
Finding Optimal Solutions to Rubik’s Cube

Using Pattern Databases

Richard E. Korf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Computer Science Department

University of California, Los Angeles

Los Angeles, Ca. 90095

korf@cs.ucla.edu

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We have found the first optimal solutions to random

instances of Rubik’s Cube. The median optimal so-

lution length appears to be 18 moves. The algorithm

used is iterative-deepening-A* (IDA*), with a lower-

bound heuristic function based on large memory-based

lookup tables, or “pattern databases” (Culberson and

Schaeffer 1996). These tables store the exact num-

ber of moves required to solve various subgoals of the

problem, in this case subsets of the individual mov-

able cubies. We characterize the effectiveness of an

admissible heuristic function by its expected value,

and hypothesize that the overall performance of the

program obeys a relation in which the product of the

time and space used equals the size of the state space.

Thus, the speed of the program increases linearly with

the amount of memory available. As computer mem-

ories become larger and cheaper, we believe that this

approach will become increasingly cost-effective.

Introduction

Rubik’s Cube, invented in the late 1970s by Erno Ru-

bik of Hungary, is the most famous combinatorial puz-

zle of its time. The standard version (See Figure 1)

consists of a 3 x 3 x 3 cube, with different colored stick-

ers on each of the exposed squares of the subcubes, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cubies. Any 3 x 3 x 1 plane of the cube can be rotated

or twisted 90, 180, or 270 degrees relative to the rest of

the cube. In the goal state, all the squares on each side

of the cube are the same color. The puzzle is scram-

bled by making a number of random twists, and the

task is to restore the cube to its original goal state.

The problem is quite difficult. The Saganesque slo-

gan printed on the package, that there are billions of

combinations, is a considerable understatement. In

fact, there are 4.3252 x 101’ different states that can be

reached from any given configuration. By comparison,

the 4 x 4 Fifteen Puzzle contains 1013 states, and the

5 x 5 Twenty-Four Puzzle generates 1O25 states.

To solve Rubik’s Cube, one needs a general strategy,

which usually consists of a set of move sequences, or

Copyright 01997, American Association for Artificial

Intelligence (www.aaai.org). All rights reserved.

700 PLANNING

Figure 1: Rubik’s Cube

macro-operators, that correctly position individual cu-

bies without violating previously positioned ones. Such

strategies typically require 50 to 100 moves to solve a

randomly scrambled cube. It is believed, however, that

any cube can be solved in no more than 20 moves.

We address the problem of finding a shortest se-

quence of moves required to solve a given problem

instance. As far as we have been able to determine,

optimal solutions to random instances have not been

found previously. We generated ten random problem

instances, and solved them all optimally. One was

solved in 16 moves, three required 17 moves, and the

remaining six were solved in 18 moves.

The Problem Space

The first step is to translate the physical puzzle into a

symbolic problem space to be manipulated by a com-

puter. Of the 27 possible 1 x 1 x 1 cubies, 26 are visible,

with one in the center. Of these, the six cubies in the

center of a face rotate, but don’t move. These six cu-

bies form a fixed reference framework, disallowing rota-

tions of the entire cube. Of the remaining 20 movable

cubies, 8 are on the corners, with three visible faces

each, and 12 are on the edges, with two visible faces

From: AAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

each. Corner cubies only move among corner positions,

and edge cubies only move among edge positions. A

corner cubic in a given position can be oriented in any

of three ways, and an edge cubic can be oriented two

different ways. Thus, we can uniquely specify the state

of a cube by giving the position and orientation of each

of the 8 edge cubies and 12 corner cubies. This is rep-

resented as an array of 20 elements, one for each cubic,

the contents of which encode the position and orienta-

tion of the cubic as one of 24 different values, 8 - 3 for

the corners, and 12.2 for the edges. The total number

of possibilities is thus 8! .3’ - 12! - 212. Additional con-

straints reduce this by a factor of 12, since the entire

problem space consists of 12 separate but isomorphic

subgraphs, with no legal moves between them. Thus,

the total number of states reachable from a given state

is 8! - 3’ e 12! + 212/ 12 = 43,25.2,003,274,489,856,000.

The next question is how to define the primitive op-

erators, for which there are two approaches. The first

is that a primitive operator is any 90 degree, or quar-

ter turn, of a face. A 180 degree turn is represented by

two quarter turns in the same direction. Alternatively,

a primitive operator may be any twist of a single face,

either 90 degrees clockwise or counterclockwise, or 180

degrees. We adopt this latter formulation since it leads

to a search tree with fewer duplicate nodes. For exam-

ple, two consecutive clockwise twists of the same face

leads to the same state as two counterclockwise twists.

Counting any of the three different twists of the six

different faces as a primitive operator leads to a search

tree with a branching factor of 18. Since twisting the

same face twice in a row is redundant, ruling out such

moves reduces the branching factor to 15 after the first

move. Furthermore, twists of opposite faces of the cube

are independent and commutative. For example, twist-

ing the front face, then twisting the back face, leads to

the same state as performing the same twists in the op-

posite order. Thus, for each pair of opposite faces we

arbitrarily chose an order, and forbid moves that twist

the two faces consecutively in the opposite order. This

results in a search tree with an asymptotic branching

factor of about 13.34847. Table 1 shows the number of

nodes in the search tree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a function of depth, up to

depth 18. All these nodes do not correspond to unique

states of the cube, since there are duplicate paths to

the same node. At depth 18, the number of nodes in

the tree exceeds the number of states in the problem

space for the first time. This implies that some states

are at least 18 moves from the goal, but doesn’t guar-

antee that no states are further away.

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFirst Attempt

To find optimal solutions, we need an admissible search

algorithm. Exponential-space algorithms like A* are

impractical on large problems. Since it is difficult to

find any solution, or a tight upper bound on the op-

timal solution length, depth-first branch-and-bound is

also not feasible. This suggests iterative-deepening-A*

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Table 1 Nodes in search tree as a function of depth

Nodes

18

243

3,240

43,254

577,368

7,706,988

102,876,480

1,373,243,544

18,330,699,168

244,686,773,808

3,266,193,870,720

43,598,688,377,184

581,975,750,199,168

7,768,485,393,179,328

103,697,388,221,736,960

1,384,201,395,738,071,424

18,476,969,736,848,122,368

246,639,261,965,462,754,048

(IDA*) (Korf 1985a). IDA * is a depth-first search that

looks for increasingly longer solutions in a series of iter-

ations, using a lower-bound heuristic to prune branches

once their estimated length exceeds the current itera-

tion bound. Given the branching factor of this space,

the time overhead of the non-goal iterations is only 8%.

Next we need a heuristic function. The obvious

heuristic is a three-dimensional version of the well-

known manhattan distance for sliding-tile puzzles. For

each cubic, compute the minimum number of moves

required to correctly position and orient it, and sum

these values over all cubies. Unfortunately, to be ad-

missible, this value has to be divided by eight, since

every twist moves four corner and four edge cubies.

This result can be rounded up. A better heuristic is to

take the maximum of the sum of the manhattan dis-

tances of the corner cubies, and the edge cubies, each

divided by four. The expected value of the manhattan

distance of the edge cubies is 5.5, while the expected

value of the manhattan distance of the corner cubies

is only about 3, partly because there are 12 edge cu-

bies, but only 8 corner cubies. As a result, if we only

compute the manhattan distance of the edge cubies,

ignoring the corner cubies, the additional node gener-

ations are made up for by the lower cost per node.

The expected value of 5.5 for this heuristic gives an

estimate of its effectiveness, as we will see later. IDA*

running on our Sun Ultra-Spare Model 1 workstation

with this heuristic can search to depth 14 in about

three days, but solving problem instances at depth 18

would take over 250 years. We need a better heuristic.

Pattern Databases

While we normally think of a heuristic as a function

computed by an algorithm, any function can also be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

OPTIMAL PLANNING 701

computed by a table lookup, given sufficient memory.

In fact, for reasons of efficiency, heuristic functions are

commonly precomputed and stored in memory. For ex-

ample, the manhattan distance function above is com-

puted with the aid of a small table that contains the

manhattan distance of each individual cubic from all

possible positions and orientations. (Culberson and

Schaeffer 1996) have carried this idea much further.

If we consider just the eight corner cubies, the

position and orientation of the last cubic is deter-

mined by the remaining seven, so there are exactly

8! + 37 = 88,179,840 possible combinations. Using a

breadth-first search from the goal state, we can enu-

merate these states, and record in a table the number

of moves required to solve each combination of corner

cubies. Since this value ranges from zero to eleven,

only four bits are required for each table entry. Thus,

this table requires 44,089,920 bytes of memory, or 42

megabytes, which is easily accommodated on modern

workstations. Note that this table only needs to be

computed once for each goal state, and its cost can

be amortized over the solution of multiple problem in-

stances with the same goal. The use of such tables,

called “pattern databases” is due to (Culberson and

Schaeffer 1996), who applied it to the Fifteen Puzzle.

The expected value of this heuristic is about 8.764

moves, compared to 5.5 moves for the manhattan dis-

tance of the edge cubies. During the IDA* search, as

each state is generated, a unique index into the heuris-

tic table is computed, followed by a reference to the

table. The stored value is the number of moves needed

to solve the corner cubies, and thus a lower bound on

the number of moves needed to solve the entire puzzle.

We can improve this heuristic by considering the

edge cubies as well. The number of possible combi-

nations for six of the twelve edge cubies is 12!/ 6! - 26 =

42,577,920. The number of moves needed to solve

them ranges from zero to ten, with an expected value

of about 7.668 moves. At four bits per entry, this table

requires 21,288,960 bytes, or 20 megabytes. A table

for seven edge cubies would require 244 megabytes of

memory. The only admissible way to combine the cor-

ner and edge heuristics is to take their maximum.

Similarly, we can compute the corresponding heuris-

tic table for the remaining six edge cubies. The heuris-

tic used for the experiments reported below is the max-

imum of all three of these values: all eight corner cu-

bies, and two groups of six edge cubies each. The total

amount of memory for all three tables is 82 megabytes.

The total time to generate all three heuristic tables was

about an hour, and this cost is amortized over multi-

ple problem instances with the same goal state. The

expected value of the maximum of these three heuris-

tics is 8.878 moves. Even though this is only a small

increase above the 8.764 expected value for just the

corner cubies, it results in a significant performance

improvement. Given more memory, we could compute

and store even larger tables.

702 PLANNING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Experimental Results

We generated ten solvable instances of Rubik’s Cube,

by making 100 random moves each, starting from the

goal state. Given the high dimensionality of the prob-

lem space based on the fact that each state has 18

neighbors, and the conjecture that the diameter of

the space is only 20 moves, we believe that lOO-move

random walks generate effectively random problem in-

stances. We then ran IDA* using the above heuris-

tic, solving all the problems optimally. The results are

summarized in Table 2, sorted by problem difficulty.

One problem was solved in 16 moves, three required

17 moves, and six were solved in 18 moves. The actual

initial states and their solutions are available from the

author on request. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

No. Depth Nodes Generated

1 -D---- 3,720,885,493

2 17 11,485,155,726

3 17 64,837,508,623

4 17 126,005,368,381

5 18 262,228,269,081

6 18 344,770,394,346

7 18 502,417,601,953

8 18 562,494,969,937

9 18 626,785,460,346

10 18 1,021,814,815,051

Table 2: Optimal solution lengths and nodes generated

for random Rubik’s Cube problem instances

Running on a Sun Ultra-Spare Model 1 workstation,

our program generates and evaluates about 700,000

nodes per second. At large depths, the number of

nodes generated per iteration is very stable across dif-

ferent problem instances. For example, of the six com-

pleted iterations at depth 17, the number of nodes

generated ranged only from 116 to 127 billion. Com-

plete searches to depth 16 require an average of 9.5

billion nodes, and take less than four hours. Complete

searches to depth 17 generate an average of 122 billion

nodes, and take about two days. A complete depth 18

search should take less than four weeks. The heuristic

branching factor, which is the ratio of the number of

nodes generated in one iteration to the number gen-

erated in the previous iteration, is roughly the brute-

force branching factor of 13.34847.

Performance Analysis

The consistent number of nodes generated by IDA*

on a given iteration across different problem instances

suggests that the performance of the algorithm is

amenable to analysis. Most analyses of single-agent

heuristic search algorithms have been done on simple

analytic models, and have not predicted performance

on any real problems. The discussion below is not a

formal analysis, but rather a set of observations of reg-

ularities in our data, supported by intuitive arguments.

Most analyses of heuristic evaluation functions relate

the performance of a search algorithm to the accuracy

of the heuristic as an estimate of the exact distance

to the goal. One difficulty with this approach is that

heuristic accuracy is hard to measure, since determin-

ing the exact distance to the goal for a given problem

instance is computationally difficult for large problems.

Our first observation is that we can characterize the

effectiveness of an admissible heuristic function by its

expected value over the problem space. This is eas-

ily determined to any desired degree of accuracy by

randomly sampling the problem space, and computing

the heuristic for each state. In our case, the heuristic

values are enumerated in the heuristic table, and their

expected value can be computed exactly as the average

of the table values. Furthermore, the expected value of

the maximum of two such heuristics can be computed

exactly from their heuristic tables, assuming that the

values are independent, a reasonable assumption here.

We conjecture that the larger the expected value of an

admissible heuristic, the better the performance of an

admissible search algorithm using it.

If the heuristic value of every state equaled its ex-

pected value e, then IDA* searching to depth d would

be equivalent to brute-force depth-first iterative deep-

ening searching to depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd - e, since the f = g + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh
value of every state would be its depth plus e. Thus

it is tempting to conjecture that the number of nodes

generated by IDA* searching to depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd is approxi-

mately the same as a brute-force search to depth d - e.

In our experiments, our heuristic has an expected value

of 8.878, which we round up to 9. A complete IDA*

search to depth 17 generates approximately 122 bil-

lion nodes. However, a brute-force search to depth

17-9 = 8 would generate only about 1.37 billion nodes,

which is almost two orders of magnitude less.

The reason for this discrepancy is that the states en-

countered in an IDA* search are not a random sample

of the problem space. States with large heuristic val-

ues are pruned, and states with small heuristic values

spawn more children in the same iteration. Thus, the

search is biased in favor of small heuristic values, which

lowers the average heuristic values of states encoun-

tered by IDA*, causing more nodes to be generated

than predicted by the expected value of the heuristic.

The next step is to predict the expected value of a

pattern database heuristic from the amount of memory

used, and the branching factor b of the problem space.

To see how to do this, note that Table 1 implies that

most Rubik’s Cube problem instances must be at least

18 moves from the goal state, since this is the depth at

which the number of nodes in the tree first exceeds the

number of states in the space, which agrees with our

experimental results. In general, a lower bound on the

expected value of a pattern database heuristic is the

log base b of the number of states stored in the table,

since with d moves, one can generate at most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbd states.

In general, one will generate fewer unique states since

there are duplicate nodes in the search tree.

As another example, since there are about 88 mil-

lion different states of the corner cubies, Table 1 sug-

gests that the average number of moves required to

solve them should be about seven. In fact, the average

number of moves is 8.764. Again, the reason for the

discrepancy is that not all the nodes at depth seven

in the tree correspond to unique states of the corner

cubies, requiring us to go deeper to generate them all.

In other words, estimating the expected value of a

heuristic from the branching factor of the space and

the number of states gives a value that is too low or

pessimistic. On the other hand, estimating the number

of nodes generated by IDA* from the expected value of

the heuristic gives a value that is also too low, which is

optimistic. This suggests that by combining the two, to

estimate the number of nodes generated by IDA* from

the branching factor of the space and the number of

states in the heuristic table, the two errors may cancel

each other to some extent.

More formally, let n be the number of states in the

entire problem space, let b be the brute-force branching

factor of the space, let d be the average optimal solu-

tion length for a random problem instance, let e be the

expected value of the heuristic, let m be the amount of

memory used, in terms of heuristic values stored, and

let t be the running time of IDA*, in terms of nodes

generated. The average optimal solution length d of

a random instance, which is the depth to which IDA*

must search, can be estimated as log, n, or d x logb n.

As argued above, e M logb m, and t M bd-“ . Substitut-

ing the values for d and e into this formula gives

t x bd-” * bh, n-‘O& m - - n/ m.

Thus, the running time of IDA* may be approx-

imated by 0(n/ m), th e size of the problem space

divided by the memory available. Using the data

from our experiments, n x 4 3252 - lo” , m =

173,335,680, n/ m = 249,527,4(!)9,904, and t =

352,656,042,894, which is only off by a factor of 1.4.

Given this hypothesized linear relationship between

the available memory and the speed of IDA*, an obvi-

ous thing to try is to store a larger heuristic table on

disk. Unfortunately, the long latency of disks makes

this approach impractical. The access pattern for the

heuristic tables doesn’t exhibit any locality of refer-

ence, and we can expect that each access will take as

long as the latency time of the disk. If we have a single

disk with ‘a ten millisecond latency, this gives only 100

accesses per second. Even assuming only one heuris-

tic calculation per node, this yields a speed of only

100 nodes per second. Our current implementation,

which stores the heuristic tables in memory, runs at

about 700,000 nodes per second, a factor of 7000 times

faster. Given the formula t M n/ m, the disk capacity

would have to be about 7000 times that of main mem-

ory to make up for the latency of the disk accesses.

Currently, this ratio is only about a factor of ten. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

OPTIMAL PLANNING 703

Related Work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Most of the ideas in this paper have appeared in the

literature. Our main contribution is to bring them to-

gether to solve a new problem for the first time.

The first appearance of Rubik’s Cube in the pub-

lished AI literature was (Korf 19858). The focus of

that work was on learning to solve the cube, and the so-

lutions generated by that program averaged 86 moves.

Schroeppel, Shamir, Fiat et al

The first paper to address finding optimal solutions to

Rubik’s Cube was (Fiat et al. 1989), which is based

on (Schroeppel and Shamir 1981). To understand this

work, we first discuss the idea of bidirectional search.

Bidirectional search searches forward from the ini-

tial state, and backwards from the goal state simulta-

neously, until a common state is reached from both di-

rections. Then the forward search path, combined with

the reverse of the backward search path, is a solution

to the problem. Given a problem with branching factor

b and optimal solution depth d, the time complexity of

bidirectional search is O(bdi2) , since the two searches

need only proceed to half the depth. The drawback,

however, is that at least one of the search frontiers must

be stored, requiring 0(bdi2) space as well. For Rubik’s

cube, this would require storing all the states at depth

nine for an l&move solution, which isn’t feasible since

there are over 18 billion states at depth nine. Even if

we could store this many states on disk, the latency

of the disk would make the algorithm impractical in

terms of time, for the reasons given above.

(Schroeppel and Shamir 1981) improved on bidirec-

tional search for many problems. If the states in the

two search frontiers can be generated in some order de-

fined on the state description, then a match between

the two frontiers can be found without storing either

of the frontiers. We simply generate the two frontiers

synchronously, keeping the current frontier nodes as

close as possible to each other in the order. To find

a solution of depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, we generate and store in mem-

ory all states at depth d/4 from both initial and goal

states. Then, by combining all possible pairs of paths

of length d/4, all states at depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd/2 are generated, in

order, from both initial and goal states, and a match

is found if one exists. The space complexity of this

method is O(bdi4), and the time complexity is O(bdj2).

(Fiat et al. 1989) showed how to apply this tech-

nique to permutation groups, such as Rubik’s Cube.

Their main contribution was to show how to gener-

ate compositions of permutations in lexicographically

sorted order. They claimed that their algorithm was

the first that could feasibly find optimal solutions to

Rubik’s Cube. They only reported results from their

implementation up to depth 16, however, and specu-

lated about what they could do with a depth 18 search.

(Bright, Kasif, and Stiller 1994) showed how to par-

allelize the Schroeppel and Shamir, and Fiat el al. al-

gorithms, and give a clearer exposition of both.

We implemented the Fiat algorithm, and its speed

is roughly comparable to our implementation of IDA*

with pattern database heuristics, using 82 megabytes

of memory, on depth 18 searches. Currently, our Fiat

code is about a factor of two slower than our IDA*

code, but we believe that we could narrow this gap

with further optimization of our Fiat code.

If n is the size of the problem space, the Fiat al
B

o-

rithm has an asymptotic time complexity of O(n’ 2),

and an asymptotic space complexity of O(n1i4). This

is superior to our hypothesized space-time tradeoff of

t = n/m for IDA*. There are two caveats to this,

however. First, the constant time factor for our Fiat

implementation is about 70 times what it is for our

IDA* implementation. Our Fiat code generates about

10,000 permutations per second, while our IDA* code

generates about 700,000 per second. Secondly, our Fiat

code requires over 500 bytes per permutation, while

our heuristic table requires only half a byte per per-

mutation, a factor of 1000 in space. As a result, depth

19 searches with the Fiat algorithm would require well

over 300 megabytes of memory, but shouldn’t run any

faster than our IDA* implementation at that depth,

using only 82 megabytes.

While the Fiat algorithm allows less memory to be

used at the cost of increased time, it doesn’t run any

faster with more memory, as does our approach. Given

additional memory, we can compute and store larger

pattern databases, resulting in larger heuristic values,

which would speed up the IDA* search. Given the hy-

pothesized relation t M n/ m, one could argue that in

order to reduce the time below 0(n1j2), would require

more than 0(n1/2) space, at which point the time to

build the heuristic tables would become the dominant

time cost. However, the heuristic tables only need to be

built once for a given goal state, and hence this time

cost can be amortized over the solution of multiple

problem instances with a common goal state. Further-

more, note that purely asymptotic comparisons ignore

the differences of several orders of magnitude in the

constant factors, both in time and space.

Since the running time of IDA* with pattern

databases decreases with increasing memory, we be-

lieve that as memories get larger, it will continue to

outperform the Fiat algorithm on this problem. In ad-

dition, IDA* is much simpler and easier to implement,

and we believe more general as well. Even though the

Fiat algorithm has been around since 1987, and widely

discussed in an electronic mailing list devoted to Ru-

bik’s Cube, we could find only one other reported im-

plementation of it (Moews 1995), and it has not been

used to find optimal solutions to random problem in-

stances, as far as we know.

Prieditis, Culberson, Schaeffer

The idea of using the optimal solution to the corner

cubies as a heuristic for Rubik’s Cube was first de-

scribed by (Prieditis 1993). He also precomputed this

704 PLANNING

value up to depth six. Although he provides no de-

tailed performance results, and doesn’t report solving

any problem instances, he claims that IDA* using this

heuristic results in eight orders of magnitude speedup

over brute-force search. However, this appears to be

on a much less efficient problem space, which includes

rotations of the entire cube as operators.

The idea of using large tables of precomputed op-

timal solution lengths for subparts of a combinatorial

problem was first proposed by (Culberson and Schaef-

fer 1996). They studied these pattern databases in the

context of the 15-puzzle, achieving significant perfor-

mance improvements over simple heuristics like man-

hattan distance. This paper can be viewed as simply

applying their idea to Rubik’s Cube.

Large tables of heuristic values originated in the area

of two-player games, where such tables are used to

store the exact value (win, lose, or draw) of endgame

positions. This technique has been used to great effect

by (Schaeffer et al. 1992) in the game of checkers.

Finally, ever since the rise of linear-space heuristic

search algorithms, there has been an ongoing debate

about how to speed up such algorithms by using the

large memories available on current machines. One of

the best options is known as perimeter search (Dillen-

burg and Nelson 1994) (Manzini 1995) (Kaindl et al.

1995), and is related to bidirectional search described

above. In perimeter search, a breadth-first search is

performed backwards from the goal state until mem-

ory is nearly exhausted, and the states on the resulting

perimeter around the goal state are stored in memory.

Then, a linear-space forward search is performed, un-

til a state on the perimeter is reached. The real value

of this technique is that the states on the perimeter

can be used to improve the heuristic values in the for-

ward search. This paper provides an alternative use of

memory in heuristic search, and it remains to be seen if

methods such as perimeter search can perform as well

on problems such as Rubik’s Cube. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Conclusions

As far as we have been able to determine, we have

found the first optimal solutions to random instances

of Rubik’s Cube, one of the most famous combinatorial

puzzles of its time. The median optimal solution length

appears to be 18 moves. The key idea, due to (Culber-

son and Schaeffer 1996), is to take a subset of the goals

of the original problem, and precompute and store the

exact number of moves needed to solve these subgoals

from all possible initial states. Then the exact solution

to the subgoals is used as a lower bound heuristic for an

IDA* search of the original problem. We characterize

the effectiveness of an admissible heuristic simply by its

expected value. We also present an informal analysis of

the technique, and hypothesize that its performance is

governed by the approximation t x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn/m, where t is the

running time, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm is the amount of memory used, and n

is the size of the problem space. This approximation is

consistent with the results of our experiments, and sug-

gests that the speed of the algorithm increases linearly

with the amount of memory available. As computer

memories become larger and cheaper, we expect that

this algorithm will become increasingly cost-effective.

Acknowledgements

This work was supported by NSF Grant IRI-9119825.

References

Bright, J., S. Kasif, and L. Stiller, Exploiting alge-

braic structure in parallel state space search, Proceed-

ings of the Twelfth National Conference on Artificial

Intelligence (AAAI-941, Seattle, WA, July 1994, pp.

1341-1346.

Culberson, J.C., and J. Schaeffer, Searching with pat-

tern databases, Proceedings of the 11th Conference of

the Canadian Society for the Computational Study of

Intelligence, published in Advances in Artificial Intel-

ligence, Gordon McCalla (Ed.), Springer Verlag, 1996.

Dillenburg, J.F., and P.C. Nelson, Perimeter search,

Artificial Intelligence, Vol. 65, No. 1, Jan. 1994, pp.

165-178.

Fiat, A., S. Moses, A. Shamir, I. Shimshoni, and G.

Tardos, Planning and learning in permutation groups,

Proceedings of the 30th A.C.M. Foundations of Com-

puter Science Conference (FOCS), 1989, pp. 274-279.

Kaindl, H., G. Kainz, A. Leeb, and H. Smetana, How

to use limited memory in heuristic search, Proceedings

of the Fourteenth International Joint Conference on

Artificial Intelligence (IJCAI-95), Montreal, Canada,

Aug. 1995, pp. 236-242.

Korf, R.E., Depth-first iterative-deepening: An opti-

mal admissible tree search, Artificial Intelligence, Vol.

27, No. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 1985, pp. 97-109.

Korf, R.E., Macro-operators: A weak method for

learning, Artificial Intelligence, Vol. 26, No. 1, pp.

35-77, 1985.

Manzini, G., BIDA*: An improved perimeter search

algorithm, Artificial Intelligence, Vol. 75, No. 2, June

1995, pp. 347-360.

Moews, D., Shamir’s method on the super-flip, post-

ing to Cube-Lovers mailing list, Jan. 23, 1995.

Prieditis, A.E., Machine discovery of effective admis-

sible heuristics, Machine Learning, Vol. 12, 1993, pp.

117-141.

Schaeffer, J., J. Culberson, N. Treloar, B. Knight, P.

Lu, and D. Szafron, A world championship caliber

checkers program, Artificial Intelligence, Vol. 53, No.

2-3, 1992, pp. 273-290.

Schroeppel, R., and A. Shamir, A T = 0(2” / 2), S =

0(2” / 4) lg ‘th a or1 m for certain NP-Complete Prob-

lems, SIAM Journal of Computing, Vol. 10, No. 3,

Aug. 1981, pp. 456-464. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

OPTIMAL PLANNING 705

