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Abstract 

Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex 
vehicle routing problems with pickup and delivery with time windows (VRPPDTW). This paper first proposes a new 
time-discretized multi-commodity network flow model for the VRPPDTW based on the integration of vehicles’ 
carrying states within space-time transportation networks, so as to allow a joint optimization of passenger-to-vehicle 
assignment and turn-by-turn routing in congested transportation networks. Our three-dimensional state-space-time 
network construct is able to comprehensively enumerate possible transportation states at any given time along vehicle 
space-time paths, and further allow a forward dynamic programming solution algorithm to solve the single vehicle 
VRPPDTW problem. By utilizing a Lagrangian relaxation approach, the primal multi-vehicle routing problem is 
decomposed to a sequence of single vehicle routing sub-problems, with Lagrangian multipliers for individual 
passengers’ requests being updated by sub-gradient-based algorithms. We further discuss a number of search space 
reduction strategies and test our algorithms, implemented through a specialized program in C++, on medium-scale 
and large-scale transportation networks, namely the Chicago sketch and Phoenix regional networks. 
 

Keywords: vehicle routing problem with pickup and delivery with time windows, Lagrangian relaxation, time-
dependent least-cost path problem, forward dynamic programming, ride-sharing service optimization. 
 
1. Introduction 

As population and personal travel activities continue to increase, traffic congestion has remained as one of the major 
concerns for transportation system agencies with tight resource constraints. The next generation of transportation 
system initiatives aims to integrate various demand management strategies and traffic control measures to actively 
achieve mobility, environment, and sustainability goals. A number of approaches hold promises of reducing the 
undesirable effects of traffic congestion due to driving-alone trips, to name a few, demand-responsive transit services, 
dynamic ride-sharing, and intermodal traffic corridor management. 

The optimized and coordinated ride-sharing services provided by transportation network companies (TNC) can 
efficiently utilize limited vehicle and driver resources while satisfying time-sensitive origin-to-destination 
transportation service requests. In a city with numerous travelers with different purposes, each traveler has his own 
traveling schedule. Instead of using his own car, the traveler can (by the aid of ride-sharing) bid and call a car just a 
few minutes before leaving his origin, or preschedule a car a day prior to his departure. The on-demand transportation 
system provides a traveler with a short waiting time even if he resides in a high-demand area. Currently, several real-
time ride-sharing or, more precisely, app-based transportation network and taxi companies, such as Uber, Lyft and 
RubyRide, are serving passengers in many metropolitan areas. In the long run, a fully automated and optimized ride-
sharing approach is expected to handle very complex transportation supply-to-demand assignment tasks and offer a 
long list of benefits for transportation road users and TNC operators. These benefits might include reducing driver 
stress and driving cost, improving mobility for non-drivers, increasing safety and fuel efficiency, and decreasing road 
congestion as well as reducing overall societal energy use and pollution. 
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The ride-sharing problem can be mathematically modeled by one of the well-known optimization problems which 
is the vehicle routing problem with pickup and delivery (VRPPD). In this paper, in order to improve the solution 
quality and computational efficiency of on-demand transportation systems and dynamic ride-sharing services, 
especially for large-scale real-world transportation networks, we propose a new mathematical programming model 
for the vehicle routing problem with pickup and delivery with time windows (VRPPDTW) that can fully recognize 
time-dependent link travel time caused by traffic congestion at different times of day. Based on the Lagrangian 
relaxation solution framework, we further present a holistic optimization approach for matching passengers’ requests 
to transportation service providers, synchronizing transportation vehicle routing, and determining request pricing (e.g. 
through Lagrangian multipliers) for balancing transportation demand satisfaction and resource needs on urban 
networks. 

 
2. Literature Review and Research Motivations  

The vehicle routing problem with pickup and delivery with time windows (VRPPDTW) or simply, pickup and delivery 
problem with time windows (PDPTW), is a generalized version of the vehicle routing problem with time windows 
(VRPTW), in which each transportation request is a combination of pickup at the origin node and drop-off at the 
destination node (Desaulniers et al. 2002). The PDPTW under consideration in this paper contains all constraints in 
the VRPTW plus added constraints in which either pickup or delivery has given time windows, and each request must 
be served by a single vehicle. The PDPTW may be observed as the dial-a-ride problem in the literature as well. Since 
the VRPTW is an NP-hard problem, the PDPTW is also NP-hard (Baldacci et al. 2011). 

Several applications of the VRPPDTW have been reported in road, maritime, and air transportation environments, 
to name a few, Fisher et al. (1982), Bell et al. (1983), Savelsbergh and Sol (1998), Wang and Regan (2002), and 
Zachariadis et al. (2015) in road cargo routing and scheduling; Psaraftis et al. (1985), Fisher and Rosenwein (1989), 
and Christiansen (1999) in sea cargo routing and scheduling; and Solanki and Southworth (1991), Solomon et al. 
(1992), Rappoport et al. (1992), and Rappoport et al. (1994) in air cargo routing and scheduling. Further applications 
of the VRPPDTW can be found in transportation of elderly or handicapped people (Jaw et al. 1986; Alfa, 1986; 
Ioachim et al. 1995; and Toth and Vigo, 1997), school bus routing and scheduling (Swersey and Ballard, 1983; and 
Bramel and Simchi-Levi, 1995), and ride-sharing (Hosni et al. 2014; and Wang et al. 2015).  Recently, Furuhata et al. 
(2013) offers an excellent review and provides a systematic classification of emerging ride-sharing systems. 

Although clustering algorithms (Cullen et al. 1981; Bodin and Sexton, 1986; Dumas et al. 1989; Desrosiers et al. 
1991; and Ioachim et al. 1995), meta-heuristics (Gendreau et al. 1998; Toth and Vigo, 1997; and Paquette et al. 2013), 
neural networks (Shen et al. 1995), and some heuristics such as double-horizon based heuristics (Mitrovic-Minic et 
al. 2004) and regret insertion heuristics (Diana and Dessouky, 2004) have been shown to be efficient in solving a 
particular size of PDPTW, in general, finding the exact solution via optimization approaches has still remained 
theoretically and computationally challenging. Focusing on the PDPTW for a single vehicle, Psaraftis (1980) 
presented an exact backward dynamic programming (DP) solution algorithm to minimize a weighted combination of 
the total service time and the total waiting time for all customers with 𝑂(𝑛23𝑛) complexity. Psaraftis (1983) further 
modified the algorithm to a forward DP approach. Sexton and Bodin (1985a, b) decomposed the single vehicle 
PDPTW to a routing problem and a scheduling sub-problem, and then they applied Benders’ decomposition for both 
master problem and sub-problem, independently. Based on a static network flow formulation, Desrosiers et al. (1986) 
proposed a forward DP algorithm for the single-vehicle PDPTW with the objective function of minimizing the total 
traveled distance to serve all customers. After presenting our proposed model in the later section, we will conduct a 
more systematical comparison between our proposed state-space-time DP framework and the classical work by 
Psaraftis (1983) and Desrosiers et al. (1986).  

There are a number of studies focusing on the multi-vehicle pickup and delivery problem with time windows. 
Dumas et al. (1991) proposed an exact algorithm to the multiple vehicle PDPTW with multiple depots, where the 
objective is to minimize the total travel cost with capacity, time window, precedence and coupling constraints. They 
applied a column generation scheme with a shortest path sub-problem to solve the PDPTW, with tight vehicle capacity 
constraints, and a small size of requests per route. Ruland (1995) and Ruland and Rodin (1997) proposed a polyhedral 
approach for the vehicle routing problem with pickup and delivery. Savelsbergh and Sol (1998) proposed an algorithm 
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for the multiple vehicle PDPTW with multiple depots to minimize the number of vehicles needed to serve all 
transportation requests as the primary objective function, and minimizing the total distance traveled as the secondary 
objective function. Their algorithm moves toward the optimal solution after solving the pricing sub-problem using 
heuristics. They applied their algorithm for a set of randomly generated instances. In a two-index formulation proposed 
by Lu and Dessouky (2004), a branch-and-cut algorithm was able to solve problem instances. Cordeau (2006) 
proposed a branch-and-cut algorithm based on a three-index formulation. Ropke et al. (2007) presented a branch-and-
cut algorithm to minimize the total routing cost, based on a two-index formulation. Ropke and Cordeau (2009) 
presented a new branch-and-cut-and-price algorithm in which the lower bounds are computed by the column 
generation algorithm and improved by introducing different valid inequalities to the problem. Based on a set-
partitioning formulation improved by additional cuts, Baldacci et al. (2011) proposed a new exact algorithm for the 
PDPTW with two different objective functions: the primary is minimizing the route costs, whereas the secondary is 
to minimize the total vehicle fixed costs first, and then minimize the total route costs.  

Previous research has made a number of important contributions to this challenging problem along different 
formulation or solution approaches. On the other hand, there are a number of modeling and algorithmic challenges for 
a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various 
road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. A few previous 
research directly considers the underlying transportation network with time of day traffic congestion (Kok et al. 2012, 
Gromicho et al. 2012) and has defined the PDPTW on a directed graph containing customers’ origin and destination 
locations connected by some links which are representative of the shortest distance or least travel time routes between 
origin-destination pairs. That is, with each link, there are associated routing cost and travel time between the two 
service nodes. Unlike the existing offline network for the PDPTW in which each link has a fixed routing cost (travel 
time), our research particularly examines the PDPTW on real-world transportation networks containing a 
transportation node-link structure in which routing cost (travel time) along each link may vary over the time. 

In order to consider many relevant practical aspects, such as waiting costs at different locations, we adapt Yang 
and Zhou’s (2014) space-time scheme to formulate the PDPTW on state-space-time transportation networks. The 
constructed networks are able to conveniently represent the complex pickup and delivery time windows without 
adding the extra constraints typically needed for the classical PDPTW formulation (e.g. Cordeau, 2006). The 
introduced state-space-time networks also enable us to embed computationally efficient dynamic programming 
algorithms for solving the PDPTW without relying on off-the-shelf optimization solvers. Even though the solution 
space created by our formulation has multiple dimensions and accordingly large in its sizes, the readily available large 
amount of computer memory in modern workstations can easily accommodate the multi-dimensional solution vectors 
utilized in our application. Our fully customized solution algorithms, implemented in an advanced programming 
language such as C++, hold the promise of tackling large-sized regional transportation network instances. To address 
the multi-vehicle assignment requirement, we relax the transportation request satisfaction constraints into the objective 
function and utilize the related Lagrangian relaxation (LR) solution framework to decompose the primal problem to a 
sequence of time-dependent least-cost-path sub-problems.  

In our proposed solution approach, we aim to incorporate several lines of pioneering efforts in different directions. 
Specifically, we (1) reformulate the VRPPDTW as a time-discretized, multi-dimensional, multi-commodity flow 
model with linear objective function and constraints, (2) extend the static DP formulation to a fully time-dependent 
DP framework for single-vehicle VRPPDTW problems, and (3) develop a LR solution procedure to decompose the 
multi-vehicle scheduling problem to a sequence of single-vehicle problems and further nicely integrate the demand 
satisfaction multipliers within the proposed state-space-time network.   

Based on the Lagrangian relaxation solution framework, we further present a holistic optimization approach for 
matching passengers’ requests to transportation service providers, synchronizing transportation vehicle routing, and 
determining request pricing (e.g. through Lagrangian multipliers) for balancing transportation demand satisfaction 
and resource needs on urban networks. 

The rest of the paper is organized as follows. Section 3 contains a precise mathematical description of the PDPTW 
in the state-space-time networks. In section 4, we present our new integer programming model for the PDPTW 
followed by a comprehensive comparison between Cordeau’s model and our model. Then, we will show how the main 
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problem is decomposed to an easy-to-solve problem by the Lagrangian relaxation algorithm in section 5. Section 6 
provides computational results of the six-node transportation network, followed by the Chicago sketch and Phoenix 
regional networks to demonstrate the computational efficiency and solution optimality of our developed algorithm 
coded by C++. After large-scale network experiments, we conclude the paper in section 7 with discussions on possible 
extensions. 
 

3. Problem Statement Based on State-space-time Network Representation 

In this section, we first introduce our new mathematical model for the PDPTW. This is followed by a comprehensive 
comparison between our proposed model and the three-index formulation of Cordeau (2006) for the PDPTW, 
presented in Appendix A, for the demand node-oriented network. 
 
3.1. Description of the PDPTW in State-space-time Networks 

We formulate the PDPTW on a transportation network, represented by a directed graph and denoted as 𝐺(𝑁, 𝐴), where 𝑁 is the set of nodes (e.g. intersections or freeway merge points) and 𝐴 is the set of links with different link types such 
as freeway segments, arterial streets, and ramps. As shown in Table 1, each directed link (𝑖, 𝑗) has time-dependent 
travel time 𝑇𝑇(𝑖, 𝑗, 𝑡) from node i to node j starting at time t.  Every passenger 𝑝 has a preferred time window for 

departure from his origin, [𝑎𝑝 , 𝑏𝑝], and a desired time window for arrival at his destination, [𝑎𝑝′ , 𝑏𝑝′ ], where 𝑎𝑝, 𝑏𝑝, 𝑎𝑝′ , 

and 𝑏𝑝′  are passenger 𝑝’s earliest preferred departure time from his origin, latest preferred departure time from his 

origin, earliest preferred arrival time at his destination, and latest preferred arrival time at his destination, respectively.  

Each vehicle 𝑣 also has the earliest departure time from its starting depot, 𝑒𝑣, and the latest arrival time at its ending 

depot, 𝑙𝑣. In the PDPTW, passengers may share their trip with each other; in other words, every vehicle v, considering 

its capacity 𝐶𝑎𝑝𝑣 and the total routing cost, may serve as many passengers as possible provided that passenger p is 

picked up and dropped-off in his preferred time windows, [𝑎𝑝, 𝑏𝑝] and [𝑎𝑝′ , 𝑏𝑝′ ], respectively. 

Each transportation node has the potential to be the spot for picking up or dropping off a passenger. Likewise, a 
vehicle’s depot might be located at any node in the transportation network. To distinguish regular transportation nodes 
from passengers’ and vehicles’ origin and destination, we add a single dummy node 𝑜𝑣′  for vehicle 𝑣’s origin depot 
and a single dummy node 𝑑𝑣′  for vehicle 𝑣’s destination depot. Similarly, we can also add dummy nodes 𝑜𝑝 and 𝑑𝑝 

for passenger 𝑝. Each added dummy node is only connected to its corresponding physical transportation node by a 
link. The travel time on this link can be interpreted as the service time if the added dummy node is related to a 
passenger’s origin or destination, and as preparation time if it is related to a vehicle’s starting or ending depot. Table 
1 lists the notations for the key sets, indices and parameters in the PDPTW. 

  
Table 1. Sets, indices and parameters in the PDPTW. 

Symbol Definition 𝑉 Set of physical vehicles  𝑉∗ Set of virtual vehicles 𝑃 Set of passengers 𝑁 Set of physical transportation nodes in the physical traffic network based on geographical location 𝑊 Set of possible passenger carrying states 𝑣 Vehicle index 𝑣𝑝∗ Index of virtual vehicle exclusively dedicated for passenger 𝑝 𝑝 Passenger index 𝑤 Passenger carrying state index (𝑖, 𝑗) Index of physical link between adjacent nodes 𝑖 and 𝑗 𝑇𝑇(𝑖, 𝑗, 𝑡) Link travel time from node i to node j starting at time t 𝐶𝑎𝑝𝑣 Maximum capacity of vehicle 𝑣 𝑎𝑝 Earliest departure time from passenger 𝑝’s origin 𝑏𝑝 Latest departure time from passenger 𝑝’s origin 𝑎𝑝′  Earliest arrival time at passenger 𝑝’s destination 𝑏𝑝′  Latest arrival time at passenger 𝑝’s destination 
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[𝑎𝑝, 𝑏𝑝] Departure time window for passenger 𝑝’s origin [𝑎𝑝′ , 𝑏𝑝′ ] Arrival time window for passenger 𝑝’s destination 𝑜𝑣′  Dummy node for vehicle 𝑣’s origin 𝑑𝑣′  Dummy node for vehicle 𝑣’s destination  𝑒𝑣 Vehicle 𝑣’s earliest departure time from the origin depot 𝑙𝑣 Vehicle 𝑣’s latest arrival time to the destination depot 𝑜𝑝 Dummy node for passenger 𝑝’s origin (pickup node for passenger 𝑝) 𝑑𝑝 Dummy node for passenger 𝑝’s destination (delivery node for passenger 𝑝) 

 
We now use an illustrative example to demonstrate key modeling features of constructed networks. Consider a 

physical transportation network consisting of six nodes presented in Fig. 1. Each link in this network is associated 
with time-dependent travel time 𝑇𝑇(𝑖, 𝑗, 𝑡). Without loss of generality, the number written on each link denotes the 
time-invariant travel time 𝑇𝑇(𝑖, 𝑗) in terms of minutes. Suppose two requests with two origin-destination pairs should 
be served. For simplicity, it is assumed that both passengers have the same origin (node 2) and the same drop-off node 
(node 3). There is only one vehicle available for serving. Moreover, it is assumed that the vehicle starts its route from 

node 4 and ends it at node 1. Passenger 1 should be picked up from dummy node 𝑜1 in time window [4,7] and dropped 

off at dummy node 𝑑1 in time window [11,14], while Passenger 2 should be picked up from dummy node 𝑜2 in time 

window [8,10] and dropped off at dummy node 𝑑2 in time window [13,16]. Vehicle 1 also has the earliest departure 
time from its starting depot, 𝑡 = 1, and the latest arrival time at its ending depot, 𝑡 = 20. 
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Fig. 1. (a) Six-node transportation network; (b) transportation network with the corresponding dummy nodes. 

 

Note that the shortest path with node sequence (𝑜1′ , 4, 2, 𝑜1, 2, 𝑜2, 2, 5, 6, 3, 𝑑1, 3, 𝑑2, 3, 1, 𝑑1′ ) from vehicle 1’s 
origin to its ending depot is shown by bold arrows when it serves both passenger 1 and 2. To construct a state-space-
time network, the time horizon is discretized into a series of time intervals with the same time length. Without loss of 
generality, we assume that a unit of time has one minute length. To avoid more complexity in the vehicle’s space-time 
network illustrated in Fig. 2, only those arcs constituting the shortest paths from vehicle 1’s origin to its destination 
are demonstrated. Our formulation has a set of precise rules to allow or restrict the vehicle waiting behavior in the 
constructed space-time network, depending on the type of nodes and the associated time window. First, vehicle 𝑣 may 
wait at its own origin or destination depot or at any other physical transportation nodes. If a vehicle arrives at passenger 𝑝’s origin node before time 𝑎𝑝, it must wait at the related physical node until the service is allowed to begin. Moreover, 

we assume that a vehicle is not allowed to stop at passenger 𝑝’s dummy origin node after time 𝑏𝑝. Similarly, if a 

vehicle arrives at passenger 𝑝’s destination node before time 𝑎𝑝′ , it must wait until it is allowed to drop-off passenger 𝑝, and vehicle 𝑣 is not allowed to stop at passenger 𝑝’s dummy destination node after time 𝑏𝑝′ .   

 



  

6 
 

1514131211108 97653 421

2

5

6

3

16

1

4

17

Time

o2

o1

d2

d1

o 1

d 1

18 19 20

Dummy pickup node

Dummy delivery node

Dummy depot

Transportation node

Transportation arcs 

Waiting Arc

Time window for vehicle v at 
starting and ending depots
Passenger p s preferred departure 
time window from origin

Passenger p s preferred arrival 
time window to destination

Service arc corresponding pickup 

Service arc corresponding drop-off 

Sp
ac

e

Fig. 2. Shortest paths with node sequence (𝑜1′ , 4, 2, 𝑜1, 2, 𝑜2, 2, 5, 6, 3, 𝑑1, 3, 𝑑2, 3, 1, 𝑑1′ ) in vehicle 1’s space-time network. 
 
In the problem under consideration, we assume all passengers’ desired departure and arrival time windows are 

feasible. However, it is quite possible that some passenger transporting requests could not be satisfied at all since the 
total number of physically available vehicles in the ride-sharing company or organization is not enough to satisfy all 
the demands. To avoid infeasibility for the constructed optimization problem, we define a virtual vehicle for each 

passenger exclusively. We assume that both starting and ending depots of virtual vehicle 𝑣𝑝∗  are located exactly where 

passenger 𝑝 is going to be picked up. By doing so, there is no cost incurred if the virtual vehicle is not needed to carry 
the related passenger, and in this case the virtual vehicle simply waits at its own depot. On the other hand, if the virtual 

vehicle is needed to perform the service to ensure there is a feasible solution, then virtual vehicle 𝑣𝑝∗  starts its route 

from its starting depot, picks up passenger 𝑝, delivers him to his destination, and then comes back to its ending depot.  

Fig. 3 shows the shortest paths with node sequence (𝑜1∗′ , 2, 𝑜1, 2, 5, 6, 3, 𝑑1, 3, 1, 2, 𝑑1∗′ ) in vehicle 𝑣1∗’s space-time 

network. 
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Fig. 3. Shortest paths with node sequence (𝑜1∗′ , 2, 𝑜1, 2, 5, 6, 3, 𝑑1, 3, 1, 2, 𝑑1∗′ ) in vehicle 𝑣1∗’s space-time network. 

 
3.2. Representing the State of System and Calculating the Number of States 

In the context of dynamic programming, we need to decompose the complex VRP structure into a sequence of 
overlapping stage-by-stage sub-problems in a recursive manner. For each stage of the optimization problem, we need 
to define the state of the process so that the state of the system with 𝑛 stages to go can fully summarize all relevant 
information of the system for future decision-making purposes no matter how the process has reached the current 
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stage 𝑛. In our pickup and delivery problem, in each vehicle’s network, the given time index 𝑡 acts as the stage, and 
the state of the system is jointly defined by two indexes: node index 𝑖 and the passenger carrying state index 𝑤. The 

latter passenger carrying state 𝑤 can be also represented as a vector with |𝑃| number of elements [𝜋1, 𝜋2, … , 𝜋𝑝, … , 𝜋𝑃], where 𝜋𝑝 equals 1 or 0 and denotes the status of passenger 𝑝 whether he is riding the vehicle 

or not. To facilitate the descriptions of the state transition, we introduce the following equivalent notation system for 
passenger carrying states: if a vehicle carries passenger 𝑝, the 𝑝th element of the state 𝑤 is filled with passenger 𝑝’s 
id; otherwise, it is filled with a dash sign, as illustrated in Table 2.  
 

Table 2. Binary representation and equivalent character-based representation for 
passenger carrying states. 

Binary representation  Equivalent character-based representation   [0,0,0] [_ _ _] [1,0,0] [𝑝1 _ _] [0,1,1] [_ 𝑝2 𝑝3] 
 

Without loss of generality, for a typical off-line vehicle routing problem, the initial and ending states of the 
vehicles are assumed to be empty, corresponding to the state [_ _ _]. For an on-line dynamic vehicle dispatching 
application, one can define the starting passenger carrying state to indicate the existing passengers riding the vehicle, 
for example,  [𝑝1 _ _] if passenger 1 is being served currently. We use an illustrative example to demonstrate the 
concept of a passenger’s carrying state clearly. Suppose three requests with three different origin-destination pairs 
should be served. There is only one vehicle available for serving and let’s assume that the vehicle can carry up to two 
passengers at the same time. We can enumerate all different carrying states for the vehicle. The first state is the state 
in which the vehicle does not carry any passenger[_ _ _]. There are 𝐶13 number of possible carrying states in which the 
vehicle only carries one passenger at time 𝑡:[𝑝1 _ _], [_ 𝑝2 _], and [_ _ 𝑝3]. Similarly, there are 𝐶23 number of possible 
carrying states in which the vehicle carries two passengers at time 𝑡 which are [𝑝1 𝑝2 _], [𝑝1 _ 𝑝3], and [_ 𝑝2 𝑝3]. Since 
the vehicle can carry up to two passengers at the same time, the state of [𝑝1 𝑝2 𝑝3] is infeasible. Fig. 4(a) and Fig. 4(b) 
show shared ride state [𝑝1 𝑝2 _] and single-passenger-serving state [_ 𝑝2 _].  

 

(a) Shared ride (b) Serving single passenger once a time

Depot

Passenger p s origin

Passenger p s destination

o2

o1

d2

d1

o3 d3

o2

o1

d2

d1

o3 d3

o 1o 1 d 1 d 1

[p1 p2 _ ]
[ _ p2 _ ]

Fig. 4. State transition path (a) Passenger carrying state [𝑝1 𝑝2 _]; (b) Passenger carrying state [_ 𝑝2 _]. 
 
We are further interested in the number of feasible states, which critically determines the computational efforts 

of the DP-based solution algorithm. First, there is a unique state in which vehicle 𝑣 does not carry any passenger, 

which is a combinatory of 𝐶0𝑃 for selecting 0 passengers from the collection of 𝑃 passengers.  Similarly, there are 𝐶1𝑃 

number of possible carrying states in which vehicle 𝑣 only carries one passenger at a time. Likewise, there are 𝐶𝑘𝑃 
number of possible carrying states in which vehicle 𝑣 carries 𝑘 passengers at a time. Note that 𝑘 ≤ 𝐶𝑎𝑝𝑣. Therefore, 

the total number of possible passenger carrying states is equal to ∑ 𝐶𝑘𝑃𝐶𝑎𝑝𝑣𝑘=0 .  It should be remarked that, according to 

the earliest departure time from the origin and the latest arrival time to the destination of different passengers, some 
of the possible carrying states, say [_ 𝑝2 𝑝3], might be infeasible as there is insufficient transportation time to pick up 
those two passengers together while satisfying their time window constraints.  
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Consider the following example, where passenger 1 should be picked up in time window [4,7] and delivered in 
time window [9,12], whereas passenger 3’s preferred time windows for being picked up and delivered are [20,24] and 
[25,29], respectively. So, it is obvious that passenger 1 and 3 cannot share their ride with each other and be transported 
at the same time by the same vehicle. Therefore, state [𝑝1 _ 𝑝3] is definitely infeasible in this example. We will further 
explain how to reduce the search region by defining some rational rules and simple heuristics in section 5.3. 

  
3.3. State Transition Associated with Pickup and Delivery Links 

Each vehicle starts its trip from the empty state in which the vehicle does not carry any passengers. We call this state 

as the initial state (𝑤0). Each vertex in the constructed state-space-time network is recognized by a triplet of three 
different indexes: node index 𝑖, time interval index 𝑡, and passenger carrying state index 𝑤. In the space-time 
transportation network construct, we can identify a traveling arc (𝑖, 𝑗, 𝑡, 𝑠) starting from node i at time t arriving at 
node j at time s. Accordingly, in the state-space-time network, each vertex (𝑖, 𝑡, 𝑤) is connected to vertex (𝑗, 𝑠, 𝑤′) 
through arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′). To find all feasible combinations of passenger carrying state transition (𝑤, 𝑤′) on an arc, 
it is sufficient to follow these rules: 

Rule 1. On a pickup link (with the passenger origin dummy node as the downstream node), vehicle 𝑣 picks up 

passenger 𝑝, so 𝜋𝑝   is changed from 0 to 1, or equivalently, the 𝑝th element of the corresponding states 

should be changed from a dash sign to passenger 𝑝 id.   
Rule 2. On a drop-off link (with the passenger destination dummy node as the upstream node), vehicle 𝑣 drops 

off passenger 𝑝, so 𝜋𝑝   is changed from 1 to 0,  and the 𝑝th element of the corresponding states should be 

changed from passenger 𝑝 id to a dash sign.   
Rule 3. On a transportation link or links connected to vehicle dummy nodes, vehicle 𝑣 neither picks up nor drops 

off any passenger, and all elements of 𝑤 and 𝑤′ should be the same. 

To find all feasible passengers state transition (𝑤, 𝑤′), we need to examine all possible combinations of 𝑤 and 𝑤′. 
Consider a three-passenger case, in which Table 3 identifies all possible combinations of these state transitions. Note 
that the vehicle can carry up to two passengers at the same time in this example. The empty cells indicate impossible 
state transitions in the constructed space-time network with dedicated dummy nodes. The corresponding possible 
passenger carrying state transitions (pickup or drop-off) are illustrated in one graph in Fig. 5. Fig. 6 represents the 
projection on state-space network for the example presented in section 3.1. 
 

Table 3. All possible combinations of passenger carrying states. 𝑤            𝑤′ [_ _ _] [𝑝1 _ _] [_ 𝑝2 _] [_ _ 𝑝3] [𝑝1 𝑝2 _] [𝑝1 _ 𝑝3] [_ 𝑝2 𝑝3] [_ _ _] no change pickup pickup pickup    [𝑝1 _ _] drop-off no change   pickup pickup  [_ 𝑝2 _] drop-off  no change  pickup  pickup [_ _ 𝑝3] drop-off   no change  pickup pickup [𝑝1 𝑝2 _]  drop-off drop-off  no change   [𝑝1 _ 𝑝3]  drop-off  drop-off  no change  [_ 𝑝2 𝑝3]   drop-off drop-off   no change 
 

[ _ _ _ ]

[ p1 _ _ ]

[ _ p2 _ ]

[ _ _ p3 ]

[ p1 p2 _ ]

[ p1 _ p3 ]

[ _ p2 p3 ]

Pickup

Drop-off

 
Fig. 5. Finite states graph showing all possible passenger carrying state transition (pickup or drop-off). 
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Fig. 6. Projection on state-space network representation for ride-sharing path (pick up passenger 𝑝1 and then 𝑝2). 

 
4. Time-discretized Multi-commodity Network Flow Programming Model 

Based on the constructed state-space-time networks that can capture essential pickup and delivery time window 
constraints, we now start constructing a multi-commodity network flow programing model for the VRPPDTW. In this 
multi-dimensional network, the challenge is to systematically describe the related flow balance constraints for vehicles 

and request satisfaction constraints for passengers. As shown in Table 4, we use (𝑖, 𝑡, 𝑤)  to represent the indices of 

state-space-time vertexes, and the corresponding arc index which is (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′). Let 𝐵𝑣 denote the set of state-

space-time arcs in vehicle 𝑣’s network, which has three different types of arcs, namely, service arcs, transportation 
arcs and waiting arcs.  

i. All passenger carrying state transitions (i.e., pickup or drop-off) occurs only on service arcs. In other words, 
all incoming arcs to passengers’ origin nodes (pickup arcs shown by green lines in Figures 5 and 6) and all 
outgoing arcs from their destination nodes (drop-off arcs shown by blue lines in Figures 5 and 6) are 
considered service arcs.  

ii. A link with both ends as physical nodes or vehicle dummy nodes are considered transportation arcs. 
iii. Vehicles (both physical and virtual) may wait at their own origin or destination depot or at any other physical 

transportation nodes through waiting arcs (𝑖, 𝑖, 𝑡, 𝑡 + 1, 𝑤, 𝑤) from time t to time 𝑡 + 1 with the same 
passenger carrying state 𝑤.    

 
Table 4. Indexes and variables used in the time-discretized network flow model. 

Symbol Definition (𝑖, 𝑡, 𝑤), (𝑗, 𝑠, 𝑤′) Indexes of state-space-time vertexes (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) Index of a space-time-state arc indicating that one can travel from node 𝑖 at time 𝑡 with passenger 
carrying state 𝑤 to the node 𝑗 at time 𝑠 with passenger carrying state 𝑤’ 𝐵𝑣 Set of state-space-time arcs in vehicle 𝑣’s network 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) Routing cost of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) traveled by vehicle 𝑣 𝑇𝑇(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) Travel time of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) traveled by vehicle 𝑣 𝛹𝑝,𝑣 Set of pickup service arcs of passenger 𝑝 in vehicle 𝑣’s networks 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) = 1 if arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) is used by vehicle 𝑣; = 0 otherwise 
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In general, the travel time 𝑇𝑇(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) is the travel time of traversing from node 𝑖 at time 𝑡 with passenger 
carrying state 𝑤 to node 𝑗 at time 𝑠 with passenger carrying state 𝑤′ by vehicle 𝑣. As we mentioned before, travel time 
for service arcs can be interpreted as the service time needed to pick up or drop-off a passenger, and as the preparation 
time if the arc is related to a vehicle’s starting or ending depot. In addition, the travel time of the waiting arcs is 
assumed to be a unit of time.  

The routing cost 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) for an arc can be defined as follows. The routing cost of a transportation arc 
is defined as a ratio of its travel time. For the physical vehicle, this ratio is basically the total transportation cost per 
hour when the vehicle is traveling, which may include the fuel, maintenance, depreciation, insurance costs, and more 
importantly, the cost of hiring a full-time or part-time driver. Let’s assume that, in total, the transportation by a physical 
vehicle costs 𝑥 dollars per hour. Since passengers should be served by physical vehicles by default and virtual vehicles 
serve passengers only if there is no available physical vehicle to satisfy their demand, we impose a quite expensive 
transportation cost per hour for virtual vehicles, let’s say 2𝑥 dollars per hour. The routing cost of the service arcs are 
defined similarly to the routing cost of the transportation arcs. The routing cost of a waiting arc is also defined as a 
ratio of its waiting time. However, this ratio is basically the total cost of the physical vehicle 𝑣 per hour when the 
driver has turned off the vehicle and is waiting at a node, which may only include the cost of hiring a full-time or part-
time driver. Let’s assume that, in total, waiting at a node by a physical vehicle costs 𝑦 dollars per hour, with a typical 
relationship of waiting cost < transportation cost per hour, i.e., 𝑦 < 𝑥. We assume that waiting at the origin and 
destination depot for a physical vehicle has no charge for the service provider in order to encourage a vehicle to reduce 
the total transportation time, if possible. Moreover, for virtual vehicles, the waiting cost is always equal to zero to 
allow a virtual vehicle be totally idle at its own depot.  

The model uses binary variables 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) equal to 1 if and only if state-space-time arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) 
is used by vehicle 𝑣. Without loss of generality, we assume that a vehicle does not carry any passenger when it departs 
from its origin depot or arrives to its destination depot, which correspond to the passenger carrying state at node (𝑖 =𝑜𝑣′ , 𝑡 = 𝑒𝑣) and (𝑗 = 𝑑𝑣′ , 𝑠 = 𝑙𝑣) as an empty state denoted by 𝑤0. Note that, since passenger carrying state transitions 
only occur through service arcs, 𝑤 = 𝑤′ = 𝑤0 for 𝑦(𝑣, 𝑜𝑣′ , 𝑗, 𝑒𝑣 , 𝑠, 𝑤, 𝑤′) and 𝑦(𝑣, 𝑖, 𝑑𝑣′ , 𝑡, 𝑙𝑣 , 𝑤, 𝑤′).  

Note that each vehicle must end its route at the destination depot with the empty passenger carrying state. 
Therefore, if vehicle 𝑣 picks up passenger 𝑝 from his origin, to maintain the flow balance constraints, the vehicle must 
drop-off the passenger at his destination node so that the vehicle comes back to its ending depot with the empty 
passenger carrying state. As a result, constraints corresponding to the passengers’ drop-off request is redundant and it 
does not need to enter into the following formulation. After constructing the state-space-time transportation network 
for each vehicle, the PDPTW can be formulated as follows: 

 𝑀𝑖𝑛 𝑍 = ∑ ∑ 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐵𝑣𝑣∈(𝑉∪𝑉∗)                                            (1) 

s.t.  
Flow balance constraints at vehicle 𝑣’s origin vertex ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐵𝑣 = 1                                         𝑖 = 𝑜𝑣′ , 𝑡 = 𝑒𝑣 , 𝑤 = 𝑤′ = 𝑤0, ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)    (2)  

 
Flow balance constraint at vehicle 𝑣’s destination vertex ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐵𝑣 = 1                                        𝑗 = 𝑑𝑣′ , 𝑠 = 𝑙𝑣 , 𝑤 = 𝑤′ = 𝑤0, ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)    (3) 

 
Flow balance constraint at intermediate vertex ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′′)(𝑗,𝑠,𝑤′′) −  ∑ 𝑦(𝑣, 𝑗′, 𝑖, 𝑠′, 𝑡, 𝑤′, 𝑤) = 0    (𝑖, 𝑡, 𝑤) ∉ {(𝑜𝑣′ , 𝑒𝑣 , 𝑤0), (𝑑𝑣′ , 𝑙𝑣 , 𝑤0)}, ∀𝑣 ∈(𝑗′ ,𝑠′,𝑤′)(𝑉 ∪ 𝑉∗)                                                                                                                                                                    (4) 
 
Passenger 𝑝’s pickup request constraint  ∑ ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈Ψ𝑝,𝑣𝑣∈(𝑉∪𝑉∗) = 1                                                                                       ∀𝑝 ∈ 𝑃    (5) 

 
Binary definitional constraint 
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𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ {0, 1}                                                                           ∀(𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ 𝐵𝑣 , ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)    (6) 
 
The objective function (1) minimizes the total routing cost. Constraints (2) to (4) ensure flow balance on every 

vertex in vehicle 𝑣’s state-space-time transportation network. Constraints (5) express that each passenger is picked up 
exactly once by a vehicle (either physical or virtual). Constraint (6) defines that the decision variables are binary.  

The three-index formulation of Cordeau (2006) for the PDPTW in the origin-destination network is presented in 
Appendix A. Table 5 shows that our proposed model encompasses all constraints used in Cordeau’s model. 
 
Table 5. An analogy between Cordeau’s model and our model for the PDPTW. 

Cordeau (2006) Our Model 

three-index variables 𝒙𝒊𝒋𝒗  for vehicle v on link (i,j) 
Seven-index variable 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) for vehicle v on arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′). 

(A.1) minimizes the total routing cost. (1) minimizes the total routing cost. 

(A.2) guarantees that each passenger is picked up. (5) guarantees that each passenger is picked up. 

(A.2) and (A.3) ensure that each passenger’s origin and 
destination are visited exactly once by the same vehicle. 

(2) to (5) ensure that the same vehicle 𝑣 transports passenger 𝑝 from his origin to his destination. 
(A.4) expresses that each vehicle starts its route from the 
origin depot. 

(2) expresses that each vehicle starts its route from the origin 
depot. 

(A.5) ensures the flow balance on each node. 
(2) to (4) ensure flow balance on every vertex in vehicle 𝑣’s 
network. 

(A.6) expresses that each vehicle ends its route to the 
destination depot. 

(3) expresses that each vehicle ends its route to the 
destination depot. 

(A.7) ensures the validity of the time variables. 
The essence of state-space-time networks ensures the time 
variables are calculated correctly through arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′), 
where arrival time 𝑠 =  𝑡 + 𝑇𝑇(𝑖, 𝑗, 𝑡). 

(A.8) ensures the validity of the load variables. 
The structure of state-space-time networks ensures that each 
vehicle transports a number of passengers up to its capacity at 
a time, in terms of feasible states (𝑤, 𝑤′). 

(A.9) defines each passenger’s ride time. 
Employing state-space-time networks defines each 
passenger’s ride time. 

(A.10) imposes the maximal duration of each route. 
Vehicle 𝑣’s network is constructed subject to time window [𝑒𝑣 , 𝑙𝑣]. 

(A.11) imposes time windows constraints. 
Passenger 𝑝’s network is constructed subject to time window [𝑎𝑝, 𝑏𝑝′ ]. 

(A.12) imposes ride time of each passenger constraints. 
Passenger 𝑝’s network is constructed subject to time window [𝑎𝑝, 𝑏𝑝′ ]. 

(A.13) imposes capacity constraints. 
The structure of state-space-time networks ensures that each 
vehicle transports a number of passengers up to its capacity at 
a time. 

(A.14) defines that the decision variables are binary. (6) defines binary decision variables. 

 
5. Lagrangian Relaxation-based Solution Approach 

Defining multi-dimensional decision variables 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) leads to computational challenges for the large-
scale real-world data sets, which should be addressed properly by specialized programs and an innovative solution 
framework. We reformulate the problem by relaxing the complicating constraints (5) into the objective function and 
introducing Lagrangian multipliers, 𝜆(𝑝), to construct the dualized Lagrangian function (7).  
 𝐿 =  ∑ ∑ 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐵𝑣𝑣∈(𝑉∪𝑉∗) +∑ 𝜆(𝑝) [∑ ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈Ψ𝑝,𝑣𝑣∈(𝑉∪𝑉∗) − 1]𝑝∈𝑃                                                                                 (7) 
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Therefore, the new relaxed problem can be written as follows:  
 𝑀𝑖𝑛 𝐿                                                    (8) 
  s.t.                                                                                                                                                                 ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐵𝑣 = 1                                                𝑖 = 𝑜𝑣′ , 𝑡 = 𝑒𝑣, 𝑤 = 𝑤′ = 𝑤0, ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)     (9) ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐵𝑣 = 1                                                𝑗 = 𝑑𝑣′ , 𝑠 = 𝑙𝑣 , 𝑤 = 𝑤′ = 𝑤0, ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)   (10) ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′′)(𝑗,𝑠,𝑤′′) −  ∑ 𝑦(𝑣, 𝑗′, 𝑖, 𝑠′, 𝑡, 𝑤′, 𝑤) = 0  (𝑖, 𝑡, 𝑤) ∉ {(𝑜𝑣′ , 𝑒𝑣 , 𝑤0), (𝑑𝑣′ , 𝑙𝑣 , 𝑤0)}, ∀𝑣 ∈ (𝑉 ∪(𝑗′ ,𝑠′,𝑤′)𝑉∗)                                                                                                                                                                                  (11) 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ {0, 1}                                                                                 ∀(𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ 𝐵𝑣 , ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)   (12) 
  

If we further simplify function 𝐿, the problem will become a time-dependent least-cost path problem in the 
constructed state-space-time network. The simplified Lagrangian function L can be written in the following form:  

 𝐿 =  ∑ ∑ 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐵𝑣𝑣∈(𝑉∪𝑉∗) − ∑ 𝜆(𝑝)𝑝∈𝑃                                                            (13) 

Where the generalized arc cost 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) equals 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) + 𝜆(𝑝) for each arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈𝛹𝑝,𝑣, and equals 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′), otherwise. 

 
5.1. Time-dependent Forward Dynamic Programming and Computational Complexity 

Several efficient algorithms have been proposed to compute time-dependent shortest paths in a network with time-
dependent arc costs (Ziliaskopoulos and Mahmassani, 1993; Chabini, 1998). In this section, we use a time-dependent 
dynamic programming (DP) algorithm to solve the least-cost path problem obtained in section 4. The structure of the 
state-space-time network ensures that time always advances on the arcs of the networks. In this paper, let us consider 
the unit of time as one minute. Let 𝒩 denote the set of nodes including both physical transportation and dummy nodes, 𝒜 denote the set of links, 𝒯 denote the set of time stamps covering all vehicles’ time horizons, 𝒲 denote the set of 
all feasible passenger carrying states, and 𝐿(𝑖, 𝑡, 𝑤) denote the label of vertex (𝑖, 𝑡, 𝑤) and term “pred” stands for the 
predecessor. Algorithm 1 described below uses forward dynamic programming:  
 
// Algorithm 1: Time-dependent forward dynamic programming algorithm 

for each vehicle 𝑣 ∈ (𝑉 ∪ 𝑉∗) do 
begin 

// initialization 𝐿(. , . , . ) ∶=  +∞;   
node pred of vertex (. , . , . ) ∶=  −1;  
time pred of vertex (. , . , . ) ∶=  −1; 
state pred of vertex (. , . , . ) ∶=  −1; 
// vehicle 𝑣 starts its route from the empty state at its origin at the earliest departure time 𝐿(𝑜𝑣′ , 𝑒𝑣, 𝑤0) ∶= 0;  
for each time 𝑡 ∈ [𝑒𝑣 , 𝑙𝑣] do  
begin 

for each link (𝑖, 𝑗) do 
begin 

for each state 𝑤 do 
begin 

derive downstream state 𝑤’ based on the possible state transition on link (𝑖, 𝑗); 
derive arrival time 𝑠 = 𝑡 + 𝑇𝑇(𝑖, 𝑗, 𝑡); 
if (𝐿(𝑖, 𝑡, 𝑤)  + 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)  < 𝐿(𝑗, 𝑠, 𝑤′)) then 
begin 𝐿(𝑗, 𝑠, 𝑤′) ∶=  𝐿(𝑖, 𝑡, 𝑤)  +  𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ; //label update 

node pred of vertex (𝑗, 𝑠, 𝑤′) ∶= 𝑖;  
time pred of vertex (𝑗, 𝑠, 𝑤′) ∶= 𝑡;  
state pred of vertex (𝑗, 𝑠, 𝑤′) ∶= 𝑤;  
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end; 
end; 

end; 
end; 

end; 

 

Let’s define |𝒯|, |𝒜|, |𝒲| as the number of time stamps, links, and passenger carrying states, respectively. 
Therefore, the worst-case complexity of the DP algorithm is |𝒱||𝒯||𝒜||𝒲|, which can be interpreted as the maximum 
number of steps to be performed in this algorithm in this four-loop structure, corresponding to the sequential loops 
over vehicle, time, link, and starting carrying state dimensions. It should be remarked that the ending state 𝑤′ is 
uniquely determined by the starting state w and the related link (𝑖, 𝑗) depending on its service type: pickup, delivery, 
or pure transportation. In a transportation network, the size of links is much smaller than the counterpart in a complete 
graph, that is, |𝒜| ≪ |𝒩||𝒩|; in fact, the typical out-degree of a node in transportation networks is about 2-4.  

Table 6 shows detailed comparisons between the existing DP-based approach (Psaraftis, 1983 and Desrosiers et 
al. 1986) and our proposed method. We guarantee the completeness of state representation. The state representation 
of Psaraftis (1983), (𝐿, 𝑘1, 𝑘2, … , 𝑘𝑛), consists of 𝐿, the location currently being visited, and 𝑘𝑖, the status of passenger 𝑖. In this representation, 𝐿 = 0, 𝐿 = 𝑖, and 𝐿 = 𝑖 + 𝑛 denote starting location, passenger 𝑖’s origin, and passenger 𝑖’s 
destination, respectively. In addition, the status of passenger 𝑖 is chosen from the set {1,2,3}, where 3 means passenger 𝑖 is still waiting to be picked up, 2 means passenger 𝑖 has been picked up but the service has not been completed, and 
1 means passenger 𝑖 has been successfully delivered. This cumulative passenger service state representation (in terms 
of 𝑘1, 𝑘2, … , 𝑘𝑃) requires a space complexity of 𝑂(3𝑝), while our proposed (prevailing) passenger carrying state 

representation has a much smaller space requirement of  ∑ 𝐶𝑘𝑃𝐶𝑎𝑝𝑣𝑘=0  when the vehicle capacity is low (e.g. 2 or 3 for 

taxi). Desrosiers et al. (1986) use state representation (𝑆, 𝑖), where 𝑆 is the set of passengers’ origin, {1, … , 𝑛}, and 
destination, {𝑛 + 1, … 2𝑛}. State (𝑆, 𝑖) is defined if and only if there exists a feasible path that passes through all nodes 
in 𝑆 and ends at node 𝑖.  In fact, our time-dependent state (𝑤, 𝑖, 𝑡), which is jointly defined by three indexes: (𝑖) the 
status of customers, (𝑖𝑖) the current node being visited, and (𝑖𝑖𝑖) the current time, is more focused on the time-
dependent current state at exact time stamp 𝑡, while (𝐿, 𝑘1, 𝑘2, … , 𝑘𝑛) and (𝑆, 𝑖) representations use a time-lagged 
time-period-based state representation to cover complete or mutually exclusive states from time 0 to time 𝑡. 

 

Table 6. Comparison between existing DP based approach and the method proposed in this paper. 

Features 
Existing DP based approach 

DP proposed in this paper 
Psaraftis (1983) Desrosiers et al. (1986) 

Type of problem 
Single vehicle, Many-to-many, 
Single depot 

Single vehicle, Many-to-many, 
Single depot 

Multiple vehicle, Many-to-many, 
Multiple depot 

Network  
Consists of passengers’ origin 
and destination nodes and the 
vehicle depot 

Consists of passengers’ origin 
and destination nodes and the 
vehicle depot 

Consists of transportation nodes, 
passengers’ origin and destination, 
and vehicles’ depots  

Time-dependent link 
travel time  

No No Yes 

Objective function   Minimize route duration 
Minimize total distance 
traveled 

Minimize total routing cost 
consisting of transportation and 
waiting costs  

State state-space (𝐿, 𝑘1, 𝑘2, … , 𝑘𝑛)  state-space (𝑆, 𝑖)  state-space-time (𝑤, 𝑖, 𝑡) 

Stage Node index Node index Time index 
States reduction due to 
the vehicle capacity and  
time windows 

Yes Yes Yes 

 
We come back to the illustrative example presented in section 3.1. Let’s assume the routing cost of a transportation 

or service arc traversed by a physical vehicle is $22/hr, while the routing cost of a transportation or service arc 
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traversed by a virtual vehicle is $50/hr. Moreover, assume that the waiting cost of a physical vehicle is $15/hr, while 
the waiting cost of a virtual vehicle is assumed to be $0/hr. Table 7 shows how the label of each vertex is calculated 
by the DP solution algorithm presented above. Note that 𝑤0, 𝑤1, 𝑤2, and 𝑤3 are passenger carrying states [ _ _ ], [ 𝑝1 _], [𝑝1 𝑝2], and [ _ 𝑝2], respectively. For instance, according to Fig. 1, traveling from node 4 to node 2 takes 2 
minutes. Since the number written on each link denotes the time-invariant travel time 𝑇𝑇(𝑖, 𝑗), we can conclude that 
travel time for  link (4,2) starting at time stamp 𝑡 = 2 is also 2 minutes. To update the label corresponding to node 2, 

it is sufficient to calculate the routing cost of the stated arc in terms of dollars which can be obtained by 
260 × 22( $hr) =0.73($) and add it to the current label of node 4 which is 0.37. Therefore, the updated label for node 2 will be 1.1. 

Similarly, we can calculate the routing cost of a waiting link (𝑜2, 𝑜2) starting at time stamp 𝑡 = 7 by 
160 × 15 ( $hr) =0.25 ($). 

 
Table 7. State-space-time trajectory for ride-sharing service trip with node sequence (𝑜1′ , 4, 2, 𝑜1, 2, 𝑜2, 2, 5, 6, 3, 𝑑1, 3, 𝑑2, 3, 1, 𝑑1′ ). 

Time index 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 

Node index 𝑜1′  4 2 𝑜1 2 𝑜2 𝑜2 2 5 6 3 𝑑1 3 𝑑2 3 1 𝑑1′  𝑑1′  
State index 𝑤0 𝑤0 𝑤0 𝑤1 𝑤1 𝑤2 𝑤2 𝑤2 𝑤2 𝑤2 𝑤2 𝑤2 𝑤3 𝑤3 𝑤0 𝑤0 𝑤0 𝑤0 
Cost 0.0 .37 .73 .37 .37 .37 .25 .37 .37 .37 .37 .37 .37 .37 .37 .73 .37 0.0 

Cumulative cost 0.0 .37 1.1 1.47 1.84 2.21 2.46 2.83 3.2 3.57 3.94 4.31 4.68 5.05 5.42 6.15 6.52 6.52 

 
5.2. Lagrangian Relaxation-based solution procedure   

In this section, we describe the Lagrangian relaxation (LR) solution approach implemented to solve the time-
dependent least cost path problem presented in section 5. According to Eq. (13), 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) is only updated 
for ∀(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ Ψ𝑝,𝑣. Table 8 lists the notations for the sets, indices and parameters required for the 

Lagrangian relaxation algorithm. 
 
Table 8. Notations used in LR algorithm. 

Symbol Definition 𝜆𝑘(𝑝) Lagrangian relaxation multiplier corresponding to the passenger 𝑝’s pickup request constraint at iteration 𝑘 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) Modified routing cost of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) after introducing Lagrangian multipliers 𝑘 Iteration number 𝑌 Set of solution vectors 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) 𝐿𝐵𝑘 Global lower bound for the primal problem at iteration 𝑘  𝑈𝐵𝑘 Global upper bound for the primal problem at iteration 𝑘  𝑌𝐿𝐵𝑘  Set of lower bound solution vectors 𝑌 at LR iteration 𝑘 𝑌𝑈𝐵𝑘  Set of upper bound solution vectors 𝑌 at LR iteration 𝑘 𝜃𝑘 Step size at iteration 𝑘 𝐿𝐵∗ Best global lower bound for the primal problem 𝑈𝐵∗ Best global upper bound for the primal problem 𝑌∗ Best solution vectors derived from the best lower bound 𝑏𝑎𝑠𝑒_𝑝𝑟𝑜𝑓𝑖𝑡 The amount of money (in terms of dollars) passenger 𝑝 initially offers to be served 
 

The optimal value of the Lagrangian dual problem provides a lower bound for the primal problem. To find the 
optimal solution for the Lagrangian dual problem, it is sufficient to compute time-dependent least cost state-space-
time path for each vehicle 𝑣 based on updated arc cost 𝜉’s by calling time-dependent forward dynamic programming 
algorithm mentioned before.  

The optimal solution of the Lagrangian dual problem may or may not be feasible for the primal problem. If the 
optimal solution of the Lagrangian dual problem is feasible for the primal problem, we have definitely obtained the 
optimal solution of the primal problem. If not, we apply a heuristic to find an upper bound for the primal solution. In 
this heuristic, the physical vehicles initially leave their depots to serve unserved customers provided that the money 
obtained in return for services overweigh the cost of transportation. Finally, if there is any unserved customer remained 
in the system, in order to avoid infeasibility, the virtual vehicle corresponding to the unserved customer departs from 
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its depot to serve the passenger. The Lagrangian relaxation algorithm can be described as follows:  
 
// Algorithm 2: Lagrangian relaxation algorithm 

// step 0. initialization 

 set iteration  𝑘 = 0; 

 initialize 𝑌𝐿𝐵0 , 𝑌𝑈𝐵0 , 𝑌∗, and 𝜆0(𝑝) to zero; 

 initialize 𝜃0(𝑝) to 𝑏𝑎𝑠𝑒_𝑝𝑟𝑜𝑓𝑖𝑡;  

 initialize 𝐿𝐵∗ to −∞; and 𝑈𝐵∗ to +∞; 

 define a termination condition such as if k becomes greater than a predetermined maximum iteration number, or if 
the relative gap percentage between 𝐿𝐵∗ and 𝑈𝐵∗ becomes less than a predefined gap (i.e. 5%); 

while termination condition is false, for each LR iteration 𝑘 do 
begin 

 reset the visit count for each arc (𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ Ψ𝑝,𝑣 to zero; // 𝑣 ∈ (𝑉 ∪ 𝑉∗) 

// step 1. generating 𝐿𝐵𝑘 
// step 1.1. least cost path calculation for each vehicle sub-problem  

 initialize 𝐿𝐵𝑘 to 0; 
for each vehicle 𝑣 ∈ (𝑉 ∪ 𝑉∗) do 
begin 

// input: 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)  

 compute time-dependent least cost state-space-time path for vehicle 𝑣 based on updated arc cost 𝜉’s by 
calling Algorithm 1;  

 update the visit count for each arc (𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ Ψ𝑝,𝑣; 

// output: 𝑌𝐿𝐵𝑘  
end; 
// step 1.2. update 𝐿𝐵∗ 

 update 𝐿𝐵𝑘 by substituting solution vector 𝑌𝐿𝐵𝑘  in the objective function of the dual problem (Eq. (13)); 

 update 𝐿𝐵∗ by 𝑚𝑎𝑥(𝐿𝐵𝑘 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝐵∗) and 𝑌∗ by its corresponding solution;  
// step 1.3. sub-gradient calculation  

 calculate the total number of visits of passenger 𝑝’s origin by expression (14);  ∑ ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈Ψ𝑝,𝑣𝑣∈(𝑉∪𝑉∗)                                                                                          (14) 

 compute sub-gradients by Eq. (15); ∇𝐿𝜆𝑘(𝑝) = ∑ ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈Ψ𝑝,𝑣𝑣∈(𝑉∪𝑉∗) − 1 for ∀𝑝                                                      (15) 

 update arc multipliers by Eq. (16); 𝜆𝑘+1(𝑝) = 𝜆𝑘(𝑝) + 𝜃𝑘(𝑝)∇𝐿𝜆𝑘(𝑝) for ∀𝑝                                                                                                          (16)                                 

 update arc cost 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) for each arc (𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ Ψ𝑝,𝑣 by Eq. (17);  𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) = 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) + 𝜆𝑘+1(𝑝)                                                                                      (17) 

 update step size by Eq. (18); 𝜃𝑘+1(𝑝) =  𝜃0(𝑝) 𝑘+1                                                                                                                                                (18) 

// Step 2. generating 𝑈𝐵𝑘   
// step 2.1. finding a feasible solution for the primal problem 

 set 𝑈𝐵𝑘 = 0;  

 adopt the passenger-to-vehicle assignment matrix from the lower bound solution in step 1.2; 
for each vehicle 𝑣 ∈ (𝑉 ∪ 𝑉∗) do 
begin 

// if passenger 𝑝 is served by multiple vehicles, then designate one of the vehicles (e.g. first in the set) to 
serve this passenger, which means that the other vehicles should not serve this passenger in the upper 
bound generation stage.  
if (passenger 𝑝 is assigned to physical vehicle 𝑣) do 
begin 

if passenger 𝑝 has not been already served by any other vehicle  
set arc cost on the pickup arc for passenger 𝑝 temporarily to −𝑀;  
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// 𝑀 is chosen a big positive number in order to attract vehicle 𝑣 for serving passenger 𝑝 
else  

set arc cost on the pickup arc for passenger 𝑝 temporarily to +𝑀; 
// 𝑀 is chosen a big positive number in order to guarantee vehicle 𝑣 does not serve passenger 𝑝 

end; 
// if passenger 𝑝 is not served by any physical vehicle, then designate the corresponding virtual vehicle to 
serve this passenger.  
if (passenger 𝑝 is not served by any physical vehicle & vehicle 𝑣 is the corresponding virtual vehicle for 
passenger 𝑝) 

set arc cost on the pickup arc for passenger 𝑝 temporarily to −𝑀; 
// 𝑀 is chosen a big positive number in order to attract vehicle 𝑣 for serving passenger 𝑝 

 compute time-dependent least cost path for vehicle 𝑣 by calling Algorithm 1; 

 compute the actual transportation costs (denoted as 𝑇𝐶𝑣) along the path solution for vehicle 𝑣 

 update upper bound objective function as 𝑈𝐵𝑘 = 𝑈𝐵𝑘 + 𝑇𝐶𝑣. 
end; 
// The result of this passenger-to-vehicle assignment updating is that each passenger is served by exactly one 
vehicle (either physical or virtual).  

// step 2.2. update 𝑈𝐵𝑘 

 update 𝑈𝐵𝑘 by substituting solution vector 𝑌𝑈𝐵𝑘  in the objective function of the primal problem;  
// step 2.3. update 𝑈𝐵∗ 

 𝑈𝐵∗  = 𝑚𝑖𝑛(𝑈𝐵𝑘 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑈𝐵∗); 

 find the relative gap percentage between 𝐿𝐵∗ and 𝑈𝐵∗ by 
𝑈𝐵∗−𝐿𝐵∗𝑈𝐵∗ × 100; 

 𝑘 = 𝑘 + 1; 
end; 

 

We would like to make remarks in following two cases:  (𝑖) In the upper bound solution, all passengers are only served by the physical vehicles. In this case, we can 
be sure that the total number of physical vehicles has been sufficient to serve all requests. Accordingly, the 
service prices in the corresponding lower bound solution typically have been set such that the money obtained 
in return for services overweighs the cost of transportation so that physical vehicles are dispatched to serve 
customers. (𝑖𝑖) In the final optimal solution, there might be some passengers who are served by virtual vehicles. 
Obviously, serving a passenger by a virtual vehicle is expensive due to its transportation cost. In addition, 
when the virtual vehicle drops off the passenger, it should perform a deadheading trip with significantly high 
cost from the passenger's destination to its depot (the passenger’s origin).  

 
5.3. Search Region Reduction 

In this section, we describe how to reduce the search region by the aid of some simple heuristics in which some rational 
rules are applied. Let 𝐸𝐷𝑇, 𝐿𝐷𝑇, 𝐸𝐴𝑇, and 𝐿𝐴𝑇 denote the earliest departure time from origin,  latest departure time 
from origin, earliest arrival time to destination, and latest arrival time to destination, respectively. In addition, let 𝑇𝑇𝑆𝑃𝑥→𝑦 denote the travel time corresponding to the shortest path from node 𝑥 to node 𝑦.  

Rule 1. No overlapping time windows: The first rational rule is that if 𝐿𝐴𝑇(𝑝1) < 𝐸𝐷𝑇(𝑝2), then passenger 𝑝1 
and 𝑝2’s ride-sharing is impossible. Fig. 7 illustrates an example of two passengers whose ride-sharing is impossible 
due to no overlapping time windows. 
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Fig. 7. Illustration of the first rational rule for search region reduction. 

 

Rule 2. Travel time is insufficient: The second rational rule can be stated as follows: if {𝐿𝐷𝑇(𝑝2) − 𝐸𝐷𝑇(𝑝1) < 𝑇𝑇𝑆𝑃𝑜𝑝1→ 𝑜𝑝2  & 𝐿𝐷𝑇(𝑝1)– 𝐸𝐷𝑇(𝑝2) < 𝑇𝑇𝑆𝑃𝑜𝑝2→ 𝑜𝑝1 }, then passenger 𝑝1 and 𝑝2 cannot share their ride with each 

other. It means that if the maximum time a vehicle can have to go from passenger 𝑝1’s origin to 𝑝2’s origin, 𝐿𝐷𝑇(𝑝2) −𝐸𝐷𝑇(𝑝1), is less than the total travel time corresponding to the shortest path from 𝑜𝑝1  to 𝑜𝑝2 , and also if the maximum 

time a vehicle can have to go from passenger 𝑝2’s origin to 𝑝1’s origin, 𝐿𝐷𝑇(𝑝1)– 𝐸𝐷𝑇(𝑝2), is less than the total travel 
time corresponding to the shortest path from 𝑜𝑝2  to 𝑜𝑝1 , then passenger 𝑝1 and 𝑝2’s ride-sharing is impossible. 

Similarly, if {𝐿𝐴𝑇(𝑝2) − 𝐸𝐴𝑇(𝑝1) <  𝑇𝑇𝑆𝑃𝑑𝑝1→𝑑𝑝2  & 𝐿𝐴𝑇(𝑝1) − 𝐸𝐴𝑇(𝑝2) < 𝑇𝑇𝑆𝑃𝑑𝑝2→𝑑𝑝1 }, then passenger 𝑝1 and 𝑝2’s ride-sharing is impossible. The total number of passenger carrying states is dramatically decreased via this rule. 
Fig. 8 illustrates the second rule by an example. Suppose two requests with two origin-destination pairs should be 
served by a vehicle. Fig. 8(a) illustrates transportation network with the corresponding dummy nodes and time 
windows. According to the Fig. 8(a), 𝑇𝑇𝑆𝑃𝑜𝑝1→𝑜𝑝2  and 𝑇𝑇𝑆𝑃𝑜𝑝2→𝑜𝑝1 are 5 and 6, respectively. Since {(6 − 4) < 5 & (5 − 4) < 6}, then passenger 𝑝1 and 𝑝2’s ride-sharing is impossible. 
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Fig. 8. Illustration of the second rational rule for search region reduction; (a) transportation network with the corresponding dummy 
nodes and time windows; (b) vehicle 1’s space-time network. 

    
Rule 3. A node is too far away from the vehicle starting or ending depot: The third rational rule is stated as 

follows: if (𝑇𝑇𝑆𝑃𝑜𝑣→𝑥  + 𝑇𝑇𝑆𝑃𝑥→𝑑𝑣) > (𝐿𝐴𝑇(𝑣) − 𝐸𝐷𝑇(𝑣)), then vehicle 𝑣 does not have enough time to visit node 𝑥 in its time horizon; therefore, node 𝑥 is not accessible for vehicle 𝑣 and should not be considered in vehicle 𝑣’s 
search region. Note that node 𝑥 can be any physical or dummy node. Fig. 9 illustrates the third rule by an example. 
Suppose a passenger with an origin-destination pair should be served by a vehicle. Fig. 9(a) illustrates transportation 
network with the corresponding dummy nodes and time windows. Fig. 9(b) shows that passenger 𝑝1’s origin, 𝑜1, is 
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not accessible for the vehicle. In addition to this rule, we can also say that a passenger is inaccessible for a vehicle if 
the time for a vehicle to pick up the passenger and visit his destination is longer than the vehicle's time window. 
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Fig. 9. Illustration of the third rational rule for search region reduction; (a) transportation network with the corresponding dummy 
nodes and time windows; (b) vehicle 1’s space-time network. 

 
The first three rules are hard rules at which we are able to eliminate some vertexes in the state-space-time 

networks. The forth heuristic is the way of estimating the search region reduction ratio. Let path 𝛼 be the longest 
possible path in vehicle 𝑣’s state-space-time networks with total travel time 𝜏𝛼. Let 𝑚𝑝 denote the middle point of 

passenger 𝑝’s departure time window. Therefore, 𝑚𝑝 = 𝐸𝐷𝑇(𝑝)+𝐿𝐷𝑇(𝑝)2 . Let’s assume that 𝑀, the middle point of a 

passenger’s departure time window, is a random variable uniformly distributed in vehicle 𝑣’s time horizon with 𝐿𝐴𝑇(𝑣) − 𝐸𝐷𝑇(𝑣) length. It may be reasonable to assume that if |𝑚𝑝1 −  𝑚𝑝2| > 𝜏𝛼, then passenger 𝑝1 and 𝑝2 cannot 

be in the same vehicle at a time. We use an example to show that this rule can reduce the search region considerably. 
Assume vehicle 𝑣’s time window is [0, 240], and 𝑀 is a random variable uniformly distributed in vehicle 𝑣’s time 
horizon [0,240]. Let’s assume 𝜏𝛼 = 60 minutes. The probability of having two passengers who share their ride with 

each other can be calculated by finding the 𝑃𝑟𝑜𝑏(|𝑚𝑝1 − 𝑚𝑝2| ≤ 60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠), where 𝑚𝑝1 and 𝑚𝑝2 are randomly 

generated from [0, 240]. This probability equals to 
716 = 43.75%. This can be shown with the following derivation. 

The shaded area in in Fig. 10 shows 𝑃𝑟𝑜𝑏(|𝑚𝑝1 − 𝑚𝑝2| ≤ 60 ).  𝑃𝑟𝑜𝑏(|𝑚𝑝1 − 𝑚𝑝2| ≤ 60 ) =  𝑃𝑟𝑜𝑏(−60 ≤ 𝑚𝑝1 −  𝑚𝑝2 ≤ 60 ) 𝑃𝑟𝑜𝑏(−60 ≤ 𝑚𝑝1 − 𝑚𝑝2 ≤ 60 ) = 1 − [𝑃𝑟𝑜𝑏(𝑚𝑝1 −  𝑚𝑝2 < −60 ) + 𝑃𝑟𝑜𝑏(𝑚𝑝1 − 𝑚𝑝2 > 60 )] 
                           = 1 − [ 180 × 1802240 × 240 + 180 × 1802240 × 240] = 716 
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Fig. 10. The probability of having two passengers who share their ride with each other 
where 𝑚𝑝1  and 𝑚𝑝2  are uniformly distributed in [0, 240]. Note that 𝜏𝛼 = 60 min. 

 
Therefore, by considering this practical rule in this example, we can reduce the total number of passenger carrying 

states in which two passengers share their ride with each other by more than half. By considering this rational rule, 
calculating the probability of having more than two passengers at the same time in vehicle 𝑣 is more complicated, but 
at least we know that the probability of having 𝑘 number of passengers (𝑘 > 2) who may share their ride with each 
other is certainly less than 43.75%.  

 
6. Computational Results and Discussions 

The algorithms described in this paper were coded in C++ platforms. The experiments were performed on an Intel 
Workstation running two Xeon E5-2680 processors clocked at 2.80 GHz with 20 cores and 192GB RAM running 
Windows Server 2008 x64 Edition. In addition, parallel computing and OpenMP technique (Chandra et al. 2000) are 

implemented for generating lower bound and upper bound at each iteration in the Lagrangian relaxation algorithm. In 
this section, we initially examine our proposed model on a six-node transportation network followed by the medium-
scale and large-scale transportation networks, Chicago and Phoenix, to demonstrate the computational efficiency and 
solution optimality of our developed algorithm. The scenarios and test cases are randomly generated in those 
transportation networks. Moreover, we test our algorithms on the modified version of instances proposed by Ropke 
and Cordeau (2009) which is publicly available at http://www.diku.dk/~sropke/. 
6.1. Illustrative cases 

As we mentioned in section 5.1, it is assumed that the routing cost of a transportation or service arc traversed by 
a physical vehicle is $22/hr, while the routing cost of a transportation or service arc traversed by a virtual vehicle is 
$50/hr. Moreover, the waiting cost of a physical vehicle either at a transportation or at a dummy node is $15/hr (waiting 
at dummy nodes corresponding starting and ending depots has $0/hr cost), while the waiting cost of a virtual vehicle 
at any node is assumed to be $0/hr. The value of 𝑏𝑎𝑠𝑒_𝑝𝑟𝑜𝑓𝑖𝑡 is also assumed to be $10 for all passengers. Initially, 
we test our algorithm on the six-node transportation network illustrated in Fig. 1(a) for six scenarios. Table 9 shows 
these scenarios with various number of passengers and vehicles, origin-destination pairs, and passengers’ departure 
and arrival time windows. Then, we will examine the results corresponding to each scenario individually. Terms “TW” 
and “TH” stands for time window and time horizon, respectively. 

Scenario I. Two passengers are served by one vehicle, where passengers have different origin-destination pairs 
with overlapping time windows. In this case, the vehicle serves both passengers in their preferred time windows 
through ride-sharing mode.  

Scenario II. Two passengers with different origin-destination pairs are served by one vehicle; however, unlike in 
scenario I, passengers could not share their ride with each other due to their time windows. In this case, the vehicle 
may wait at any node to finally serve both passengers.  

Scenario III. Two passengers with different origin-destination pairs and one vehicle are present in the system; 
however, due to the passengers’ overlapping time windows, serving both passengers by one vehicle is impossible. 
Therefore, the driver would prefer to transport a passenger incurring the least cost. In this case, passenger 𝑝1 is selected 
to be served.  

Scenario IV. Two passengers with different origin-destination pairs and two vehicles are present in the system 
and, due to the passengers’ and vehicles’ time windows, 𝑝1 is assigned to 𝑣1 and 𝑝2 is assigned to 𝑣2.  

Scenario V. Three passengers are served by one vehicle, where passengers have different origin-destination pairs 
with overlapping time windows. In this case, the vehicle serves all passengers in their preferred time windows through 
ride-sharing mode.  

Scenario VI. One passenger and two vehicles are present in the system. In this case, two vehicles compete for 
serving the passenger. Ultimately, the vehicle whose routing is less costly wins the competition and serves the 
passenger. 

 

http://www.diku.dk/~sropke/
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Table 9. Six scenarios with various number of passengers and vehicles, origin-destination pairs, and 
passengers’ departure and arrival time windows. 

Scenario I II III IV V VI 
Number of passengers 2 2 2 2 3 1 
Number of vehicles 1 1 1 2 1 2 𝑜1 Node 2 Node 2 Node 2 Node 2 Node 2 Node 2 𝑑1 Node 6 Node 6 Node 1 Node 1 Node 3 Node 6 𝑜2 Node 5 Node 5 Node 3 Node 3 Node 5 - 𝑑2 Node 3 Node 3 Node 6 Node 6 Node 3 - 𝑜3 - - - - Node 6 - 𝑑3 - - - - Node 1 - 𝑜1′  Node 4  Node 4  Node 4 Node 2 Node 4 Node 4 𝑑1′  Node 1 Node 1 Node 1 Node 1 Node 1 Node 1 𝑜2′  - - - Node 3 - Node 6 𝑑2′  - - - Node 6 - Node 1 𝑇𝑊𝑜1 [5, 7] [5, 7] [4, 5] [4, 5] [4, 7] [4, 7] 𝑇𝑊𝑑1 [9, 12] [9, 12] [8, 10] [8, 10] [13, 16] [9, 12] 𝑇𝑊𝑜2 [8, 10] [16, 19] [3, 5] [4, 6] [7, 10] - 𝑇𝑊𝑑2 [11, 14] [21, 24] [11, 14] [11, 14] [14, 18] - 𝑇𝑊𝑜3 - - - - [10, 13] - 𝑇𝑊𝑑3 - - - - [19, 23] - 𝑇𝐻𝑣1 [1, 30] [1, 30] [1, 30] [1, 30] [1, 30] [1, 30] 𝑇𝐻𝑣2 - - - [1, 30] - [1, 30] 

 
Table 10 shows the results corresponding each scenario.  
 

Table 10.  Results obtained from testing our algorithm on the six-node transportation network for six scenarios. 

iteration 𝑘 𝐿𝐵∗ 𝑈𝐵∗ gap% 
vehicles assigned 
to 𝑝1, 𝑝2, and 𝑝3 

𝜆𝑘(𝑝1) 𝜆𝑘(𝑝2) 𝜆𝑘(𝑝3) 

Scenario I. Two passengers are served by one vehicle through ride-sharing mode. 

1 1.47 5.75 74.5% 𝑣1, 𝑣1, - 10 10 - 
2 1.47 5.75 74.5% 𝑣1, 𝑣1, - 5 5 - 
3 5.75 5.75 0.0% 𝑣1, 𝑣1, - 5 5 - 

Scenario II. Two passengers are served by one vehicle (not through ride-sharing mode). 

1 1.47 7.22 79.68% 𝑣1, 𝑣1, - 10 10 - 
2 5.55 7.22 23.10% 𝑣1, 𝑣1, - 5 5 - 
3 7.22 7.22 0.0% 𝑣1, 𝑣1, - 5 5 - 

Scenario III. Two passengers and one vehicle; one passenger remains unserved. 

1 1.47 10.43 85.94% 𝑣1, 𝑣2∗, - 10 10 - 
2 7.1 10.43 31.95% 𝑣1, 𝑣2∗, - 5 10 - 
3 10.43 10.43 0.0% 𝑣1, 𝑣2∗, - 5 10 - 

Scenario IV. Two passengers and two vehicles; each vehicle is assigned to a passenger 

1 2.2 6.13 64.13% 𝑣1, 𝑣2, - 10 10 - 
2 2.2 6.13 64.13% 𝑣1, 𝑣2, - 5 5 - 
3 6.13 6.13 0.0% 𝑣1, 𝑣2, - 5 5 - 

Scenario V. Three passengers are served by one vehicle through ride-sharing mode 

1 1.47 6.97 78.95% 𝑣1, 𝑣1, 𝑣1 10 10 10 
2 1.47 6.97 78.95% 𝑣1, 𝑣1, 𝑣1 5 5 5 
3 6.97 6.97 0.0% 𝑣1, 𝑣1, 𝑣1 5 5 5 

Scenario VI. Two vehicles compete for serving a passenger 

1 2.57 5.13 50.0% 𝑣1, -, - 10 - - 
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2 2.63 5.13 48.70% 𝑣1, -, - 10 - - 
3 5.13 5.13 0.0% 𝑣1, -, - 10 - - 

 
Fig. 11 also presents the vehicle routing corresponding each scenario. We increase the number of passengers and 

vehicles to show the computational efficiency and solution optimality of our developed algorithm. Table 11 shows the 
results for the six-node transportation network when the number of passengers and vehicles have been increased. 
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Table 11. Results for the six-node transportation network. 

Test case 
number 

Number of 
iterations  

Number of 
passengers 

Number of 
vehicles 

𝐿𝐵∗ 𝑈𝐵∗ 
Gap 
(%) 

Number of passengers 
not served 

CPU running 
time (sec) 

1 30 6 1 15.83 15.83 0.00% 0 5.94 
2 30 12 2 33.17 33.17 0.00% 0 12.02 
3 30 24 4 61.67 65.33 5.61% 0 30.97 

 
We explain the pricing mechanism in this algorithm via test case 1 with 6 passengers and 1 vehicle. Fig. 12 shows 𝜆𝑘(𝑝𝑖), 𝑖 = 1,2, . . ,6, along 30 iterations. It is clear that each passenger’s Lagrangian multiplier ultimately converges 

to a specific value. This value can be literally interpreted as the passenger 𝑝’s service price. Through the pricing 
mechanism of this algorithm, the provider would be able to offer a reasonable bid to its customers to be served. 

 
Fig. 12. Lagrangian multipliers along 30 iterations in test case 1 for the six-node transportation network. 
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6.2. Results from medium-scale and large-scale transportation networks 

In our computational experiments for the medium-scale and large-scale networks, for simplicity, we assume that 
each passenger has a fixed departure time (the earliest and latest departure time are the same). In addition, we assume 
that no passenger has a preferred time window for arrival to his destination. Tables 12 and 13 show the results for the 
Chicago transportation network, shown as Fig. 13(a) with 933 nodes and 2,967 links, and the Phoenix transportation 
network, as shown in Fig. 13(b) with 13,777 nodes and 33,879 links, respectively. 

(a) Chicago sketch network (b) Phoenix metropolitan regional network  
 

Fig. 13. Medium and large-scale transportation networks for computational performance testing. 

 
Note that we generally run the algorithm for a fixed number of iterations; however, the algorithm may converge 

in less number of iterations. Fig. 14 shows the gap percentage along 20 iterations corresponding each test case.  
 

Table 12. Results for the Chicago network with 933 transportation nodes and 2,967 links. 

Test case 
number 

Number of 
iterations  

Number of 
passengers 

Number of 
vehicles 

𝐿𝐵∗ 𝑈𝐵∗ 
Gap 
(%) 

Number of passengers 
not served 

CPU running 
time (sec) 

1 20 2 2 108.43 108.43 0.00% 0 17.43 
2 20 11 3 352.97 352.97 0.00% 0 91.87 
3 20 20 5 616.66 626.18 1.52% 1 327.51 
4 20 46 15 1586.81 1664.07 4.64% 2 4681.52 

5 20 60 15 1849.98 1878.55 1.52% 3 7096.50 
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Fig. 14. Gap percentage along 20 iterations corresponding each test case in Chicago network. 

 
As you can see in Fig. 14, after 10-15 iterations, the sub-gradient algorithm is typically able to converge to a small 

gap (about 5%) for the Chicago Network. 
 

Table 13. Results for the Phoenix network with 13,777 transportation nodes and 33,879 links. 
Test case 
number 

Number of 
iterations 

Number of 
passengers 

Number of 
vehicles 

𝐿𝐵∗ 𝑈𝐵∗ 
Gap 
(%) 

Number of passengers 
not served 

CPU running 

time (sec) 
1 6 4 2 70.95 70.95 0.00% 0 110.39 
2 6 10 5 191.55 207.05 7.49% 1 398.37 
3 6 20 6 310.37 310.37 0.00% 0 1323.18 
4 6 40 12 622.23 622.23 0.00% 0 3756.51 

5 6 50 15 784.07 784.07 0.00% 0 6983.19 

 
6.3. Handling randomly generated test instances 

To further examine the computational efficiency and solution optimality of our proposed algorithm, we also test 
our algorithms on randomly generated instances proposed by Ropke and Cordeau (2009) which is publicly available 
at http://www.diku.dk/~sropke/. The data set introduced by Ropke and Cordeau (2009) is the modified version of 
instances employed by Ropke et al. (2007) initially proposed by Savelsbergh and Sol (1998). In this data set, the 
coordinates of passengers’ pickup and drop-off locations are randomly selected and uniformly distributed over a [0,50] × [0,50] square. In addition, they considered a single depot located in the center of the square. The load 𝑞𝑖 of 
passenger 𝑖 is randomly selected from [5, 𝑄], where 𝑄 is the maximum capacity of the vehicle. A planning horizon [0,600] is considered. Feasible departure and arrival time windows are also randomly generated for each passenger.  

Ropke and Cordeau  (2009) formulate the PDPTW on a network that is built based on demand request nodes, and 
the links are defined as direct connections between pickup and delivery nodes (without explicitly considering 
transportation links or paths), while we formulate the PDPTW on transportation networks. To test our algorithms on 
their data set, we need to convert their origin-destination network to a transportation network. Specifically, we treat 
their demand node-oriented network as a transportation network, and each origin/destination node acts as a 
transportation node. As a result, in this converted transportation network, each transportation node is connected to all 
other transportation nodes, and similar to what we performed before, dummy nodes are added and connected to their 
corresponding transportation nodes. Obviously, the constructed transportation network is a complete digraph with a 
very large number of links. In this data set, the coordinates of passengers’ pickup and drop-off locations are randomly 
chosen and uniformly distributed over a small square, so the densely distributed passengers could impose a difficult 
problem of assigning different vehicles to different passengers. In comparison, in our test data set, the Chicago and 
Phoenix transportation networks, the vehicles and passengers are naturally spatially and sparsely distributed such that 
fewer vehicles compete for serving a particular passenger. Thus, in that situation, the first stage of the vehicle 
assignment problem could be easily solved using our proposed Lagrangian relaxation framework with a good 
matching between the vehicles and passengers.  
6.4. Challenges of multi-vehicle assignment problems and usefulness of single-vehicle routing algorithm 

In general, VRPPDTW even for the single vehicle cases is still categorized as one of the toughest tasks of 
combinatorial optimization (Azi et al. 2007; Hernández-Pérez and Salazar-González, 2009; and Häme, 2011). Several 
approaches have been recently suggested to resolve the issue mentioned above by converting multi-vehicle cases to 
the single-vehicle ones. For instance, Häme and Hakula (2015) have suggested a maximum cluster algorithm in which 
the multi-vehicle solution is based on a recursive single-vehicle algorithm.  

To fully address the complexity of assigning different vehicles to multiple passengers, Fisher et al. (1997) 
proposed a new set of variables 𝑥(𝑝, 𝑣) and decomposed constraints (5) to two sets of constraints: constraints (19) and 
(20).   ∑ 𝑥(𝑣, 𝑝) = 1                                                                                                                                                          𝑣∈(𝑉∪𝑉∗) ∀𝑝    (19)      ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) = 𝑥(𝑣, 𝑝)(𝑗,𝑠,𝑤′)                                                                   (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ Ψ𝑝,𝑣 , ∀𝑝, ∀𝑣    (20) 

http://www.diku.dk/~sropke/


  

24 
 

 
Constraints (19) guarantee that each passenger is visited exactly once. Constraints (20) control vehicle 𝑣’s route 

and show the relations between the variables 𝑥(𝑣, 𝑝) and 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′). By using the Lagrangian decomposition 
method and relaxing these two sets of constraints into the objective function, the main problem can be decomposed to 
two sub-problems where sub-problem (1) becomes a semi-assignment problem and sub-problem (2) as a time-
dependent least-cost path problem. The first sub-problem can be easily solved by inspection. The second sub-problem 
also can be solved by computationally efficient algorithms, e.g., proposed in our paper. However, due to the integrality 
of 𝑥 and 𝑦, there may be a gap between lower bounds and upper bounds of the primal problem. To further reduce the 
duality gap, Fisher et al. (1997) introduce a branch-and-bound method and use the variable splitting approach to 
control the lower bounds; but using a new branch-and-bound method decreases the computational efficiency of our 
algorithm dramatically.  

In our reseasrch, in order to address the similar concerns, we also apply set partitioning approach to enumerate 
all possible passengers’ service patterns. To define passengers’ service patterns, we utilize the path representation for 
the Traveling Salesman Problem (TSP) suggested by Bellman (1962) and Held and Karp (1962). Service pattern 𝑗 is 
defined as a vector consists of |𝑃| number of elements (𝑃 is the set of passengers). Note that 𝑝th element of pattern 𝑗 
is representative of passenger 𝑝’s service status. The service status of passenger 𝑝 is chosen from the set {0,1,2}, where 
0 means passenger 𝑝 is still waiting to be picked up, 1 means passenger 𝑝 has been picked up but the service has not 
been completed, and 2 means passenger 𝑝 has been successfully delivered. Let 𝑐𝑣𝑗 denote the travel cost of pattern 𝑗 

traversed by vehicle 𝑣. Moreover, assume that 𝛼𝑣𝑝𝑗 is a binary constant which equals 1 if pattern 𝑗 traversed by vehicle 𝑣 includes passenger 𝑝, and 0 otherwise.  𝑧𝑣𝑗 is also a binary variable equals 1 if pattern 𝑗 is used by vehicle 𝑣, and 0 

otherwise. Thus, we will have: 𝑚𝑖𝑛 ∑ ∑ 𝑐𝑣𝑗𝑧𝑣𝑗𝑗∈𝐽𝑣∈𝑉                                                                                                                                                     (21) 

s.t. ∑ ∑ 𝛼𝑣𝑝𝑗𝑧𝑣𝑗 = 1𝑗∈𝐽𝑣∈𝑉                                                                                                                                                          ∀𝑝    (22) ∑ 𝑧𝑣𝑗𝑗∈𝐽 = 1                                                                                                                                                                            ∀𝑣    (23) 

In this formulation, objective function (21) minimizes the total travel cost. Constraints (22) guarantee that each 
passenger is served exactly once. Constraints (23) ensure that each vehicle selects only one pattern. In order to assess 
the solution optimality of our developed algorithm on instances proposed by Ropke and Cordeau (2009) and avoid the 
computational challenges, two scenarios have been examined. First, we test our algorithm for the single-vehicle cases 
to avoid the complexity of assigning different vehicles to multiple passengers. In this case, it is obvious that we do not 
need to apply the set partitioning method mentioned above. Second, we test our algorithm on the small subsets of their 
instances for the multiple-vehicle cases with a limited number of transportation requests, so that all possible 
combinations of passenger-to-vehicle assignment patterns 𝛼𝑣𝑝𝑗 can be enumerated and then solved in the set partition 

problem defined in Eqs. (21-22). In both sets of scenarios, the exact solutions are obtained for all the restricted master 
problems in the test data sets. 

 

 
7. Conclusions 

A new generation of transportation network companies uses mobile-phone-based platforms to seamlessly connect 
drivers to passengers from different origins to different destinations with specific, preferred departure or arrival times. 
Many relevant practical aspects need to be carefully formulated for real-world planning/dispatching system 
deployment, such as time-dependent link travel times on large-scale regional transportation networks, and tight vehicle 
capacity and passenger service time window constraints.  

By reformulating the PDPTW through space time networks to consider time window requirements, our proposed 
approach can not only solve the vehicle routing and scheduling problem directly in large-scale transportation networks 
with time-dependent congestion, but also avoid the complex procedure to eliminate any sub-tour possibly existing in 
the optimal solution for many existing formulations. By further introducing virtual vehicle constructs, the proposed 
approach can fully incorporate the full set of interacting factors between passenger demand and limited vehicle 
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capacity in this model to derive feasible solutions and practically important system-wide cost-benefit estimates for 
each request through a sub-gradient-based pricing method. This joint optimization and pricing procedure can assist 
transportation network service providers to quantify the operating costs of spatially and temporally distributed trip 
requests. 

Future work will concentrate on the development of the model for the following cases: (𝑖) Passengers may desire 
different ride-sharing capacities (i.e. a passenger may desire to share his ride with up to only one passenger, whereas 
the other passenger may have no restriction about the number of passengers which share their ride with him). (𝑖𝑖) A 
passenger may desire to be or not to be served by a particular vehicle. (𝑖𝑖𝑖) A transportation request could contain a 
group of passengers who have the same origin, while they may or may not have the same destination. Alternatively, 
a transportation request could contain a group of passengers who have the same destination, while they may or may 
not have the same origin. In this case, we are interested in adding dummy nodes corresponding to passengers’ origins 
and destinations more wisely and efficiently. In addition, in our future research, a comprehensive branch-and-bound 
algorithm should be included in our solution framework to fully address the complexity of assigning different vehicles 
to multiple passengers.    
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Appendix A 

Description of the PDPTW in the Origin-Destination Network 

Cordeau (2006) formulated the PDPTW on a network that is built based on demand request nodes and the links are 
defined as direct connections between pickup and delivery nodes (without explicitly considering transportation links 
or paths). For a systematic comparison, the following notation is adapted from Cordeau (2006).  
 
Table A.1. Sets, indices and parameters used in Cordeau (2006) for the PDPTW. 

Symbol Definition 𝑛 Number of passengers 𝑃 Set of passengers’ pickup nodes. 𝑃 = {1, … , 𝑛} 𝐷 Set of passengers’ delivery nodes. 𝐷 = {𝑛 + 1, … , 2𝑛} 
0 Node representative of origin depot 2𝑛 + 1 Node representative of destination depot 𝑁 Set of passengers’ pickup and drop-off nodes and vehicles’ depots. 𝑁 = {𝑃, 𝐷, {0, 2𝑛 + 1}} 𝐴 Set of arcs 𝐺 Directed graph 𝐺 = (𝑁, 𝐴) 𝑖 Passenger 𝑖’s pickup node 𝑛 + 𝑖 Passenger 𝑖’s delivery node 𝑞𝑖 Load at node 𝑖, (𝑖 ∈ 𝑁) 𝑑𝑖 Service duration at node 𝑖, (𝑖 ∈ 𝑁) 𝑒𝑖 Earliest time at which service is allowed to start at node 𝑖, (𝑖 ∈ 𝑁) 𝑙𝑖 Latest time at which service is allowed to start at node 𝑖, (𝑖 ∈ 𝑁) (𝑖, 𝑗) Index of arc between adjacent nodes 𝑖 and 𝑗 𝑐𝑖𝑗 Routing cost of arc (𝑖, 𝑗) 𝑡𝑖𝑗 Travel time of arc (𝑖, 𝑗) 𝑉 Set of vehicles 𝑣 Vehicle index 𝑄𝑣 Capacity of vehicle 𝑣 
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𝑇𝑣 Maximal duration of vehicle 𝑣’s route 𝐿 Maximum ride time of a passenger 
 

Note that 𝑞0 = 𝑞2𝑛+1 = 0, 𝑞𝑖 ≥ 0 for (𝑖 = 1, … , 𝑛), and 𝑞𝑖 = −𝑞𝑖−𝑛 (𝑖 = 𝑛 + 1, … , 2𝑛), and service duration 𝑑𝑖 ≥ 0 and 𝑑0 = 𝑑2𝑛+1 = 0. Time window [𝑒𝑖 , 𝑙𝑖] is also specified either for the pickup node or for the drop-off node 
of a request, but not for both. The arc set is also defined as 𝐴 = {(𝑖, 𝑗): (𝑖 = 0, 𝑗 ∈ 𝑃) 𝑜𝑟 (𝑖 ∈ 𝑃 ∪ 𝐷, 𝑗 ∈ 𝑃 ∪ 𝐷, 𝑖 ≠𝑗, 𝑖 ≠ 𝑛 + 𝑗) 𝑜𝑟 (𝑖 ∈ 𝐷, 𝑗 = 2𝑛 + 1)}. The model uses three-index variables 𝑥𝑖𝑗𝑣  being equal to 1 if and only if vehicle 𝑣 travels from node 𝑖 to node 𝑗. Let 𝐵𝑖𝑣  be the time at which vehicle 𝑣 begins servicing node 𝑖 and 𝑄𝑖𝑣  be the load of 
vehicle 𝑣 upon departing from node 𝑖. Finally, for each passenger 𝑖, let 𝐿𝑖𝑣 be the ride time of passenger 𝑖 on vehicle 𝑣. The PDPTW can be formulated as follows: 

 𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑣 𝑥𝑖𝑗𝑣𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉                                                                                                                                       (A.1) 

s.t.    ∑ ∑ 𝑥𝑖𝑗𝑣 = 1𝑗∈𝑁𝑣∈𝑉                                                                                                                                        ∀𝑖 ∈ 𝑃   (A.2)                               

        ∑ 𝑥𝑖𝑗𝑣 − ∑ 𝑥𝑛+𝑖,𝑗𝑣𝑗∈𝑁 = 0                                                                                                           ∀𝑖 ∈ 𝑃, 𝑣 ∈ 𝑉𝑗∈𝑁    (A.3)                              

               ∑ 𝑥0𝑗𝑣𝑗∈𝑁 = 1                                                                                                                                                ∀𝑣 ∈ 𝑉   (A.4)                              

              ∑ 𝑥𝑗𝑖𝑣 − ∑ 𝑥𝑖𝑗𝑣𝑗∈𝑁 = 0𝑗∈𝑁                                                                                                         ∀𝑖 ∈ 𝑃 ∪ 𝐷, 𝑣 ∈ 𝑉   (A.5)                               

              ∑ 𝑥𝑖,2𝑛+1𝑣 = 1                                                                                                                                          𝑖∈𝑁 ∀𝑣 ∈ 𝑉   (A.6)                              

              𝑥𝑖𝑗𝑣 (𝐵𝑖𝑣 + 𝑑𝑖 + 𝑡𝑖𝑗) ≤ 𝐵𝑗𝑣                                                                                                    ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉   (A.7)                              

              𝑥𝑖𝑗𝑣 (𝑄𝑖𝑣 + 𝑞𝑗) ≤ 𝑄𝑗𝑣                                                                                                               ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉   (A.8)                              

              𝐿𝑖𝑣 = 𝐵𝑛+𝑖𝑣 − (𝐵𝑖𝑣 + 𝑑𝑖)                                                                                                                   ∀𝑖 ∈ 𝑃, 𝑣 ∈ 𝑉   (A.9)                              
              𝐵2𝑛+1𝑣 − 𝐵0𝑣 ≤ 𝑇𝑣                                                                                                                                        ∀𝑣 ∈ 𝑉  (A.10)                               
              𝑒𝑖 ≤ 𝐵𝑖𝑣 ≤ 𝑙𝑖                                                                                                                                      ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉  (A.11)                              
              𝑡𝑖,𝑛+𝑖 ≤ 𝐿𝑖𝑣 ≤ 𝐿                                                                                                                                 ∀𝑖 ∈ 𝑃, 𝑣 ∈ 𝑉  (A.12)                              

              𝑚𝑎𝑥{0, 𝑞𝑖} ≤ 𝑄𝑖𝑣 ≤ 𝑚𝑖𝑛{𝑄𝑣 , 𝑄𝑣 + 𝑞𝑖}                                                                                     ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉  (A.13)                               
              𝑥𝑖𝑗𝑣 ∈ {0,1}                                                                                                                            ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉  (A.14)                              

 
The objective function (A.1) minimizes the total routing cost. (A.2) guarantees that each passenger is definitely 

picked up. (A.2) and (A.3) ensure that each passenger’s origin and destination are visited exactly once by the same 
vehicle. (A.4) expresses that each vehicle 𝑣 starts its route from the origin depot. (A.5) ensures the flow balance on 
each node. (A.6) expresses that each vehicle 𝑣 ends its route at the destination depot. (A.7) and (A.8) ensure the 
validity of the time and load variables. (A.9) defines each passenger’s ride time. (A.10) to (A.13) impose maximal 
duration of each route, time windows, the ride time of each passenger, and capacity constraints, respectively. Since 
the non-negativity of the ride time of each passenger guarantees that node 𝑖 is visited before node 𝑛 + 𝑖, (A.12) also 
functions as precedence constraints.  
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