ta

il
 m

et
h
o

d
s

M
ea

n

R
a
n

k
**

D
is

tr
ib

u
ti

o
n

 o
f 

S
te

p
-2

 T
es

ti
n

g
 B

in
s*

**

M
o
d

el
*

M
et

h
o
d

1
2

3
4

5
>

=
6

B
a
se

E
D

G
×

E
2
.3

8
2
%

5
%

4
%

2
%

2
%

5
%

C
o
ck

ta
il

4
2
.4

3
0
%

9
%

9
%

8
%

8
%

3
6
%

M
a
rg

in
a
l 

O
R

G

1
.1

E
D

G
×

E
2
1
.0

4
4
%

1
0
%

8
%

6
%

6
%

2
6
%

C
o
ck

ta
il

6
2
.2

3
0
%

8
%

6
%

7
%

7
%

4
2
%

1
.3

E
D

G
×

E
1
.1

9
8
%

1
%

1
%

0
%

0
%

0
%

C
o
ck

ta
il

3
.3

7
3
%

8
%

5
%

3
%

3
%

8
%

D
S

L
-E

 A
ss

o
ci

a
ti

o
n

O
R

D
S

L
-E

=
0
.8

E
D

G
×

E
1
,0

1
1

7
%

5
%

5
%

5
%

6
%

7
2
%

C
o
ck

ta
il

2
,5

9
3

9
%

6
%

5
%

6
%

6
%

6
8
%

O
R

D
S

L
-E

=
1
.2

E
D

G
×

E
1
.5

1
0
0
%

0
%

0
%

0
%

0
%

0
%

C
o
ck

ta
il

1
7
.4

4
7
%

9
%

7
%

6
%

7
%

2
4
%

G
-E

 A
ss

o
ci

a
ti

o
n

1
0
 S

N
P

s
E

D
G

×
E

1
7
.4

0
%

8
0
%

9
%

3
%

2
%

6
%

C
o
ck

ta
il

9
1
.0

0
%

2
8
%

1
4
%

1
0
%

1
0
%

3
8
%

5
0
 S

N
P

s
E

D
G

×
E

6
3
.9

0
%

0
%

0
%

8
8
%

5
%

7
%

C
o
ck

ta
il

1
7
8
.5

0
%

0
%

0
%

4
3
%

1
6
%

4
1
%

G
-D

 A
ss

o
ci

a
ti

o
n

1
0
 S

N
P

s
E

D
G

×
E

5
.2

7
3
%

1
2
%

5
%

4
%

2
%

4
%

C
o
ck

ta
il

6
2
.5

1
8
%

1
7
%

1
0
%

9
%

8
%

3
8
%

* S
ee

 T
ab

le
 3

 f
o
r 

a 
d
es

cr
ip

ti
o
n
 o

f 
M

o
d
el

s

**
G

eo
m

et
ri

c 
m

ea
n
 a

cr
o
ss

 r
ep

li
ca

te
 s

im
u
la

ti
o
n
s 

o
f 

th
e 

D
S

L
 r

an
k
 b

as
ed

 o
n
 S

te
p
 1

.

T
o
ta

l 
n
u
m

b
er

 o
f 

S
N

P
s 

=
 1

 m
il

li
o
n

**
* B

in
 1

 i
n
cl

u
d
es

 t
h
e 

5
 t

o
p
 r

an
k
ed

 S
N

P
s 

b
as

ed
 o

n
 S

te
p
 1

 p
-v

al
u
e,

 B
in

 2
 i

n
cl

u
d
es

 r
an

k
s 

6
 –

 1
5
, 
B

in
 3

 1
6
–
3
5
, 
B

in
 4

 3
6
–
7
5
, 
B

in
 5

 7
6
–
1
5
5
, 
an

d
 t

h
e 

la
st

 c
o
lu

m
n
 r

an
k
s 

1
5
6
 -

 1
 m

il
li

o
n

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gauderman et al. Page 21

T
a
b

le
 V

P
o
w

er
 u

si
n
g
 s

u
b
se

t 
te

st
in

g
 f

o
r 

E
D

G
×

E
 m

et
h
o
d
 a

cr
o
ss

 a
 r

an
g
e 

o
f 
α

1
 t

h
re

sh
o
ld

s

α
1
: 

E
x
p

ec
te

d
 #

 o
f 

m
a
rk

er
s 

p
a
ss

in
g
 t

o
 s

te
p

 2
**

M
o
d

el
*

0
.0

5
:

5
0
,0

0
0

0
.0

1
:

1
0
,0

0
0

0
.0

0
1
:

1
,0

0
0

0
.0

0
0
1
:

1
0
0

0
.0

0
0
0
1
:

1
0

W
ei

g
h

te
d

te
st

in
g
**

*

B
a
se

0
.2

2
4

0
.3

2
1

0
.5

1
6

0
.6

9
5

0
.7

8
2

0
.8

4
7

M
a
rg

in
a
l 

O
R

G

1
.1

0
.2

1
8

0
.3

1
2

0
.4

3
9

0
.5

0
9

0
.4

5
6

0
.6

2
3

1
.3

0
.2

3
5

0
.3

4
4

0
.5

4
3

0
.7

4
3

0
.8

8
4

0
.8

9
4

D
S

L
-E

 A
ss

o
ci

a
ti

o
n

O
R

D
S

L
-E

 =
 0

.8
0
.1

9
1

0
.2

2
7

0
.2

3
5

0
.1

8
2

0
.0

9
8

0
.2

5
8

O
R

D
S

L
-E

 =
 1

.2
0
.2

3
4

0
.3

3
2

0
.5

1
7

0
.7

4
3

0
.8

9
9

0
.9

0
8

G
-E

 A
ss

o
ci

a
ti

o
n

1
0
 S

N
P

s
0
.2

2
4

0
.3

2
8

0
.5

1
1

0
.6

6
6

0
.7

2
7

0
.7

4
7

5
0
 S

N
P

s
0
.2

3
0

0
.3

4
3

0
.5

3
0

0
.6

6
9

0
.6

6
6

0
.6

0
0

G
-D

 A
ss

o
ci

a
ti

o
n

1
0
 S

N
P

s
0
.2

2
1

0
.3

3
5

0
.5

2
6

0
.7

0
6

0
.7

4
6

0
.8

3
1

* S
ee

 T
ab

le
 3

 f
o
r 

a 
d
es

cr
ip

ti
o
n
 o

f 
m

o
d
el

s

**
α

1
 i

s 
th

e 
si

g
n
if

ic
an

ce
 t

h
re

sh
o
ld

 u
se

d
 f

o
r 

th
e 

S
te

p
 1

 s
cr

ee
n
. 
T

h
e 

ex
p
ec

te
d
 n

u
m

b
er

 o
f 

S
N

P
s 

p
as

si
n
g
 t

o
 S

te
p
 2

 i
s 

b
as

ed
 o

n
 s

cr
ee

n
in

g
 1

 m
il

li
o
n
 S

N
P

s 
in

 S
te

p
 1

**
* V

al
u
es

 i
n
 t

h
is

 c
o
lu

m
n
 a

re
 t

h
e 

sa
m

e 
as

 t
h
o
se

 s
h
o
w

n
 i

n
 T

ab
le

 3
 f

o
r 

th
e 

E
D

G
×

E
 m

et
h
o
d

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gauderman et al. Page 22

T
a
b

le
 V

I

T
o
p
 1

5
 S

N
P

s 
fr

o
m

 D
G

+
E

G
|G

×
E

 a
n
al

y
si

s 
o
f 

5
3
6
,8

5
7
 S

N
P

s 
fo

r 
G

 ×
 S

ex
 i

n
te

ra
ct

io
n
 w

it
h
 y

o
u
n
g
-o

n
se

t 
ch

il
d
h
o
o
d
 a

st
h
m

a

C
h

r
S

N
P

L
o
ca

ti
o
n

R
ef

er
en

ce
A

ll
el

e

S
te

p
 1

B
in

S
te

p
 2

S
ig

n
if

ic
a
n

ce
T

h
re

sh
o
ld

C
h

i-
sq

u
a
re

p
-v

a
lu

e
O

R
G

×
E

t-
te

st
p

-v
a
lu

e

1
rs

6
6
9
7
5
5
2

2
4
1
1
9
2
9
7
5

T
3
7
.4

8
7
.3

E
-0

9
1

1
.1

3
0
.6

4
0
.5

2
0
.0

0
5

1
rs

1
8
3
2
7
1
9

2
0
0
7
1
3
6
4
9

C
3
7
.2

3
8
.2

E
-0

9
1

0
.4

2
−

1
.8

1
0
.0

7
0
.0

0
5

7
rs

1
2
2
9
4
9
2

8
1
4
0
2
0
5
8

T
2
7
.8

8
8
.8

E
-0

7
1

0
.8

8
−

0
.8

2
0
.4

1
0
.0

0
5

4
rs

6
8
4
2
5
4
2

1
5
8
5
9
4
4
6
7

C
2
5
.5

0
2
.9

E
-0

6
1

1
.6

0
2
.5

5
0
.0

1
1

0
.0

0
5

9
rs

5
2
0
6
1
3

1
0
9
9
2
5
8
7
3

G
2
4
.7

9
4
.1

E
-0

6
1

1
.0

1
0
.0

4
0
.9

7
0
.0

0
5

4
rs

7
1
9
5
2
5

7
6
5
7
8
2
7
4

C
2
4
.1

8
5
.6

E
-0

6
2

0
.9

8
−

0
.1

1
0
.9

1
0
.0

0
1
2

5
rs

1
0
0
6
9
1
7
5

2
1
9
2
3
7
7
7

C
2
3
.5

7
7
.6

E
-0

6
2

1
.1

5
0
.7

0
0
.4

8
0
.0

0
1
2

8
rs

7
0
0
0
3
1
0

1
1
9
8
3
7
7
9
2

C
2
2
.9

1
1
.1

E
-0

5
2

0
.5

7
−

3
.1

3
0
.0

0
1
7

0
.0

0
1
2

8
rs

1
0
5
0
5
1
0
5

1
0
8
3
7
6
5
1
3

T
2
2
.6

1
1
.2

E
-0

5
2

0
.8

2
−

1
.1

1
0
.2

7
0
.0

0
1
2

9
rs

6
3
0
9
6
5

1
0
9
9
2
5
3
0
0

G
2
2
.1

4
1
.6

E
-0

5
2

1
.0

7
0
.5

3
0
.5

9
0
.0

0
1
2

1
3

rs
1
9
8
8
3
8
8

5
2
9
4
4
6
0
9

T
2
1
.7

5
1
.9

E
-0

5
2

1
.1

9
1
.2

6
0
.2

1
0
.0

0
1
2

9
rs

2
7
6
7
7
7
7

1
2
5
9
9
8
8
9
4

C
2
1
.6

9
2
.0

E
-0

5
2

0
.9

1
−

0
.5

9
0
.5

6
0
.0

0
1
2

9
rs

8
6
5
6
8
6

1
0
9
9
2
8
2
9
9

C
2
1
.6

7
2
.0

E
-0

5
2

1
.0

5
0
.3

4
0
.7

4
0
.0

0
1
2

1
2

rs
4
7
6
5
7
4
8

3
7
2
4
7
8
8

A
2
1
.6

6
2
.0

E
-0

5
2

0
.8

4
−

0
.8

7
0
.3

8
0
.0

0
1
2

1
5

rs
1
5
2
3
5
2
6

5
9
0
5
1
5
7
9

C
2
1
.3

1
2
.4

E
-0

5
2

0
.9

2
−

0
.6

2
0
.5

3
0
.0

0
1
2

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.


