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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We have found the first optimal solutions to random 

instances of Rubik’s Cube. The median optimal so- 

lution length appears to be 18 moves. The algorithm 

used is iterative-deepening-A* (IDA*), with a lower- 

bound heuristic function based on large memory-based 

lookup tables, or “pattern databases” (Culberson and 

Schaeffer 1996). These tables store the exact num- 

ber of moves required to solve various subgoals of the 

problem, in this case subsets of the individual mov- 

able cubies. We characterize the effectiveness of an 

admissible heuristic function by its expected value, 

and hypothesize that the overall performance of the 

program obeys a relation in which the product of the 

time and space used equals the size of the state space. 

Thus, the speed of the program increases linearly with 

the amount of memory available. As computer mem- 

ories become larger and cheaper, we believe that this 

approach will become increasingly cost-effective. 

Introduction 

Rubik’s Cube, invented in the late 1970s by Erno Ru- 

bik of Hungary, is the most famous combinatorial puz- 

zle of its time. The standard version (See Figure 1) 

consists of a 3 x 3 x 3 cube, with different colored stick- 

ers on each of the exposed squares of the subcubes, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cubies. Any 3 x 3 x 1 plane of the cube can be rotated 

or twisted 90, 180, or 270 degrees relative to the rest of 

the cube. In the goal state, all the squares on each side 

of the cube are the same color. The puzzle is scram- 

bled by making a number of random twists, and the 

task is to restore the cube to its original goal state. 

The problem is quite difficult. The Saganesque slo- 

gan printed on the package, that there are billions of 

combinations, is a considerable understatement. In 

fact, there are 4.3252 x 101’ different states that can be 

reached from any given configuration. By comparison, 

the 4 x 4 Fifteen Puzzle contains 1013 states, and the 

5 x 5 Twenty-Four Puzzle generates 1O25 states. 

To solve Rubik’s Cube, one needs a general strategy, 

which usually consists of a set of move sequences, or 

Copyright 01997, American Association for Artificial 
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Figure 1: Rubik’s Cube 

macro-operators, that correctly position individual cu- 

bies without violating previously positioned ones. Such 

strategies typically require 50 to 100 moves to solve a 

randomly scrambled cube. It is believed, however, that 

any cube can be solved in no more than 20 moves. 

We address the problem of finding a shortest se- 

quence of moves required to solve a given problem 

instance. As far as we have been able to determine, 

optimal solutions to random instances have not been 

found previously. We generated ten random problem 

instances, and solved them all optimally. One was 

solved in 16 moves, three required 17 moves, and the 

remaining six were solved in 18 moves. 

The Problem Space 

The first step is to translate the physical puzzle into a 

symbolic problem space to be manipulated by a com- 

puter. Of the 27 possible 1 x 1 x 1 cubies, 26 are visible, 

with one in the center. Of these, the six cubies in the 

center of a face rotate, but don’t move. These six cu- 

bies form a fixed reference framework, disallowing rota- 

tions of the entire cube. Of the remaining 20 movable 

cubies, 8 are on the corners, with three visible faces 

each, and 12 are on the edges, with two visible faces 
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each. Corner cubies only move among corner positions, 

and edge cubies only move among edge positions. A 

corner cubic in a given position can be oriented in any 

of three ways, and an edge cubic can be oriented two 

different ways. Thus, we can uniquely specify the state 

of a cube by giving the position and orientation of each 

of the 8 edge cubies and 12 corner cubies. This is rep- 

resented as an array of 20 elements, one for each cubic, 

the contents of which encode the position and orienta- 

tion of the cubic as one of 24 different values, 8 - 3 for 

the corners, and 12.2 for the edges. The total number 

of possibilities is thus 8! .3’ - 12! - 212. Additional con- 

straints reduce this by a factor of 12, since the entire 

problem space consists of 12 separate but isomorphic 

subgraphs, with no legal moves between them. Thus, 

the total number of states reachable from a given state 

is 8! - 3’ e 12! + 212/ 12 = 43,25.2,003,274,489,856,000. 

The next question is how to define the primitive op- 

erators, for which there are two approaches. The first 

is that a primitive operator is any 90 degree, or quar- 

ter turn, of a face. A 180 degree turn is represented by 

two quarter turns in the same direction. Alternatively, 

a primitive operator may be any twist of a single face, 

either 90 degrees clockwise or counterclockwise, or 180 

degrees. We adopt this latter formulation since it leads 

to a search tree with fewer duplicate nodes. For exam- 

ple, two consecutive clockwise twists of the same face 

leads to the same state as two counterclockwise twists. 

Counting any of the three different twists of the six 

different faces as a primitive operator leads to a search 

tree with a branching factor of 18. Since twisting the 

same face twice in a row is redundant, ruling out such 

moves reduces the branching factor to 15 after the first 

move. Furthermore, twists of opposite faces of the cube 

are independent and commutative. For example, twist- 

ing the front face, then twisting the back face, leads to 

the same state as performing the same twists in the op- 

posite order. Thus, for each pair of opposite faces we 

arbitrarily chose an order, and forbid moves that twist 

the two faces consecutively in the opposite order. This 

results in a search tree with an asymptotic branching 

factor of about 13.34847. Table 1 shows the number of 

nodes in the search tree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a function of depth, up to 

depth 18. All these nodes do not correspond to unique 

states of the cube, since there are duplicate paths to 

the same node. At depth 18, the number of nodes in 

the tree exceeds the number of states in the problem 

space for the first time. This implies that some states 

are at least 18 moves from the goal, but doesn’t guar- 

antee that no states are further away. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFirst Attempt 

To find optimal solutions, we need an admissible search 

algorithm. Exponential-space algorithms like A* are 

impractical on large problems. Since it is difficult to 

find any solution, or a tight upper bound on the op- 

timal solution length, depth-first branch-and-bound is 

also not feasible. This suggests iterative-deepening-A* 
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Table 1 Nodes in search tree as a function of depth 

Nodes 

18 

243 

3,240 

43,254 

577,368 

7,706,988 

102,876,480 

1,373,243,544 

18,330,699,168 

244,686,773,808 

3,266,193,870,720 

43,598,688,377,184 

581,975,750,199,168 

7,768,485,393,179,328 

103,697,388,221,736,960 

1,384,201,395,738,071,424 

18,476,969,736,848,122,368 

246,639,261,965,462,754,048 

(IDA*) (Korf 1985a). IDA * is a depth-first search that 

looks for increasingly longer solutions in a series of iter- 

ations, using a lower-bound heuristic to prune branches 

once their estimated length exceeds the current itera- 

tion bound. Given the branching factor of this space, 

the time overhead of the non-goal iterations is only 8%. 

Next we need a heuristic function. The obvious 

heuristic is a three-dimensional version of the well- 

known manhattan distance for sliding-tile puzzles. For 

each cubic, compute the minimum number of moves 

required to correctly position and orient it, and sum 

these values over all cubies. Unfortunately, to be ad- 

missible, this value has to be divided by eight, since 

every twist moves four corner and four edge cubies. 

This result can be rounded up. A better heuristic is to 

take the maximum of the sum of the manhattan dis- 

tances of the corner cubies, and the edge cubies, each 

divided by four. The expected value of the manhattan 

distance of the edge cubies is 5.5, while the expected 

value of the manhattan distance of the corner cubies 

is only about 3, partly because there are 12 edge cu- 

bies, but only 8 corner cubies. As a result, if we only 

compute the manhattan distance of the edge cubies, 

ignoring the corner cubies, the additional node gener- 

ations are made up for by the lower cost per node. 

The expected value of 5.5 for this heuristic gives an 

estimate of its effectiveness, as we will see later. IDA* 

running on our Sun Ultra-Spare Model 1 workstation 

with this heuristic can search to depth 14 in about 

three days, but solving problem instances at depth 18 

would take over 250 years. We need a better heuristic. 

Pattern Databases 

While we normally think of a heuristic as a function 

computed by an algorithm, any function can also be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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computed by a table lookup, given sufficient memory. 

In fact, for reasons of efficiency, heuristic functions are 

commonly precomputed and stored in memory. For ex- 

ample, the manhattan distance function above is com- 

puted with the aid of a small table that contains the 

manhattan distance of each individual cubic from all 

possible positions and orientations. (Culberson and 

Schaeffer 1996) have carried this idea much further. 

If we consider just the eight corner cubies, the 

position and orientation of the last cubic is deter- 

mined by the remaining seven, so there are exactly 

8! + 37 = 88,179,840 possible combinations. Using a 

breadth-first search from the goal state, we can enu- 

merate these states, and record in a table the number 

of moves required to solve each combination of corner 

cubies. Since this value ranges from zero to eleven, 

only four bits are required for each table entry. Thus, 

this table requires 44,089,920 bytes of memory, or 42 

megabytes, which is easily accommodated on modern 

workstations. Note that this table only needs to be 

computed once for each goal state, and its cost can 

be amortized over the solution of multiple problem in- 

stances with the same goal. The use of such tables, 

called “pattern databases”  is due to (Culberson and 

Schaeffer 1996), who applied it to the Fifteen Puzzle. 

The expected value of this heuristic is about 8.764 

moves, compared to 5.5 moves for the manhattan dis- 

tance of the edge cubies. During the IDA* search, as 

each state is generated, a unique index into the heuris- 

tic table is computed, followed by a reference to the 

table. The stored value is the number of moves needed 

to solve the corner cubies, and thus a lower bound on 

the number of moves needed to solve the entire puzzle. 

We can improve this heuristic by considering the 

edge cubies as well. The number of possible combi- 

nations for six of the twelve edge cubies is 12!/ 6! - 26 = 

42,577,920. The number of moves needed to solve 

them ranges from zero to ten, with an expected value 

of about 7.668 moves. At four bits per entry, this table 

requires 21,288,960 bytes, or 20 megabytes. A table 

for seven edge cubies would require 244 megabytes of 

memory. The only admissible way to combine the cor- 

ner and edge heuristics is to take their maximum. 

Similarly, we can compute the corresponding heuris- 

tic table for the remaining six edge cubies. The heuris- 

tic used for the experiments reported below is the max- 

imum of all three of these values: all eight corner cu- 

bies, and two groups of six edge cubies each. The total 

amount of memory for all three tables is 82 megabytes. 

The total time to generate all three heuristic tables was 

about an hour, and this cost is amortized over multi- 

ple problem instances with the same goal state. The 

expected value of the maximum of these three heuris- 

tics is 8.878 moves. Even though this is only a small 

increase above the 8.764 expected value for just the 

corner cubies, it results in a significant performance 

improvement. Given more memory, we could compute 

and store even larger tables. 
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Experimental Results 

We generated ten solvable instances of Rubik’s Cube, 

by making 100 random moves each, starting from the 

goal state. Given the high dimensionality of the prob- 

lem space based on the fact that each state has 18 

neighbors, and the conjecture that the diameter of 

the space is only 20 moves, we believe that lOO-move 

random walks generate effectively random problem in- 

stances. We then ran IDA* using the above heuris- 

tic, solving all the problems optimally. The results are 

summarized in Table 2, sorted by problem difficulty. 

One problem was solved in 16 moves, three required 

17 moves, and six were solved in 18 moves. The actual 

initial states and their solutions are available from the 

author on request. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

No. Depth Nodes Generated 

1 -D---- 3,720,885,493 

2 17 11,485,155,726 

3 17 64,837,508,623 

4 17 126,005,368,381 

5 18 262,228,269,081 

6 18 344,770,394,346 

7 18 502,417,601,953 

8 18 562,494,969,937 

9 18 626,785,460,346 

10 18 1,021,814,815,051 

Table 2: Optimal solution lengths and nodes generated 

for random Rubik’s Cube problem instances 

Running on a Sun Ultra-Spare Model 1 workstation, 

our program generates and evaluates about 700,000 

nodes per second. At large depths, the number of 

nodes generated per iteration is very stable across dif- 

ferent problem instances. For example, of the six com- 

pleted iterations at depth 17, the number of nodes 

generated ranged only from 116 to 127 billion. Com- 

plete searches to depth 16 require an average of 9.5 

billion nodes, and take less than four hours. Complete 

searches to depth 17 generate an average of 122 billion 

nodes, and take about two days. A complete depth 18 

search should take less than four weeks. The heuristic 

branching factor, which is the ratio of the number of 

nodes generated in one iteration to the number gen- 

erated in the previous iteration, is roughly the brute- 

force branching factor of 13.34847. 

Performance Analysis 

The consistent number of nodes generated by IDA* 

on a given iteration across different problem instances 

suggests that the performance of the algorithm is 

amenable to analysis. Most analyses of single-agent 

heuristic search algorithms have been done on simple 

analytic models, and have not predicted performance 

on any real problems. The discussion below is not a 

formal analysis, but rather a set of observations of reg- 

ularities in our data, supported by intuitive arguments. 



Most analyses of heuristic evaluation functions relate 

the performance of a search algorithm to the accuracy 

of the heuristic as an estimate of the exact distance 

to the goal. One difficulty with this approach is that 

heuristic accuracy is hard to measure, since determin- 

ing the exact distance to the goal for a given problem 

instance is computationally difficult for large problems. 

Our first observation is that we can characterize the 

effectiveness of an admissible heuristic function by its 

expected value over the problem space. This is eas- 

ily determined to any desired degree of accuracy by 

randomly sampling the problem space, and computing 

the heuristic for each state. In our case, the heuristic 

values are enumerated in the heuristic table, and their 

expected value can be computed exactly as the average 

of the table values. Furthermore, the expected value of 

the maximum of two such heuristics can be computed 

exactly from their heuristic tables, assuming that the 

values are independent, a reasonable assumption here. 

We conjecture that the larger the expected value of an 

admissible heuristic, the better the performance of an 

admissible search algorithm using it. 

If the heuristic value of every state equaled its ex- 

pected value e, then IDA* searching to depth d would 

be equivalent to brute-force depth-first iterative deep- 

ening searching to depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd - e, since the f = g + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh 
value of every state would be its depth plus e. Thus 

it is tempting to conjecture that the number of nodes 

generated by IDA* searching to depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd is approxi- 

mately the same as a brute-force search to depth d - e. 

In our experiments, our heuristic has an expected value 

of 8.878, which we round up to 9. A complete IDA* 

search to depth 17 generates approximately 122 bil- 

lion nodes. However, a brute-force search to depth 

17-9 = 8 would generate only about 1.37 billion nodes, 

which is almost two orders of magnitude less. 

The reason for this discrepancy is that the states en- 

countered in an IDA* search are not a random sample 

of the problem space. States with large heuristic val- 

ues are pruned, and states with small heuristic values 

spawn more children in the same iteration. Thus, the 

search is biased in favor of small heuristic values, which 

lowers the average heuristic values of states encoun- 

tered by IDA*, causing more nodes to be generated 

than predicted by the expected value of the heuristic. 

The next step is to predict the expected value of a 

pattern database heuristic from the amount of memory 

used, and the branching factor b of the problem space. 

To see how to do this, note that Table 1 implies that 

most Rubik’s Cube problem instances must be at least 

18 moves from the goal state, since this is the depth at 

which the number of nodes in the tree first exceeds the 

number of states in the space, which agrees with our 

experimental results. In general, a lower bound on the 

expected value of a pattern database heuristic is the 

log base b of the number of states stored in the table, 

since with d moves, one can generate at most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbd states. 

In general, one will generate fewer unique states since 

there are duplicate nodes in the search tree. 

As another example, since there are about 88 mil- 

lion different states of the corner cubies, Table 1 sug- 

gests that the average number of moves required to 

solve them should be about seven. In fact, the average 

number of moves is 8.764. Again, the reason for the 

discrepancy is that not all the nodes at depth seven 

in the tree correspond to unique states of the corner 

cubies, requiring us to go deeper to generate them all. 

In other words, estimating the expected value of a 

heuristic from the branching factor of the space and 

the number of states gives a value that is too low or 

pessimistic. On the other hand, estimating the number 

of nodes generated by IDA* from the expected value of 

the heuristic gives a value that is also too low, which is 

optimistic. This suggests that by combining the two, to 

estimate the number of nodes generated by IDA* from 

the branching factor of the space and the number of 

states in the heuristic table, the two errors may cancel 

each other to some extent. 

More formally, let n be the number of states in the 

entire problem space, let b be the brute-force branching 

factor of the space, let d be the average optimal solu- 

tion length for a random problem instance, let e be the 

expected value of the heuristic, let m be the amount of 

memory used, in terms of heuristic values stored, and 

let t be the running time of IDA*, in terms of nodes 

generated. The average optimal solution length d of 

a random instance, which is the depth to which IDA* 

must search, can be estimated as log, n, or d x logb n. 

As argued above, e M logb m, and t M bd-“ . Substitut- 

ing the values for d and e into this formula gives 

t x bd-”  * bh, n-‘O& m - - n/ m. 

Thus, the running time of IDA* may be approx- 

imated by 0(n/ m), th e size of the problem space 

divided by the memory available. Using the data 

from our experiments, n x 4 3252 - lo” , m = 

173,335,680, n/ m = 249,527,4(!)9,904, and t = 

352,656,042,894, which is only off by a factor of 1.4. 

Given this hypothesized linear relationship between 

the available memory and the speed of IDA*, an obvi- 

ous thing to try is to store a larger heuristic table on 

disk. Unfortunately, the long latency of disks makes 

this approach impractical. The access pattern for the 

heuristic tables doesn’t exhibit any locality of refer- 

ence, and we can expect that each access will take as 

long as the latency time of the disk. If we have a single 

disk with ‘a ten millisecond latency, this gives only 100 

accesses per second. Even assuming only one heuris- 

tic calculation per node, this yields a speed of only 

100 nodes per second. Our current implementation, 

which stores the heuristic tables in memory, runs at 

about 700,000 nodes per second, a factor of 7000 times 

faster. Given the formula t M n/ m, the disk capacity 

would have to be about 7000 times that of main mem- 

ory to make up for the latency of the disk accesses. 

Currently, this ratio is only about a factor of ten. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Related Work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Most of the ideas in this paper have appeared in the 

literature. Our main contribution is to bring them to- 

gether to solve a new problem for the first time. 

The first appearance of Rubik’s Cube in the pub- 

lished AI literature was (Korf 19858). The focus of 

that work was on learning to solve the cube, and the so- 

lutions generated by that program averaged 86 moves. 

Schroeppel, Shamir, Fiat et al 

The first paper to address finding optimal solutions to 

Rubik’s Cube was (Fiat et al. 1989), which is based 

on (Schroeppel and Shamir 1981). To understand this 

work, we first discuss the idea of bidirectional search. 

Bidirectional search searches forward from the ini- 

tial state, and backwards from the goal state simulta- 

neously, until a common state is reached from both di- 

rections. Then the forward search path, combined with 

the reverse of the backward search path, is a solution 

to the problem. Given a problem with branching factor 

b and optimal solution depth d, the time complexity of 

bidirectional search is O( bdi2) , since the two searches 

need only proceed to half the depth. The drawback, 

however, is that at least one of the search frontiers must 

be stored, requiring 0(bdi2) space as well. For Rubik’s 

cube, this would require storing all the states at depth 

nine for an l&move solution, which isn’t feasible since 

there are over 18 billion states at depth nine. Even if 

we could store this many states on disk, the latency 

of the disk would make the algorithm impractical in 

terms of time, for the reasons given above. 

(Schroeppel and Shamir 1981) improved on bidirec- 

tional search for many problems. If the states in the 

two search frontiers can be generated in some order de- 

fined on the state description, then a match between 

the two frontiers can be found without storing either 

of the frontiers. We simply generate the two frontiers 

synchronously, keeping the current frontier nodes as 

close as possible to each other in the order. To find 

a solution of depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, we generate and store in mem- 

ory all states at depth d/4 from both initial and goal 

states. Then, by combining all possible pairs of paths 

of length d/4, all states at depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd/2 are generated, in 

order, from both initial and goal states, and a match 

is found if one exists. The space complexity of this 

method is O(bdi4), and the time complexity is O(bdj2). 

(Fiat et al. 1989) showed how to apply this tech- 

nique to permutation groups, such as Rubik’s Cube. 

Their main contribution was to show how to gener- 

ate compositions of permutations in lexicographically 

sorted order. They claimed that their algorithm was 

the first that could feasibly find optimal solutions to 

Rubik’s Cube. They only reported results from their 

implementation up to depth 16, however, and specu- 

lated about what they could do with a depth 18 search. 

(Bright, Kasif, and Stiller 1994) showed how to par- 

allelize the Schroeppel and Shamir, and Fiat el al. al- 

gorithms, and give a clearer exposition of both. 

We implemented the Fiat algorithm, and its speed 

is roughly comparable to our implementation of IDA* 

with pattern database heuristics, using 82 megabytes 

of memory, on depth 18 searches. Currently, our Fiat 

code is about a factor of two slower than our IDA* 

code, but we believe that we could narrow this gap 

with further optimization of our Fiat code. 

If n is the size of the problem space, the Fiat al 
B 

o- 

rithm has an asymptotic time complexity of O(n’ 2), 

and an asymptotic space complexity of O(n1i4). This 

is superior to our hypothesized space-time tradeoff of 

t = n/m for IDA*. There are two caveats to this, 

however. First, the constant time factor for our Fiat 

implementation is about 70 times what it is for our 

IDA* implementation. Our Fiat code generates about 

10,000 permutations per second, while our IDA* code 

generates about 700,000 per second. Secondly, our Fiat 

code requires over 500 bytes per permutation, while 

our heuristic table requires only half a byte per per- 

mutation, a factor of 1000 in space. As a result, depth 

19 searches with the Fiat algorithm would require well 

over 300 megabytes of memory, but shouldn’t run any 

faster than our IDA* implementation at that depth, 

using only 82 megabytes. 

While the Fiat algorithm allows less memory to be 

used at the cost of increased time, it doesn’t run any 

faster with more memory, as does our approach. Given 

additional memory, we can compute and store larger 

pattern databases, resulting in larger heuristic values, 

which would speed up the IDA* search. Given the hy- 

pothesized relation t M n/ m, one could argue that in 

order to reduce the time below 0(n1j2), would require 

more than 0(n1/2) space, at which point the time to 

build the heuristic tables would become the dominant 

time cost. However, the heuristic tables only need to be 

built once for a given goal state, and hence this time 

cost can be amortized over the solution of multiple 

problem instances with a common goal state. Further- 

more, note that purely asymptotic comparisons ignore 

the differences of several orders of magnitude in the 

constant factors, both in time and space. 

Since the running time of IDA* with pattern 

databases decreases with increasing memory, we be- 

lieve that as memories get larger, it will continue to 

outperform the Fiat algorithm on this problem. In ad- 

dition, IDA* is much simpler and easier to implement, 

and we believe more general as well. Even though the 

Fiat algorithm has been around since 1987, and widely 

discussed in an electronic mailing list devoted to Ru- 

bik’s Cube, we could find only one other reported im- 

plementation of it (Moews 1995), and it has not been 

used to find optimal solutions to random problem in- 

stances, as far as we know. 

Prieditis, Culberson, Schaeffer 

The idea of using the optimal solution to the corner 

cubies as a heuristic for Rubik’s Cube was first de- 

scribed by (Prieditis 1993). He also precomputed this 
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value up to depth six. Although he provides no de- 

tailed performance results, and doesn’t report solving 

any problem instances, he claims that IDA* using this 

heuristic results in eight orders of magnitude speedup 

over brute-force search. However, this appears to be 

on a much less efficient problem space, which includes 

rotations of the entire cube as operators. 

The idea of using large tables of precomputed op- 

timal solution lengths for subparts of a combinatorial 

problem was first proposed by (Culberson and Schaef- 

fer 1996). They studied these pattern databases in the 

context of the 15-puzzle, achieving significant perfor- 

mance improvements over simple heuristics like man- 

hattan distance. This paper can be viewed as simply 

applying their idea to Rubik’s Cube. 

Large tables of heuristic values originated in the area 

of two-player games, where such tables are used to 

store the exact value (win, lose, or draw) of endgame 

positions. This technique has been used to great effect 

by (Schaeffer et al. 1992) in the game of checkers. 

Finally, ever since the rise of linear-space heuristic 

search algorithms, there has been an ongoing debate 

about how to speed up such algorithms by using the 

large memories available on current machines. One of 

the best options is known as perimeter search (Dillen- 

burg and Nelson 1994) (Manzini 1995) (Kaindl et al. 

1995), and is related to bidirectional search described 

above. In perimeter search, a breadth-first search is 

performed backwards from the goal state until mem- 

ory is nearly exhausted, and the states on the resulting 

perimeter around the goal state are stored in memory. 

Then, a linear-space forward search is performed, un- 

til a state on the perimeter is reached. The real value 

of this technique is that the states on the perimeter 

can be used to improve the heuristic values in the for- 

ward search. This paper provides an alternative use of 

memory in heuristic search, and it remains to be seen if 

methods such as perimeter search can perform as well 

on problems such as Rubik’s Cube. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Conclusions 

As far as we have been able to determine, we have 

found the first optimal solutions to random instances 

of Rubik’s Cube, one of the most famous combinatorial 

puzzles of its time. The median optimal solution length 

appears to be 18 moves. The key idea, due to (Culber- 

son and Schaeffer 1996), is to take a subset of the goals 

of the original problem, and precompute and store the 

exact number of moves needed to solve these subgoals 

from all possible initial states. Then the exact solution 

to the subgoals is used as a lower bound heuristic for an 

IDA* search of the original problem. We characterize 

the effectiveness of an admissible heuristic simply by its 

expected value. We also present an informal analysis of 

the technique, and hypothesize that its performance is 

governed by the approximation t x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn/m, where t is the 

running time, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm is the amount of memory used, and n 

is the size of the problem space. This approximation is 

consistent with the results of our experiments, and sug- 

gests that the speed of the algorithm increases linearly 

with the amount of memory available. As computer 

memories become larger and cheaper, we expect that 

this algorithm will become increasingly cost-effective. 
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