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Finding gene networks from microarray data has been one focus of research in
recent years. Given search spaces of super-exponential size, researchers have been
applying heuristic approaches like greedy algorithms or simulated annealing to
infer such networks. However, the accuracy of heuristics is uncertain, which -
in combination with the high measurement noise of microarrays - makes it very
difficult to draw conclusions from networks estimated by heuristics. We present a
method that finds optimal Bayesian networks of considerable size and show first
results of the application to yeast data. Having removed the uncertainty due to the
heuristic methods, it becomes possible to evaluate the power of different statistical
models to find biologically accurate networks.

1 Introduction

Inference of gene networks from gene expression measurements is a major
challenge in Systems Biology. If gene networks can be infered correctly, it
can lead to a better understanding of cellular processes, and, therefore, have
applications to drug discovery, disease studies, and other areas.

Bayesian networks are a widely used approach to model gene
networks3,4,7,9,11,13 ,14,17. In Bayesian networks, the behaviour of the gene
network is modeled as a joint probability distribution for all genes. This
allows a very general modeling of gene interactions. The joint probabil-
ity distribution can be decomposed as a product of conditional probabili-
ties P (Xg |X1, . . . , Xn), representing the regulation of a gene g by some genes
g1, . . . , gn. This decomposition can be represented as a directed acyclic graph.
The Bayesian network model has been shown to allow finding biologically
plausible gene networks4,9.

However, the difficulty of learning Bayesian networks lies in its large
search space. The search space for a gene network of n genes is the space
of directed acyclic graphs with n vertices. A recursive formula as well as an
asymptotic expression for the number of directed acyclic graphs with n ver-
tices (cn) was derived by Robinson15. We state the asymptotic expression
here:

cn =
n! · 2 n

2 ·(n−1)

r · zn
; r ∼ 0.57436; z ∼ 1.4881 (1)



For example, there are roughly 2.34 ·1072 possible networks with 20 genes, and
about 2.71 ·10158 possible solutions for a gene network with 30 genes. Even for
a gene network of 9 genes (search space size roughly 1.21 · 1015), a brute force
approach would take years of computation time even on a supercomputer.
Moreover, it is known that the problem of finding an optimal network is NP-
hard1, even for the discrete scores BDe2,3 and MDL3. Therefore, researchers
have so far used heuristic approaches like simulated annealing8 or greedy
algorithms9 to estimate Bayesian networks18.

However, since the accuracy of heuristics is uncertain, it is difficult to
base conclusions on heuristically estimated networks. In order to overcome
this problem, we have analysed the structure of the super-exponential search
space and developed an algorithm that finds the optimal solution within the
super-exponential search space in exponential time. This approach is feasible
for gene networks of 20 or more genes, depending on the concrete probability
distribution used. Furthermore, adding biologically justified assumptions, the
optimal network can be infered for gene networks of up to 40 genes.

Overcoming the uncertainties of heuristics opens up the possibility to
compare statistical models with respect to their power to infer biologically
accurate gene networks. Also, this method is a valuable tool for refining gene
networks of known functional groups of genes.

We present the method in Section 2. In Section 3, we present results of
an application of this method, which show that it can estimate gene networks
biologically accurate.

2 The Method

2.1 Preliminaries

Throughout this section, we assume we are given a set of genes G and
a network score function as used by several groups4,9,17, i.e. a function
s : G × 2G → IR that assigns a score to a gene g ∈ G and a set of
parent genes A ⊆ G. Given a network N , the score of N is defined as
score(N) =def

∑
g∈G s(g, P N(g)), where P N(g) denotes the set of g’s parents

in N .

Examples:

1. BDe score2,3

The score is proportional to the posterior probability of the network,
given the data. When the BDe score is used, the microarray data needs
to be discretized.



2. MDL score3

The MDL score makes use of the minimal description length principle
and also uses discretized data.

3. BNRC score9

The BNRC score uses nonparametric regression to capture nonlinear gene
interactions. Since the data does not need to be discretized, no informa-
tion is lost.

The task of infering a network is to find a set of parent genes for each gene,
such that the resulting network is acyclic and the score of the network is
minimal.
We introduce some notations needed to describe the algorithm.

Definition 1: F
We define F : G× 2G → IR as F (g, A) =def minB⊆A s(g, B) for all g ∈ G and
A ⊆ G. •
The meaning of F (g, A) is, by the definition, the optimal choice of parents for
gene g, when parents have to be selected from the subset A. For every acyclic
graph, there is an ordering of the vertices, such that all edges are oriented in
the direction of the ordering. Conversely, when given a fixed order of G, we
can think of the set of all graphs that comply with the given order, as we do
in the next definition.

An ordering of a set A ⊆ G can be described as a permutation π :
{1, . . . , |A|} → A. Let us use ΠA to denote the set of all permutations of
A.

Definition 2: π-linearity
Let A ⊆ G and π ∈ ΠA. Let N ⊆ A × A be a network. We say N is π-linear
iff for all (g, h) ∈ N π−1(g) < π−1(h) holds. •
Now we use the above definitions and define function QA, which will allow us
to compute the score of the best π-linear network for a given π, as we show
below.

Definition 3: QA

Let A ⊆ G. We define QA : ΠA → IR as

QA(π) =def

∑

g∈A

F (g, {h ∈ A|π−1(h) < π−1(g)}). (2)

for all π ∈ ΠA. •



If we can compute the best π-linear network for a given permutation π
using functions F and Q, then what we need to do in order to find the
optimal network is to find the optimal permutation π, which yields the global
minimum. Formally, we define function M for this step.

Definition 4: M
We define M : 2G → ⋃

A⊆G ΠA as

M(A) =def arg min
π∈ΠA

QA(π) (3)

for all A ⊆ G. •

2.2 The Algorithm

Using above notations, the algorithm can be defined as follows.

Step 1: Compute F (g, ∅) = s(g, ∅) for all g ∈ G.
Step 2: For all A ⊆ G, A �= ∅ and all g ∈ G, compute F (g, A) as

min{s(g, A), mina∈A F (g, A− {a})}.
Step 3: Set M(∅) = ∅.
Step 4: For all A ⊆ G, A �= ∅, do the following two steps:
Step 4a: Compute

g∗ = arg ming∈A(F (g, A−{g})+QA−{g}(M(A−{g}))).
Step 4b: For all 1 ≤ i < |A|, set M(A)(i) = M(A − {g∗})(i), and

M(A)(|A|) = g∗.
Step 5: return QG(M(G)).

In the recursive formulas given in Step 2 and in Step 4, we want to compute
the function F resp. M for a subset A ⊆ G of cardinality m = |A|, and
need function values of function F resp. M for subsets of cardinality m − 1.
Therefore, we can apply dynamic programming in Step 2 as well as in Step
4 to compute functions F resp. M for subsets A of increasing cardinality. In
the recursive formula in Step 4, first the last element g∗ of the permutation
M(A) is computed in Step 4a, and then M(A) is set in Step 4b.

2.3 Correctness and Time Complexity

First, we prove the correctness of the algorithm. The correctness of the re-
cursive formula in Step 2 of the algorithm follows directly from the definition
of F . Therefore, after execution of Step 1 and Step 2, the values of function



F for all genes g and all subsets A ⊆ G are stored in the memory. Before pro-
ceeding to Step 3 and Step 4, we state a lemma on the meaning of function QA.

Lemma 1

Let A ⊆ G and π ∈ ΠA. Let N∗ ⊆ A×A be a π-linear network with
minimal score. Then, QA(π) = score(N∗) holds.

Proof. In a π-linear graph, a gene g can only have parents h, which are
upstream in the order coded by π, that is, π−1(h) < π−1(g). Therefore, when
selecting parents for g, we are restricted to B = {h ∈ A|π−1(h) < π−1(g)},
and F (g, B) is the optimal choice in this case. Since in a π-linear graph, all
edges comply with the order coded by π, we can choose parents in this way
for all genes independently, which proves the claim. �
Using Lemma 1, we prove that function M can be computed by the formula
given in Step 4.

Lemma 2

Let A ⊆ G. Let g∗ = arg ming∈A(F (g, A − {g}) + QA−{g}(M(A −
{g}))). Define π ∈ ΠA by π(i) = M(A − {g∗})(i), and π(|A|) = g∗.
Then, π = M(A).

Proof. Let π′ ∈ ΠA. By the definition of M , we have to show QA(π) ≤
QA(π′). Let N∗ be an optimal π-linear network, M∗ be an optimal π′-linear
network. Then, by Lemma 1, QA(π) ≤ QA(π′) is equivalent to score(N∗) ≤
score(M∗). Let us denote the last element of π′ as h = π′(|A|). We note that
for any B ⊆ G, QB(M(B)) is the score of a global optimal network on B by
above definitions. Therefore, we have:

score(M∗) = s(h, P M∗
(h)) +

∑
g∈A−{h} s(g, P M∗

(g))
≥ s(h, P M∗

(h)) + QA−{h}(M(A − {h}))
≥ F (h, A− {h}) + QA−{h}(M(A − {h}))
≥ minh∈A(F (h, A− {h}) + QA−{h}(M(A − {h})))
= F (g∗, A− {g∗}) + QA−{g∗}(M(A − {g∗}))
= score(N∗),

which shows the claim. �
Since Q can be directly computed using F , the algorithm can compute



QG(M(G)) in Step 5. Finally, QG(M(G)) is the score of an optimal Bayesian
network by definition, which shows the correctness.

If the information of the best parents is stored together with F (g, A)
for every gene g and every subset A ⊆ G, the optimal network can be
constructed during the computation of QG(M(G)).

Theorem 1

Optimal networks can be found using O(n·2n) dynamic programming
steps.

Proof. The dynamic programming in Step 1 and Step 2 requires O(n · 2n)
(n = |G|) steps and in each step one score is computed. In the dynamic
programming in Step 3 and Step 4 O(2n) steps are needed, where each steps
involves looking up some previously stored scores. Note that the function
QA does not need to be actually computed in Step 4a, because QA−{g} can
be stored together with M(A − {g}) in previous steps.
Therefore, the overall time complexity is O(n · 2n). �
In biological reality, while the number of children of a regulatory gene may
be very high, the number of parents can be assumed to be limited. When
we limit the number of parents, the number of score calculations reduces
substantially, allowing the computation of larger networks.
We state the following trivial corollary, which is practically very meaningful
(see Section 3).

Corollary 1

Let m ∈ IN be a constant. Optimal networks, in which no gene has
more than m parents, can be found in O(n·2n) dynamic programming
steps.

If we do not want to limit the number of parents by a constant, but instead
can select for each gene a fixed number of candidate parents, the complexity
changes as follows.

Corollary 2

Let m ∈ IN be a constant. For each g ∈ G, let Cg ⊆ G be a set with
|Cg| ≤ m. Optimal networks, in which each gene g has parents only
in Cg, can be found in O(2n) dynamic programming steps.

Proof. Since the parents of each gene are selected from a set of constant size,
the complexity of the dynamic programming in Step 1 and Step 2 becomes



constant. Therefore, the overall complexity becomes O(2n). �
We note, that the two applications of dynamic programming in our algorithm
can be implemented as a single application of dynamic programming, because
when we compute function M for a set of size m, we only need function
values of function F for a set of size m − 1. Therefore, only the function
values for functions F and M for sets of size m − 1 and m need to be stored
in the memory at the same time. This is practically meaningful to reduce the
required amount of memory.

We also note that the algorithm can be modified to also compute subopti-
mal solutions. Computing the second-best or the third-best network might be
valuable in order to assess the stability of the infered networks under marginal
changes of the score.

3 Results

The algorithm described above was implemented as a C++ program. As
scoring functions, existing implementations of the BNRC score, the BDe score
and the MDL score are used. All three approaches (Theorem 1, Corollary 1
and 2) were implemented.

We applied the program to a dataset of 173 microarrays, measuring the
response of Saccharomyces cerevisiae to various stress conditions.5

3.1 Application to Heat Shock Data

From the dataset we selected 15 microarrays from 25◦C to 37◦C heat shock
experiments and 5 microarrays from heat shock experiments from various
temperatures to 37◦C. Then we selected a set of 9 genes, which are involved
or putatively involved in the heat shock response. Figure 1 shows the optimal
network with respect to the BNRC score.

We observe that the transcription factor MCM1 is estimated to regulate
three other genes, while it is not regulated by one of the genes in this set,
which is plausible. The second transcription factor in our set of genes, HSF1,
is estimated to regulate three other heat shock genes. It is also estimated to be
regulated by a HSP70-protein (SSA1), which was reported before16. Another
chaperone among these genes, SSA3, also seems to play an active role in the
heat shock response and interacts with SSA1 and HSP104, coinciding with a
report by Glover and Lindquist6.

Overall, the result is biologically plausible and gives an indication for the
active role of the chaperones SSA1 and SSA3 during the heat shock response.
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Figure 1. A gene network infered by our method.

We conclude that optimally infered gene networks are meaningful and useful
for the elucidation of gene regulation.

gene annotation
HSF1 heat shock transcription factor
SSA1 ER and mitochondrial translocation, cytosolic HSP70
SSA3 ER and mitochondrial translocation, cytosolic HSP70
HIG1 heat shock response, heat-induced protein
HSP104 heat shock response, thermotolerance heat shock protein
MCM1 transcription, multifunctional regulator
HSP82 protein folding, HSP90 homolog
YRO2 unknown, putative heat shock protein
HSP26 diauxic shift, stress-induced protein

3.2 Computational Possibilities and Limitations

While even networks of small scale like the network infered in Section 3.1
cannot be infered with a brute force approach (Eqn. 1), they can be optimally
infered by our program using a single Pentium CPU with 1.9 GHz for about
10 minutes. In order to evaluate the practical possibilities of this approach,
we selected 20 genes with known active role in gene regulation12 from the



data set and estimated a network with optimal BNRC score using all 173
microarrays. The computation finished within about 50 hours using a Sun
Fire 15K supercomputer with 96 CPUs, 900MHz each. As a result of this
computational experiment, we conclude that our method is feasible for gene
networks of 20 genes, even if no constraints are made and a complex scoring
scheme like the BNRC score is used. For the discrete scores BDe and MDL,
which can be computed much faster, even networks of more than 20 genes can
be infered optimally without constraints.

When the number of parents is limited to about 6 (Corollary 1) or, al-
ternatively, sets of about 20 candidate parents are preselected (Corollary 2),
even with the BNRC score gene networks of more than 30 genes can be in-
fered optimally. However, the method as it is now will not allow to estimate
networks of more than about 40 genes.

While the theoretical time complexity of the approach given in Corollary
2 is below the time complexity of the approach given in Corollary 1, we argue
that the latter might be practically more important. First, limiting the num-
ber of parents by a constant can be easily done and is biologically justified,
while selecting a set of candidate parents for each gene requires a method of
gene selection, which can potentially bias the computation result. Second, it
has to be considered that each dynamic programming step in the computation
of function F requires the computation of one score, while one dynamic pro-
gramming step for function M only requires looking up some previous results.
When the number of parents is limited as in Corollary 1, the required number
of score calculations becomes a polynomial, which makes this approach faster
in practical applications, though the approach in Corollary 2 is theoretically
superior.

4 Conclusion

We have presented a method that allows to infer gene networks of 20-40 genes
optimally, depending on the probability distribution used and on whether ad-
ditional assumptions are made or not. This makes it possible to compare
different scoring schemes, to assess the best parameters for a given scoring
scheme, and to evaluate the usefulness of given microarray data, since opti-
mal solutions are obtained. Also, the method is especially useful in settings
where researchers focus on a certain group of genes and want to exploit gene
expression measurements concerning these genes to the full extent.

In contrast to heuristic approaches, if the results are unsatisfying or con-
tradictory to biological knowledge, it can be concluded that the statistical
model is incorrect or the data is insufficient. Even for a network of 20 genes,



getting to know the best network from the huge search space given is a large
amount of information.

We note that the method is not dependent on a certain scoring scheme
or a certain kind of gene expression measurements. It can be applied in
any setting, where a score as defined in Section 2 is given. For example,
when sequence information19, protein interaction data10, or other knowledge
is incorporated in the score function, this method can also be applied.

In order to find gene networks with more than 40 genes, two directions
of future work open up. First, if a part of the set of subsets, in which the
algorithm performs the actual search, can be pruned, the limit of feasibility
might be increased. Second, compartmentalization of gene networks18 might
be used to decompose larger networks in smaller parts, and infer each partial
network optimally.
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