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Abstract

In a genomewide association study (GWAS), investigators typically focus their primary analysis
on the direct (marginal) associations of each SNP with the trait. Some SNPs that are truly
associated with the trait may not be identified in this scan if they have a weak marginal effect and
thus low power to be detected. However, these SNPs may be quite important in subgroups of the
population defined by an environmental or personal factor, and may be detectable if such a factor
is carefully considered in a gene-environment (GXE) interaction analysis. We address the question
“Using a genome wide interaction scan (GWIS), can we find new genes that were not found in the
primary GWAS scan?” We review commonly used approaches for conducting a GWIS in case-
control studies, and propose a new 2-step screening and testing method (EDGXE) that is optimized
to find genes with a weak marginal effect. We simulate several scenarios in which our 2-step
method provides 70-80% power to detect a disease locus while a marginal scan provides less than
5% power. We also provide simulations demonstrating that the EDGXE method outperforms other
GWIS approaches (including case only and previously proposed 2-step methods) for finding genes
with a weak marginal effect. Application of this method to a G x Sex scan for childhood asthma
reveals two potentially interesting SNPs that were not identified in the marginal-association scan.
We distribute a new software program (GxEscan, available at http://biostats.usc.edu/software) that

implements this new method as well as several other GWIS approaches.
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Introduction

Many trait-related variants have been discovered through genomewide association scans of
direct (marginal) effects [Hindorff et al., 2009]. However, after accounting for variants that
have been identified, there remains a significant amount of heritability left unexplained for
most traits. One reason we may not detect important SNPs is that the trait-related variant
may only elevate risk in a subgroup of the population (e.g. only smokers), or there may be
opposite genetic effects in different subgroups. Either situation is likely to produce a weak
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marginal effect that is unlikely to be detected at a genome wide significance level. We will
show that a genomewide interaction scan (GWIS) using an efficient testing method has the
potential to identify such SNPs.

It is well known that a standard case-control (CC) analysis of GXE interaction using logistic
regression generally has poor power. A case-only (CO) analysis [Piegorsch et al., 1994] can
provide substantially greater power [Yang et al., 1997] but is only valid if G and E are
independent in the source population. However, if G and E are not independent the CO
analysis can have an unacceptably high false positive rate. A variety of approaches have
been recently proposed in an attempt to provide greater power than a CC analysis without
the potential type I error inflation of a CO analysis. These include empirical Bayes analysis
[Mukherjee and Chatterjee, 2008], Bayes Model Averaging [Li and Conti, 2009], and
various two-step approaches that include a screening and a testing step[Kooperberg and
LeBlanc, 2008; Murcray et al., 2009; Murcray et al., 2011; Hsu et al., 2012]. Each of these
two-step methods uses information in the case-control data to form a test statistic in the
screening step that is independent of the test statistic in the testing step. In this paper, we
describe a novel two-step approach that has greater power than all previously developed
methods in many circumstances, particularly for a variant with a weak marginal effect that is
likely to be missed in the primary scan.

Consider a case-control study consisting of N subjects, with N cases and Nyp=N — N
controls, and let D;, i=1,...,N be indicators of disease status. We define E;, i=1,...N, to be an
environmental factor, where “environment” is loosely defined to include an exogenous
environmental variable (e.g., sunlight, air pollution), personal exposure (e.g., smoking,
dietary fat), or other personal characteristic (e.g., sex, age). We assume for now that E is a
binary indicator of ‘exposure’ with Pg = Pr(E=1) denoting the population exposure
prevalence. We furthermore assume that M single nucleotide polymorphisms (SNPs) have
been genotyped on each of the N study subjects. We let qo denote the frequency of the
minor (less common) allele “A” for a given SNP and let “a” denote the more common allele.
For use in a statistical model, each SNP will be denoted G;, i=1,...,N. In a GWAS, G is
often coded according to an additive model, specifically G =0, 1, or 2 for genotype aa, Aa,
or AA, respectively. However, G could also be coded according to a dominant (G indicates
AA or Aa genotype), recessive (G indicates AA genotype), or codominant (pair of indicators
coding the 3 genotypes) model. For simplicity, we assume there is a single disease
susceptibility locus (DSL), although the methods we develop can uncover multiple DSLs if
they exist.

Marginal (G) association

In a case-control study, the marginal effect of a gene (G) on disease (D) is typically
measured by the genetic odds ratio ORg, which can be obtained as exp(Ag) from a logistic
regression model of the form:

Logit(Pr(Di=1|G)=Ao+A.Ci. (1)
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Additional adjustment covariates can be included in this model if needed. A standard
GWAS of marginal effects is conducted by testing the null hypothesis Ag=0 for each of M
SNPs in turn, for example using a likelihood ratio chi-squared test (Spg) and significance
level chosen to preserve the family-wise error rate (FWER). In the presence of an exposure
factor (E) and a gene-environment (GXE) interaction, ORg is a weighted average of the
corresponding genetic odds ratios in each exposure group (ORgg) if G is independent of E.
If G is associated with E, then ORg is also a weighted average if one includes E in Equation
1 as a covariate. The same magnitude of ORg can result from quite different underlying
patterns for the interactive effects of G and E on D.

Case-control (CC) test of GxE

In follow-up to the primary scan, one could augment the model in Equation 1 to test each
SNP in turn for a multiplicative GXE interaction using the model

Logit(ljr(l_)j:l|Gj):,L’J'g-i-.ﬁ'{;Gj‘l’,ﬁﬁﬂi-hﬁ(;yﬁ@i x Ei,

based on testing the null hypothesis BGxg=0 using test statistic Sgxg. The quantity
ORGxe=exp(BgxEg) is the interaction odds ratio, the genetic effect in exposed individuals
relative to the genetic effect in unexposed (i.e. ORg|g=1 / ORG|g=0). We denote analysis
using this model as the standard case-control (CC) approach.

Case-only (CO) analysis

A more powerful test of GXE interaction can be obtained using a case-only (CO) analysis, in
which association is tested between E and each SNP in affected individuals. Assuming a
binary exposure factor, case-only analysis can be based on the model

Logit(Pr(Ei=1|Gi, Di=1)=70+76.rGi 3
The quantity exp(YGxg) i a consistent estimator of the GxXE relative risk ratio[Piegorsch et
al., 1994; Yang and Khoury, 1997] provided G and E are independent in the source
population. A GWIS using the CO approach tests the null hypothesis that ygxg = 0 for each
of the M SNPs, with correction to preserve the FWER. A CO analysis can be substantially
more powerful than a CC analysis [Yang et al., 1997], being equivalent to a comparable case
control analysis with infinitely many controls, but it depends critically on the assumption of
population-level G-E independence. Population-level G-E association can occur for SNPs
that have a real effect on E, for example for gene variants that affect smoking behavior
[Hodgson et al., 2012]. However, a factor (e.g. population sub-structure) that is associated
with both E and SNP allele frequencies, can also induce spurious G-E associations. Either
situation leads to invalid CO analysis and can produce an unacceptably high false positive
rate [Mukherjee et al., 2012].

Empirical Bayes (EB)

Bayesian approaches, including Bayes model averaging [Li and Conti, 2009] and empirical
Bayes (EB, [Mukherjee et al., 2010]), have been proposed for integrating direct information
from a CC model with G-E correlation from a CO analysis. For example, in EB analysis a
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Wald test statistic Sgg is formed based on a weighted average of Bgxg and ygxg With
variance that is a function of the corresponding variances of these estimators. While both
Bayesian approaches can provide greater power than a CC analysis, they can also have
inflated Type I errors (though not as highly inflated as a CO analysis) in the presence of
population-level G-E correlation [Mukherjee et al., 2010; Murcray et al., 2011]. For
additional details see Mukherjee and Chatterjee [Mukherjee and Chatterjee, 2008].

Existing 2-step methods

Several two-step methods have been proposed to conduct a GWIS [Kooperberg and
LeBlanc, 2008; Li and Conti, 2009; Murcray et al., 2009; Gauderman et al., 2010;
Mukherjee et al., 2010; Murcray et al., 2011; Mukherjee et al., 2012], all of which generally
provide greater power than a CC analysis while preserving the Type I error rate. A key
requirement for any of the two-step methods is independence of the Step 1 screening and
Step 2 testing statistics. All of the 2-step methods described below achieve this
independence [Dai et al., 2012].

2-Step, DG | EB—Kooperberg and LeBlanc [Kooperberg and LeBlanc, 2008] proposed a
2-step procedure that uses the marginal DG association statistic Spg to screen SNPs at
Step-1 significance level a ;. They proposed testing the subset m << M SNPs that pass the
Step-1 screen using Step-2 test statistic Sgxg, With Bonferroni-corrected significance level
a/m to preserve the FWER. This ‘DG|GXE’ approach was found to be less powerful than an
alternative, DG[EB, in which screening is still based on Spg but EB analysis is used for
Step-2 testing[Hsu et al., 2012]. We implement the latter in our comparisons.

2-Step, EG | GxE—Murcray et al.[Murcray et al., 2009] demonstrated that in the presence
of GxE interaction, there is an induced correlation between G and E in the combined case-
control sample. In other words, based on the model

Logit(Pr(E=1|G)=8+6,G @&

applied to the full sample of cases and controls, one can expect 3G #0 in the presence of
GxE interaction. As a Step 1 screen, they proposed testing Hy:6g = 0 at significance level a;
using a likelihood ratio chi-squared test statistic (Sgg). As in the DG approach, they
proposed testing the subset m << M SNPs that pass the screen using Step-2 test statistic
SGxE at significance level a/m. The use of the model in Equation 4 rather than the case-only
model in Equation 2 preserves the necessary independence between Steps 1 and 2[Dai et al.,
2012]. Murcray et al. also proposed a hybrid method (H2) that involved running both the
DG and EG screening approaches in parallel, and adjusting the second step significance
level to account for both sets of tests[Murcray et al., 2011].

2-Step, ‘Cocktail’—Hsu et al.[Hsu et al., 2012] proposed a different type of hybrid
approach that mixes the different screening and testing statistics in an attempt to maximize
efficient use of the data. In their ‘Cocktail I’ approach, they proposed a screening statistic
Sct = Spg if the p-value corresponding to Spg is less than some threshold (they suggest
0.001), and ScT = Sgg otherwise. The Step-2 test is based on the test statistic (Sgg) from an
EB analysis if Sct=Spg and on Sgxg if Scr=Sgg- The use of different statistics in Step 2 is
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required to guarantee independence of the Step 1 and 2 tests. They furthermore suggested
the use of weighted hypothesis testing[lonita-Laza et al., 2007] (described below) in Step 2
rather than testing only a subset of SNPs that pass a Step-1 threshold. They showed that
Cocktail I provides greater power than all of the approaches described above for most of the
models they considered. They also proposed a variant on this approach (Cocktail II) based
on defining Sc as the maximum of Spg and Sgg. In general, though, they found Cocktail 1
to have greater power than Cocktail II. We implement Cocktail I (called simply Cocktail) in
our comparisons.

New 2-Step Method: EDGxE

The motivation for this new method comes from inspection of the standard retrospective
likelihood for case-control data, which is based on the following conditional probability:

Pr(G,E|D, Asc)aPr(D|G, E, Asc)Pr(G, E[|Asc) (5)

Here ‘Asc’ denotes the ascertainment scheme used to obtain cases and controls. The first
factor on the right hand gives rise to the model in Equation 2, and thus parameterizes both
DG association and GxE interaction. The second factor can be expressed by the model in
Equation 4 and captures EG association induced by the oversampling of cases from the
source population. Previously proposed 2-step methods use different parts of the information
contained in this likelihood to enhance power over a simple test of only GxXE. For example,
Kooperberg and LeBlanc[Kooperberg and LeBlanc, 2008] use DG information to screen and
GxE to test, while Murcray et al.[Murcray et al., 2009] use EG to screen and GxE to test.
The H2 hybrid method [Murcray et al., 2011] and Cocktail method[Hsu et al., 2012]
consider both DG and EG information in screening, but ultimately use one or the other
source of information to prioritize SNPs for testing in Step 2.

We propose a novel 2-step approach that uses all available surrogate information, i.e. both
EG and DG association information combined, to screen SNPs. Specifically, for each of the
M SNPs, we propose computing Step-1 screening statistic SEG+pG = SgG + Spg i.€. the
sum of the EG and DG statistics described above. The two test statistics Sgg and Spg are
independent[Dai et al., 2012], and each follows a central chi-squared distribution with 1
degree of freedom (df) under their respective null hypotheses. Thus, Sgg;pg follows a
central chi-squared distribution with 2 df under the joint null Hy: Ag = 8g = 0. The Step-2
test is based on Sgxg, Which is independent of (Sgg, Spg) [Dai et al., 2012] and thus is also
independent of their sum Sggpg- The name EDGXE derives from Eg+Dg screening, with
GxE testing. One can use either subset testing or weighted hypothesis testing in Step 2 (see
below).

Hypothesis testing approaches in Step 2

As described above, some have proposed the use of subset testing and others weighted-
hypothesis testing in Step 2. In the former, the analyst specifies a, the significance
threshold to pass Step 1. A larger value of a will increase the chance of passing a truly
associated SNP into Step 2, but at the cost of also increasing the number of unassociated
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SNPs that pass into Step 2. A lower value of a leads to lower m and thus greater power in
Step 2, but at the potential cost of screening out a true SNP.

Rather than restrict Step-2 testing to a subset of the SNPs, one can test all M SNPs in Step 2
using a weighted significance level based on the ordered p-values from Step 1. The
weighting scheme is designed to allocate a larger fraction of the genomewide significance
level a to the most significant SNPs in Step 1. As proposed by Ionita-Laza et al.[lonita-Laza
et al., 2007], the B most significant (lowest p-value) SNPs based on Step 1 are evaluated in
Step 2 at significance level (a/2)/B, the next 2B SNPs are evaluated at (a/4)/(2B), the next
4B at (a/8)/(4B), etc. For example, when B=5 and a=0.05, the top 5 SNPs from Step 1 are
tested in Step 2 at significance level 0.005, the next 10 at 0.00125, etc. This weighting
scheme guarantees that the overall significance level for the entire procedure does not
exceed a Under this weighting scheme, the top SNPs from Step 1 are tested at a more liberal
significance threshold than the standard 5 x 1078 level required in a standard exhaustive
scan of all M SNPs (using CC, CO, or EB), and probably also a more liberal level than the
threshold a/m required in subset testing. However, for the majority of SNPs not in the top
bins, weighted testing will have a more stringent threshold than 5 x 1078, This indicates the
importance of using an efficient Step-1 screening approach with strong likelihood of highly
ranking any SNP with a true interaction.

Simulation Study

We use simulation to confirm the Type I error rates and to compare power of all of the
above procedures. In all simulations we generated 2,000 replicate datasets, each consisting
of equal numbers of cases and controls, and M=1 million SNPs. One SNP was designated as
the DSL, assumed to have a GXE interaction effect on the trait. We considered two types of
interaction models: 1) a modest interaction effect size (ORgxg=1.5), with marginal
environmental effect size ORg=1.2, common exposure (pg=0.4), and common variant
(qa=0.225, yielding 40% carriers under a dominant model), and 2) a stronger interaction
effect (ORGxg=2.0), with ORg=1.25 and less common exposure (pg=0.10), and variant
(qa=0.134, yielding 25% carriers). For each of these interaction models, we performed
multiple simulations varying the magnitude of the marginal genetic effect (ORg) from 1.0 to
1.35. These settings yielded a wide range of underlying disease risk models, encompassing
both qualitative (effects of G in opposite directions depending on E) and quantitative (effects
of G in the same direction but of differing magnitudes across levels of E) models of GXE
interaction (Table 1). For each of the remaining M — 1 loci, we randomly sampled an allele
frequency from a uniform distribution on the range 0.10 to 0.40. In our base model, none of
these loci was associated with E or with disease. However, we considered alternative models
in which 0.00001 or 0.00005 (corresponding to 10 or 50) of the 1 million SNPs were
correlated with E in the population. We also considered an alternative model in which 10
loci had a marginal (but no GXE) association with disease, with odds ratios for these 10 loci
randomly sampled from a uniform distribution on the range 1.1 to 1.5. For all of the two-
step methods (DG|EB, EG|GXE, H2, Cocktail, and EDGXE), we adopted weighted
hypothesis testing in Step 2 and assumed an initial bin size of B=5 SNPs.
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For each replicate data set, we performed genomewide analyses of GXE interaction using all
of the methods described above. A dominant risk model was assumed in all analyses. The
Type I error rate for each method was estimated as the proportion of replicates in which at
least one of M — 1 non-DSL SNPs was declared statistically significant at a FWER of a =
0.05. Power for each method was estimated as the proportion of replicates in which the DSL
was identified as statistically significant. For each model, we also estimated power to detect
the marginal effect of the DSL, based on Equation 1, to quantify the chance that the locus
would have been identified in the primary G only scan. To explore the robustness of our
power comparisons, we varied selected model and method settings around a base model
with ORGgxg=1.5, ORG=OREg=1.2, q4=0.225, and pg=0.4.

Asthma Analysis

Asthma is the most common chronic disease in children, with an estimated prevalence of
12.5% for diagnosis by a doctor before age 18[Merrick et al., 2005]. Prior GWAS scans
have identified several loci that have a marginal association with asthma[Moffatt et al.,
2010; Torgerson et al., 2011]. Asthma prevalence in children is known to vary by sex,
particularly at young ages, with males exhibiting greater prevalence than females[Osman et
al., 2007]. It is possible that this difference in prevalence is partly due to sex-specific effects
of some genetic variants, for example if some sex-related personal characteristic such as
hormone level has an effect on gene penetrance, or if there is a sex-specific difference in an
environmental exposure that modifies gene penetrance. Thus, in an attempt to identify
additional SNPs not found in the primary scans, we used the methods described in this paper
to conduct a genomewide scan for GxSex interaction.

We use data from the Children’s Health Study (CHS) to conduct this analysis. The CHS is
an ongoing cohort study spanning 16 southern California communities, investigating both
genetic and environmental factors related to childhood asthma[McConnell et al., 2006] and
lung function growth[Gauderman et al., 2007]. The CHS GWAS was based on a nested
case-control sample selected from the Hispanic White (HW) and non-Hispanic White
(NHW) children within the CHS cohorts. Based on questionnaire responses by parents, the
presence or absence of doctor-diagnosed asthma, and for asthmatics the age of onset, were
determined. For our analysis of GxSex interaction, we focused on the subset of early-onset
asthmatics, defined as reported asthma diagnosis prior to age 6. Controls were defined as
subjects that were asthma free at age 6. A total of 2,382 HW or NHW subjects, including
631 cases and 1,751 controls were included in the analysis. Study samples were genotyped
at the University of Southern California Genomic Center using the I[llumina HumanHap550
or Human 610 Quad BeadChip microarrays. After quality control, a total of 536,857 SNPs
were available for analysis. The CHS protocol was approved by the institutional review
board for human studies at the University of Southern California, and written consent was
provided by a parent or legal guardian for every study participant.
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The CC and all 2-step methods achieved the nominal Type I error rate, whether or not some
of the non-DSL SNPs had population level G-E correlation or marginal associations with
disease (Table II). As expected, the CO analysis had unacceptably high Type I error rates
when even a small fraction of the SNPs had G-E correlation in the population, but achieved
nominal levels in the absence of such correlation. All 2-step methods also achieved the
nominal Type I error rate using subset testing and for several alternative settings of model
parameters (e.g. pg, ORE, data not shown).

Power to detect an interaction of magnitude ORgxg=1.5 with 3,500 cases and 3,500 controls
was quite low using the standard CC method (Figure 1a). As expected, a case-only analysis
provided substantially higher power than a CC analysis, and EB provided power that was
midway between CO and CC. Power for all three of these exhaustive approaches was nearly
independent of the size of the marginal G effect (ORg). On the other hand, power of the 2-
step methods that utilize marginal G information in their screening step (DG|EB, H2,
cocktail, and EDGXE) depended strongly on the size of ORg. Of these 2-step methods,
EDGXE was the most powerful when the magnitude of ORg was small to moderate (in the
range 1.10 to 1.25). For example, when ORg=1.2, power for EDGXE was 85% compared to
70% for Cocktail, 68% for H2, 63% for EG|GXE, and 66% for DG|EB. The EDGXE method
was also more powerful than a case-only scan when ORg > ~1.12. Power for DG|EB and
Cocktail was about 5% higher than EDGXE when ORg > 1.35, although at this and larger
magnitudes of ORg it is likely that the DSL would be identified in the marginal G-only
scan. Similar trends were observed when the interaction effect size was larger (ORgxg=2.0,
Figure 1b), with EDGXE providing more power than other 2-step alternatives for a wider
range of ORg (1.10 to 1.30).

All 2-step methods provided greater power than the exhaustive CC or EB scans over a wide
range of models (Table III). The H2, Cocktail and EDGXE methods also outperformed the
case-only analysis in most scenarios. The improved power for EDGXE over other 2-step
methods when ORg=1.2 (Base model) was robust to variations in DSL allele frequency
(qa), exposure frequency (pg), exposure effect size (ORg), bin size for weighted testing (B),
and the presence of 10 additional loci with an effect on disease (G-D associations). Power
for EDGXE was also greater than other 2-step methods if 10 SNPs were correlated with E in
the population (G-E association), and greater than all but DG|EB if 50 SNPs were correlated
with E. Power of all 2-step methods was higher if there was a positive correlation between
the DSL and E in the population (ORpg g=1.2), but much lower if there was a negative
correlation (ORpgy .g=0.8).

It is clear from Table III that the Cocktail and EDGXE methods are generally the most
powerful methods across a range of scenarios. To further compare these two methods, we
examined the ability of each to place the DSL among the highest ranked SNPs based on
their respective Step 1 screens. For each of the models shown in Table III, Table IV shows
the geometric mean rank of the Step-1 DSL p-values across replicate data sets, as well as the
distribution across replicates of the DSL into Step-2 testing bins 1, 2, etc. As an example, for
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the base model, the geometric mean Step-1 rank of the DSL was 2.3 (out of 1 million) using
the EDGXE screen while it was 42.4 for the Cocktail screen. In addition, the DSL was
among the top 5 SNPs (and thus in Bin 1 with most liberal Step 2 significance threshold) for
82% of the replicates using the EDGXE screen but for only 30% using the Cocktail screen.
In general, the EDGXE screen more effectively ranked the DSL at the top of the Step 1 list
than the Cocktail method across a wide range of models.

All of the above results were based on weighted hypothesis testing in Step 2. For the
EDGXE method we also examined the power using subset testing, considering a range of
possible settings of a, the Step-1 significance threshold (Table V). Across most models, the
highest power for subset testing occurred when a relatively small subset of markers (in the
range of 10 to 100) was passed to Step 2. Note that power was significantly reduced with a
set to 0.05 or 0.01, thresholds that have been suggested in prior 2-step methods [Kooperberg
and LeBlanc, 2008; Murcray et al., 2009]. However, except when there was a substantial
number of markers with G-E correlation in the population, no choice of a; led to as much
power as could be achieved using weighted testing.

Asthma Analysis

Exhaustive CC, CO, and EB scans for G x Sex interaction related to early-onset asthma did
not produce any associations close to being genome-wide significant (Figure 2). The QQ
plots for these analyses provide evidence that p-values were conservatively estimated for
SNPs yielding more extreme configurations of G, E, and D (and thus the lowest p-values),
likely due to our modest sample size. The QQ plot for the Step 1 screen of the EDGXE
method (Figure 3) demonstrates that the p-values corresponding to the Spggg statistic are
consistent with the assumed 2-df chi-squared distribution. Indirectly, this QQ plot also
shows that linkage disequilibrium among SNPs (present in these real data) does not affect
the validity of the EDGXE screening test. Beginning at the upper end of this Step-1 QQ
distribution, SNPs are placed by their rank-order into bins for Step-2 weighted hypothesis
testing (we assume initial Bin size of 5). As shown in the Manhattan plot of Figure 3, one
SNP in the first bin and one SNP in the second bin are close to their respective bin-specific
significance thresholds. The first-bin SNP is rs6842542 (MAF=0.17), located on
chromosome 4 near the GRIA2 locus, with Step-1 screening p-value 2.9x10~° and Step-2
testing p-value 0.011 (Table VI). This locus exhibits a qualitative interaction, with

ORG | sex=F = 1.13 per allele for females and ORg | sex=m = 0.69 for males. The second-bin
SNP is rs7000310 (MAF=0.20) and has Step-1 screening p-value 1.1x9x10~> and Step-2
testing p-value 0.0017. This SNP is located on chromosome 8q24 near the TNFRSF11B
locus, a member of the TNF-receptor super-family. This locus exhibits a pure interaction,
with no effect in females (ORG | sex=F = 0.99) and a strong effect in males (ORG | sex=M =
1.78). Neither of these SNPs or regions has been previously identified in marginal-effects
scans of asthma, and although neither achieved 2-step genomewide significance, they are
candidates for further investigation (e.g. in-silico replication analysis) in independent
samples.
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Discussion

We have presented a variety of scenarios for GXE interaction that produce a small marginal
genetic effect. These kinds of loci are exactly the ones that are likely to be missed in our
primary GWAS scans. While the potential importance of GXE interaction has been
recognized for many diseases, poor power of a CC analysis and the potential biases in a CO
analysis have likely reduced enthusiasm by investigators to conduct GWIS in their available
samples. Prior investigations have shown that two-step methods can provide greater power
than a CC analysis, and often greater power than a CO analysis. In this paper, we introduced
a novel 2-step GWIS method that generally provides greater power than any other 2-step
GWIS method when the marginal effect is small (ORg is less than 1.3). This new approach
may therefore provide the best opportunity to identify novel loci via GWIS analysis. We
have developed a comprehensive and computationally efficient GXE analysis program that
implements all of the methods described in this paper (GxEscan, available at http://
biostats.usc.edu/software). For example, GxEscan required only 30 minutes on a single PC
processor to conduct all analyses for the GxSex scan in the CHS.

While we described the EDGXE method in the context of a binary environmental factor, we
note that ‘E’ can be replaced by a quantitative exposure (e.g. air pollution), a personal factor
(e.g. sex), or even a pre-specified candidate gene (e.g. GSTM1 genotype). An important
concern in a GWIS is the availability of additional studies with comparable exposure data
that can be used to replicate top GXE signals. Factors such as BMI or ever/never smoking
are likely to be widely available, while variables such as dietary fat intake or pack-years of
tobacco smoking may only have been measured in a limited number of studies. The
investigator considering a GWIS needs to think carefully about the tradeoff between a high-
quality exposure variable that may have little hope of being replicated compared versus a
cruder exposure variable that may carry less information but be more widely available. In
practice, it might be useful if results using the cruder but more widely available measure are
routinely provided in an online supplement to enable meta-analyses of GxXE interaction.

Instead of testing for GXE interaction, investigators may choose to simply repeat their
marginal-effects scan focused on a specific exposure subgroup (e.g. a GWAS in smokers
only). However, a genetic effect may be concentrated in either the exposed (e.g. smokers) or
unexposed (e.g. non-smokers) subjects. Performing scans in both subgroups would
ultimately reduce the power to detect G within either subgroup because of the additional
multiple-testing correction required. On the other hand, power to detect a GXE interaction
does not depend strongly on the direction of the effect.

For the models we considered, we have shown that adding Step-1 statistics (Spg + Sgg)
provides a more efficient screen than the Cocktail approach of using the maximum of the
Spg and Sgg statistics. When an interaction induces both a DG association and an EG
correlation, our summation screen effectively uses both sources of information to prioritize
SNPs for Step 2 testing. By taking only the maximum statistic to prioritize, the interaction
information carried by the remaining statistic is not being utilized. There are alternative
approaches one might adopt for combining Step-1 statistics, and we suggest this as a topic
for future investigation.

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.
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The resources needed to conduct a GWIS are a proverbial drop in the bucket given the very
large financial investment that has already been made in GWAS genotyping. We have
highlighted the potential of a GWIS to identify novel SNPs. A fringe benefit of conducting
GWIS is the potential to identify genes with modifiable effects and potentially susceptible
subpopulations that would benefit from exposure modification. Successful identification of a
GXxE interaction may be the first step in learning about an important pathway, or may lead to
additional studies, for example targeted sequencing, gene expression, or epigenetic studies
focused on exposed or unexposed subjects. Although more efficient, the EDGXE approach
still requires substantial sample sizes to achieve good power for detecting modest-sized
interactions. For many traits, use of data from a consortium of genomewide association
studies may provide the best opportunity for conducting a GWIS to uncover novel SNPs.
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A) Moderate interaction with common G and E (ORexe=1.5, qa=0.23, pe=0.40)

Page 13

1.00

0.0

0.80

0.30

0.20

0.10

0.00

-

2-step methods

~

-

1.00

1.05

1.10 1.15 1.20
Marginal G effect (ORg)

1.25

1.30

1.35

e EDGXE
—ii— Cocktail
—— H2

—t— EG| GXE

DG|EB

Exhaustive scans

—=—C0
——EB
—_—CC
- = Marginal G

B) Strong interaction with less common G and E (ORexe=2.0, qa=0.14, pe=0.10)

1.00
2-step methods
0.90
g EDGXE
L —m— Cocktail
0.70 —— H2
. 0.60 e EG | GXE
@ DG|EB
2 050 -
g Exhaustive scans
0‘40 _._-._CO
0.30 —— R
0.20 =
= = Marginal G
0.10
0.00
1.00 1.05 1.10 1.15 1.20 1.25 1.30 135
Marginal G effect (ORg)
Figure 1.

Power to detect GXE interaction across a range of magnitudes for the marginal G effect

(ORg) for several 2-step and exhaustive scan methods, with 3,500 cases and 3,500 controls
(see Table 1 for additional details).

A) Moderate interaction with common G and E (ORgxg=1.5, q4=0.23, pg=0.40)
B) Strong interaction with less common G and E (ORgyxg=2.0, q4=0.14, pg=0.10)
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Figure 2.

Quantile-quantile and Manhattan plots for case-control (CC), case-only (CO), and empirical-
Bayes (EB) analysis of 536,857 SNPs for G x Sex interaction with young-onset childhood
asthma.
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Figure 3.
Analysis of 536,857 SNPs for G x Sex interaction with young-onset childhood asthma using

the EDGXE method. Shown are the QQ plot from Step 1 and the Manhattan plot from
weighted Step-2 testing, with testing-bin assignment in Step 2 determined by Step-1
screening p-value. The initial bin size is B=5 SNPs, and each successive bin includes twice
as many SNPs as the preceding bin.

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



Page 16

Gauderman et al.

*(ap1s ySu) 1=g Jo (ydeid yoea jo apis o) 0=H U $103[qns ur (SUI[ PI[OS) SISLLIEOUOU 0} IATJB[RI (SUI| PAYSEP ‘[=0)) SISLLIED 10J YSLI Jo uraped oy smoys adA [, oy, ‘uonoreioiur

(01°0=dd pue 10=Vb yum ‘¢'z=HXDYO) Suons pue (4 o=Hd pue ¢z'0=Vb yum ‘¢’ 1=HXDYO) AeIopow & 10} ‘DY [eurdrewr pajedrpur ay) 2onpoid jey Am_OMOv sonel sppo onauas oyroads-amsodxy

P 1 o ST 8 | o sel
T osT S B T 0T 0g1
P & B YT STl
T e 601 T 08l 001 0Tl
P v 01 T bl 960  SI'l
T 661 01 T el 60 oIl
= w1 60 T gl 880 SOl
S 160 LT €80 001

adA], ﬂum_uzo cum_omo adA], ﬂum_omo cnm_omo N0

07 =990 ST =990

(990) 9715 10932 o12UAS [eUISIRW PIAJLIIPUT AY) 0npoId J8Y) UOIIORIAIUI XI) JO S[OPON

| 91qeL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



Page 17

Gauderman et al.

(uoTORIAIUI FXO) OU JNQ) YSLI ASLIASIP UO JOJJ2 UB JABY 0} PAJB[NWIS SIN'S "TS-UOU JO EsEsZ%q

g yim uoneroosse [aasf-uone[ndod v aaey 0y pajenuurs SgNS TS -UOU JO JoquunN

®
uonerosse (-0 1o - PIM SJNS OU Sey pue SPOYIdA Ul PAqLIdSIp ST [opowu dsed L,
M

‘yoeoidde yoeo Jo uondrosop 10J SPOYISIA

993G 'SIN'S ISA-UOU 666°666 SuoWwe J[NsAI JULdIUSIS A[[BONSTEIS QUO ISLI] 8 PALNUIPI 2INpadold pajesIpur ay) Yorym Joj sjaserep redrdar g0 g Jo uontodoid ayj uo paseq st Joud [ odA 1, Jo ewnsd yoeyg

Author Manuscript

6¥0°0 700 8700 900 €¥0'0  9v00 000'T 6700 SINS d-D OI ‘SANS d-D 0§
0500 8¥0°0 w00 810°0 00°0 9%0'0 00017 6¥0°0 SINS d-D 0T ‘SANS d-D 01
20ssY -9 pue g-9 yog
8700 700 LY0°0 900 0’0 8€0°0 L£0'0  6£0°0  SINSOI
1pUONENOSSY (-9
1500 9%0°0 8700 7700 700 8¥0°0 0001 CTHO'0  SANS 0S
910°0 000 S¥00 810°0 8¥0°0 00 000°T <00 SINS Ol
pUONBI0SSY F-D) uonendo

SY0'0 8¥00  SKO0 7SO0 9500  9¥0'0 LS00  1+0°0 L5ed
AXOad [MerpPe)d  tH  Ax9Od gdAba g4 00 2D PPO
spoyd dais-7 SuBdS dANSNBYXH

SPOYJOUI [LIOASS SSOIOE UOIIOBIAUI gXO) JO SS9} J0J Sajel Jo11d | adA T,

Il 8lqel

Author Manuscript Author Manuscript Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



Page 18

Gauderman et al.

uonerndod oy ur g pue TS Y} U9AM)q ORI SPPO
M

*¥

uoneI0ssE (- 10 F-D UM SINS [PUONIPPE OU PUE ‘UoNLIo0sse F-TSA OU ‘SINS §=d 921s utg [eniu] ‘7’ [=Hy0 ‘7' 1=D¥0 ‘¢ 1=3XDY0 ‘0r'0=Hd ‘cz'0=VDb sey [opows aseg ayL,

*¥

SIN'S UOI[[TW | JO [B)0) B PUB S[OIJUOD ())G‘E PUB SASLI ()OS ¢ JO azIs A[dures e uo paseq Ik SNSA [[Y “SUI)IS [SpOw aseq Y} Woiy J)dwered pajedIpur ay) SILILA [Spow Yoryg
x

IS Y} 18 UOTIORIAUI FX0) J0J 0URIYIUSIS [BN)SIRIS PAAIIYIL 21npadold pajestpur ay) yorym oy sjasejep ajeosrjdar 090 g Jo uontodoid oy uo paseq st amod Jo ajewnsa yoeg

Author Manuscript

1€8°0 ¥69'0 1890 9790 8690 00F0 €89°0 880°0 SANSOI
7 gUONEROSSY d-D
009°0 €660 LPSO  SEFO 8590 ¥6E0 YN €600 SANS 0S
LVL'O 8L90  0£90  8SS0 $S90  S9€0 YN L600 SANS Ol
pUONBIOSSY H-D)
8060 SOL0  L980 8060 8960  ISI'0 6660 800 ¢ I1=T15040
850 061'0  60€0 000 vETO  1€00 €000 9800 80=TT5Y0o
10 TOTIEI0SSY TS
008°0 €€L0  T990 9790 8890  TLEO 1890 6600 0T
1180 91L0 €90 €190 6990  08E0 9990 9600 Ol
(g dz1s wrg
758°0 LOLO  ¥ILO  OIL0 9790  TSE0D 9990 9010 81
958°0 TELO  FTLO €690 LS90  18€0 6890 L6000 ST
YO reuidrepy
6£8°0 LILO 9890 1790 899'0 880 SL90 8600 0SO
869°0 $950  66F0  TIFO oS0 €ETO  LYO 9€00  STO
ad
80 11L0 9490 8090 $S9'0  I8€0 1990 0010  0€0
LTLO €950  1T§0  EL¥O 8IS0 65T0 €S0 1500 SI'0
Vb
Lb80 €0L0 €890 6790  T990  00F0 6L90 €600 el
AxOqd  MeRpe)  tH axdod gdldba g4 00 20 PO

spoyRIy das-z

SUBOS IANSNBYXH

spoyjeu pue sepow Jo aguel € sso1de (TJS(Q) SnooT Aiqndaosng 9seasi( Yl 10913p 01 JMOd

i aqeL

Author Manuscript

Author Manuscript

Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



Page 19

Gauderman et al.

(UOTORIAIUI FXO) OU JNQq) JSLI ISBASIP UO J3JJ2 UB JARY 0} PJB[NWIS SGN'S "TS-UOU JO Joquin ZM:M.v

H s uonerosse [aad-uonendod e aAry 03 paje[nuIs SGN'S "TSC-UOU JO Hun_::_Z@

pajefyur st 1 Jo112 [ 2dA T, 9ours o[qeordde 10N VN

Author Manuscript Author Manuscript

Author Manuscript

Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



Page 20

Gauderman et al.

O[T | - 9T SYUeI UWINJOO 18] Y} PUE ‘SST-9/ § UIF ‘S/~9€ b UIF ‘SE—9T € UIg ‘ST — 9 syuex sopnout g urg ‘onjea-d 1 doig uo paseq SANS paxuex doj ¢ oy sapnjout 1 urg
X

Author Manuscript

*¥

UoI[I | = SINS JO Joquinu [ejo],
*T da1g uo paseq yuel TS 2y} JO suone[nwirs edr[dar SSOIok UBIW OLIJOUW0)

*¥

S[OPOIAl JO uondLIdsap e 10J ¢ 9[qe], 998

*

BYE B8 %6 WOL  BLL %8I §T9  [enpo)

BY BT By BS B BEL TS AXDAd  SANS 01
uonenossy -9

By BT BEY  BO %O %0 G'8LT  IEI20D

BL WS  %B8S WO %O %0 6'€9 AXOAd  SINS 0§

BYE  BOT  %OT %Y1  %8T %0 016  IEI0P0D

%9 BT BE  B6 %08 %0 YL AXDAd  SANS 01
uonenossy -9

BYC %L B9 BL %6 BLY vLI [renpo)

%0 O %O BO %O %OOT Sl axoad ¢ =1%o

B8 B9 %Y BS By %6 €6ST IO

BIL %Y BS  BS  BS %L 10T gxbad  80=1"1040
uonenossy g-1Sd

B8 WE  BE  BS  BS  BEL €¢ [1e20D)

%0 BO %O BI BT %86 I'1 axoad €1

BT WL BL B9 %Y %BOE TT9  IEIPO)

BT B9 %9 B %01 B 0'1¢C axoad 11
DY O [eurdaep

BIE B8 %S W6 %6 %OE YTy IEP0)

BS BT BT By BS BT €T AXDAd aseq

9=< § v € T I "% poypl JPON

UBIA

*¥

suig Sunso, z-dajs Jo uonnquysiq

Spoyjaul [1eI300 pue gxHH 2y} Wwoij 159} Suruaa1os 1-daig oy uo peseq yuel TS Y JO uonnqrisi(y

Al dlqelL

Author Manuscript

Author Manuscript

Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



Page 21

Gauderman et al.

Author Manuscript

poylow gXOJH Y} 10J € 9[qR], Ul UMOYS 9SOY) SB SWBS dY) I8 UWNJOD SIY) UT SONJeA

*¥x

T do1g ur SgN'S uorTI | SuruaaIos uo paseq st ¢ doig 03 Surssed sgNS Jo Joquunu pajoadxa oy, ‘uda1ds | dolg oy Joj pasn ploysary) aouediyuss oy st [0

*¥

s[opou Jo uondrosap € 10j ¢ dqe], 99§
x

1€8°0 L0 90L'0  9TS0  SE€0  1TT0  SANSOI
uonenossy (-9
009°0 999°0 6990 0£S0  €P€0  0€T0  SINS0S
LYL'0 LTLO 9990 IIS0  8Z€0  ¥TT0  SANSOI
uonenossy -9
806°0 668°0 €PL0  LISO  TEEO0  pETO  TI=TTBAYo
85T°0 860°0 W8I0 S€T0  LTTO 1610 80=TSTyo
uonenossy 4-1Sd
$68°0 ¥88°0 PLO  €¥S0  PPED  SETO €1
£29'0 95t°0 60S0 650 TIEO  8ITO Il
DY O reurdaey
L¥8'0 T8L°0 $69°0  9IS0  1TE0  ¥TTO aseq
xa2UDS o1 00T 000'T  000°0T  000°0S JOPOIN
PAYSPM 100000 :T000°0 1000 100  :S0°0

7 d3)s 0) Suissed siadjaew Jo # pajdadxy o
XX

sproysaiy) I'p jo a3uelr & sso1oe poylow gxOHH 10J Sunsa) 1asqns Sursn Iomod

ARIqel

Author Manuscript

Author Manuscript

Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



Page 22

Gauderman et al.

71000 €50 90~ 760 (A Ve 4 1€°1e o) 6LS1S06S 97seTSIsT  SI
71000 8€°0 L80~ 80 T S0H0T 99'1¢T v 88LYTLE 8YLSOLYST Tl
71000 vLO PEO0 SOl T S0H0T L9'1T o) 66786601 98969851 6
71000 950 650- 160 T S010T 69'1C o) 768866STI  LLLLILTST 6
71000 170 9Tl 611 T s0H6l SLIeT L 609767S 88€886ISI €1
71000 650 €60 LOTT T S0d9l vI°Te D 00£526601 $960£9s1 6
21000 LTO - 280 T soHCT 19°CC L €1S9LE80T  SOTSOSOTSI 8
T100°0 LI000  €T'€E- LSO T S0-ATT 16°CC o) TOLLESGIT  OTE000LST 8
71000 80 0Lo  SI'l T 90°9L LS€T o) LLLETOIT  SL1690018T S
71000 160 Iro- 860 T 9049°¢ 81'7C o) PLTBLSYL STSOILST 4
S00°0 L60 $0°0 10'1 I 90dly 6L¥C D €L85T6601 £190TSs! 6
$00°0 110°0 SST 09T I 90d67C 0S'ST o) LOPH6SSST  THSTHRYSI 4
S00°0 [840) 780~ 880 I L0-H88 88'LT L 85020718 T6Y6TTIST L
S00°0 LO0 I81-  Tr0 I 604C8 €TLE o) 6Y9E1L00C  61LTESTST I
S00°0 50 v90 €Il I 60HEL 81'LE L SL6TOLIVT  TSSL699sT 1
PIoysaayy, anfea-d 15934 =ogo g anea-d  axenbs-iy)H PV uoned0| ANS 1Y)
duUedIYIU3IS AUIIYIY
v dag I das

BUIYISE POOYP[IYD JOSUO-SUNOA Y)IM UOTIORINUI XIS X D) 10J SINS £S8°9€S JO sIsA[eue gxO|DF+O woif SINS 1 dog,

Author Manuscript

IA @l9elL

Author Manuscript

Author Manuscript

Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2015 March 03.



