
Finding 0 al Solutions to the Twenty-Four Puzzle

Richard E. Korf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Larry A. Taylor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Computer Science Department

University of California, Los Angeles

Los Angeles, Ca. 90024

korf@cs.ucla.edu, ltaylor@cs.ucla.edu

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We have found the first optimal solutions to random

instances of the Twenty-Four Puzzle, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 x 5 ver-

sion of the well-known sliding-tile puzzles. Our new

contribution to this problem is a more powerful admis-

sible heuristic function. We present a general theory

for the automatic discovery of such heuristics, which

is based on considering multiple subgoals simultane-

ously. In addition, we apply a technique for pruning

duplicate nodes in depth-first search using a finite-

state machine. Finally, we observe that as heuristic

search problems are scaled up, more powerful heuris-

tic functions become both necessary and cost-effective.

I I I I

I

IO 11 12 13 14

Introduction 20 21 22 23 24
The sliding-tile puzzles, such as the Eight and Fifteen

Puzzle, have long served as testbeds for heuristic search

in AI. A square frame is filled with numbered tiles,

leaving one position empty, called the blank. Any tile

that is horizontally or vertically adjacent to the blank

can be slid into the blank position. The task is to

rearrange the tiles from some random initial configu-

ration into a particular goal configuration, ideally or

optimally in a minimum number of moves. The state

space for the Eight Puzzle contains over lo5 nodes, the

Fifteen Puzzle space contains about 1013 nodes, and

the Twenty-Four Puzzle contains almost 1O25 nodes.

Figure 1: The Twenty-Four Puzzle in its goal state

threshold for each succeeding iteration is the minimum

total cost, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(n) = g(n)+h(n), of all nodes on the fron-

tier of the previous iteration. The algorithm continues

until a goal node is chosen for expansion.

Due to its small search space, optimal solutions

to the Eight Puzzle can be found with breadth-first

search. We first found optimal solutions to the Fif-

teen Puzzle using Iterative-Deepening-A* (IDA*) and

the Manhattan distance heuristic function (Korf 1985).

IDA* is a variant of the well-known A* algorithm

(Hart, Nilsson, and Rafael 1968), which runs in space

that is linear in the maximum search depth, rather

than exponential. IDA* proceeds in a series of depth-

first search iterations, starting from the initial state.

Each path is explored until a node n is reached where

the number of moves from the initial state, g(n), plus

the heuristic estimate of the number of moves neces-

sary to reach the goal state, h(n), exceeds a threshold

for that iteration. The threshold for the first iteration

is the heuristic estimate for the initial state, and the

The Manhattan distance heuristic is computed by

taking each tile, counting the number of grid units to

its goal location, and then summing these values for all

tiles. Since only one tile can move at a time, Manhat-

tan distance never overestimates the number of moves

needed to solve a given problem. Given such an admis-

sible heuristic function, IDA* is guaranteed to return

an optimal solution, if one exists.

IDA* with the Manhattan distance heuristic can

solve random instances of the Fifteen Puzzle (Korf

1985). In spite of considerable work on this problem in

the last decade, however, nobody has solved a signifi-

cantly larger version of the puzzle. Note that the state

space of the Twenty-Four Puzzle is almost a trillion

times larger than that of the Fifteen Puzzle.

We present the first random Twenty-Four Puzzle in-

stances for which optimal solutions have been found.

Ten random solvable instances were generated, and so

far we have found optimal solutions to all but one.

1202 Planning

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Three factors have contributed to this limited success.

The first is simply faster computers. The Sun Ultra

Spare workstation that these experiments were run on

is about 70 times faster than the DEC 2060 that the

Fifteen Puzzle was originally solved on. The second is

a technique we developed for pruning duplicate nodes

in depth-first search (Taylor and Korf 1993). Finally,

we have discovered more powerful heuristic functions

for this problem. The most important contribution of

this paper, however, is a new theory that allows these

heuristics to be automatically learned and applied. All

examples in this paper refer to the Twenty-Four Puz-

zle, where positions are labelled by the tiles that oc-

cupy them in the goal state shown in Figure 1.

Improved Admissible Heuristics

Linear Conflict Heuristic

The first significant improvement to Manhattan dis-

tance was the linear-conflict heuristic (Hansson,

Mayer, and Yung 1992). It applies when two tiles are

in their goal row or column, but are reversed relative to

their goal positions. For example, if the top row of the

puzzle contains the tiles (2 1) in that order, to reverse

them, one of the tiles must move down out of the top

row, to allow the other to pass by, and then back up.

Since these two moves are not counted in the Manhat-

tan distance of either tile, two moves can be added to

Manhattan distance without violating admissibility.

As another example, if the top row contains the tiles

(3 2 1) in that order, four more moves can be added

to the Manhattan distance, since every pair of tiles

is reversed, and two tiles must move out of the row

temporarily. Furthermore, a tile in its goal position

may be in both a row and a column conflict. Since

the extra moves required to resolve a row conflict are

vertical moves, and those required by a column conflict

are horizontal, both sets of moves can be added to the

Manhattan distance, and still preserve admissibility.

This addition to the Manhattan distance heuristic

reduces the number of nodes generated by IDA* on the

Fifteen Puzzle by roughly an order of magnitude. The

additional complexity of computing the linear conflicts

slows down node generation by about a factor of two,

however, for a net improvement of a factor of five. Effi-

ciently computing this heuristic involves precomputing

and storing all possible permutations of tiles in a row

or column, and incrementally computing the heuristic

value of a child from that of its parent.

Last Moves Heuristic

The next enhancement to the heuristic is based on the

last moves of a solution, which must return the blank

to its goal position, the upper-left corner in this case.

Thus, the last move must either move the 1 tile right,

or the 5 tile down. Therefore, immediately before the

last move, either the 1 or 5 tile must be in the upper-

left corner. Since the Manhattan distance of these tiles

is computed to their goal positions, unless the 1 tile is

in the left-most column, its Manhattan distance will

not accommodate a path through the upper-left corner.

Similarly, unless the 5 tile is in the top row, its Man-

hattan distance will not accommodate a path through

the upper-left corner. Thus, if the 1 tile is not in the

left-most column, and the 5 tile is not in the top row,

we can add two moves to the Manhattan distance, and

still preserve admissibility.

While two moves may seem like a small improve-

ment, it can be added to about 64% of random Twenty-

Four Puzzle states. The effect of two additional moves

is to save an entire iteration of IDA*. Since each it-

eration of IDA* on the Twenty-Four Puzzle can gen-

erate up to ten times as many nodes as the previous

iteration, saving an iteration can result in an order of

magnitude savings in nodes generated.

We can extend the same idea to the last two moves.

If the last move is made by the 1 tile, the next-to-last

move must either move the 2 tile right, or the 6 tile

down. Similarly, if the last move is made by the 5

tile, the next-to-last move must either move the 6 tile

right, or the 10 tile down. Considering the last two

moves can add up to four moves to the Manhattan

distance. Extending this idea to the last three moves

was not cost effective on the Twenty-Four Puzzle.

To benefit from both the linear conflict and last

moves enhancements, and maintain admissibility, we

must consider their interactions. For example, assume

that the 1 tile is not in the left-most column, and the 5

tile is not in the top row. If the 1 tile is in its goal col-

umn, and in a column conflict with another tile, then

the two additional moves added by the linear conflict

could be used to move the 1 tile left, allowing it to pass

through the upper-left corner. Similarly, if the 5 tile

is in its goal row, and in a row conflict, the two addi-

tional linear conflict moves could be used to move it up

and hence through the upper-left corner. Thus, if ei-

ther of these conditions occur, we can’t add two more

moves for the last move, since that may count twice

moves already added by the linear conflict heuristic.

Similarly, any additional moves added for the last two

moves must also be checked against linear conflicts in-

volving the 2, 6, and 10 tiles. In general, whenever

more than one heuristic is being used, we must com-

pute their interactions to maintain admissibility.

Relation to Bidirectional Search The reader may

notice that a heuristic based on the last moves in

the solution is related to bi-directional search. The

most effective form of bidirectional heuristic search is

called perimeter search (Dillenburg and Nelson 1994)

(Manzini 1995). A limited breadth-first search back-

ward from the goal state is performed, and the nodes

on the perimeter of this search are stored. IDA* is then

run from the initial state, with heuristic calculations

made to determine the minimum distance to any state

on the perimeter. This heuristic value is then added to

the distance from the initial state to the given node,

Search 1203

plus the distance from the perimeter to the goal state,

for a more accurate admissible heuristic.

In a unidirectional search, the heuristic function is

always computed to a single goal state. As a result,

the heuristic calculation can be optimized to take ad-

vantage of this. With any form of bidirectional search,

however, the heuristic must be calculated between ar-

bitrary pairs of states, reducing the opportunities for

optimization. While (Manzini 1995) reports speedups

of up to a factor of eight on the Fifteen Puzzle us-

ing his improved perimeter search, he uses only the

Manhattan distance heuristic function. It’s not clear if

similar results could be achieved with a more complex

heuristic such as linear conflict.

Corner-Tiles Heuristic

The next enhancement to our heuristic focuses on the

corners of the puzzle. For example, if the 3 tile is in its

goal position, but some tile other than the 4 is in the

4 position, the 3 tile will have to move temporarily to

correctly position the 4 tile. This requires two moves of

the 3 tile, one to move it out of position, and another to

move it back. If the 3 tile is involved in a row conflict,

then two moves will already be counted for it, and no

more can be added. It can’t be involved in a column

conflict if it’s in its goal position.

The same rule applies to the 9 tile, unless the 9 is

involved in a column conflict. In fact, if both the 3 and

9 tiles are correctly positioned, and the 4 tile is not,

then four moves can be added, since both the 3 and 9

tiles will have to move to correctly position the 4.

This rule also applies to the 15, 19, 21, and 23 tiles.

It applies to the 1 and 5 tiles as well, but the interac-

tion of this heuristic with the last moves heuristic is so

complex that to avoid the overhead of this calculation,

we exclude the 1 and 5 tiles from the corner heuristic.

The corner-tile heuristic can potentially add up to

twelve additional moves to the Manhattan distance,

two for each of the six tiles adjacent to three of the

corners. These extra moves require that at least one of

these six tiles be in its goal position, a situation that

only occurs in about 22% of random states. A search

for the goal, however, does not generate a random sam-

ple of states, but is biased toward states that are close

to the goal, or at least appear to the heuristic to be

close. In other words, the search is trying to correctly

position the tiles, and hence this heuristic adds extra

moves much more often than would be expected from

a random sample of states.

In summary, we have considered three enhancements

to the Manhattan distance heuristic, based on linear

conflicts, the last moves, and the corner tiles. The last

two are introduced here for the first time.

A New Theory of Admissible

While these enhancements result in a much more

powerful heuristic, they appear to be a collection of

domain-specific hacks. Furthermore, integrating the

enhancements together into an admissible heuristic

seems to require even more domain-specific reasoning.

However, all these heuristics can be derived from a gen-

eral theory that is largely domain-independent, and the

heuristics can be automatically learned and applied.

While we would like to be able to claim that these

heuristics were discovered from the general theory, in

reality the theory was discovered after the fact.

The classic theory of admissible heuristic functions

is that they are the costs of optimal solutions to sim-

plified problems, derived by removing constraints from

the original problem (Pearl 1984). For example, if we

remove the condition that a tile can only be moved

into the blank position, the resulting problem allows

any tile to move to any adjacent position at any time,

and allows multiple tiles to occupy the same position.

The number of moves to optimally solve this simpli-

fied problem is the Manhattan distance from the initial

state to the goal state. While this theory accounts for

many heuristics for many problems, it doesn’t explain

any of the above enhancements to Manhattan distance.

Automatically Learning the

An alternative derivation of Manhattan distance is

based on the original problem, but focuses on only one

tile at a time. For each possible location of each indi-

vidual tile, we perform a search to correctly position

that tile, ignoring all other tiles, and only counting

moves of the tile in question. In this search, a state

is uniquely determined by the position of the tile of

interest and the position of the blank, since all other

tiles are equivalent. Since the operators of the sliding-

tile puzzle are invertible, we can perform a single search

for each tile, starting from its goal position, and record

how many moves of the tile are required to move it to

every other position. Doing this for all tiles results in a

table which gives, for each possible position of each tile,

its Manhattan distance from its goal position. Then,

noticing that each move only moves one tile, for a given

state we add up the Manhattan distances of each tile

to get an admissible heuristic for the state. Of course,

we don’t really need to do the search in this case, since

we can easily determine the values from the problem,

but we presented it in this way to eliminate as much

domain-specific reasoning as possible, and replace it

with domain-independent search.

The value of this reconstruction of Manhattan dis-

tance is that it suggests a further generalization. The

above formulation considers each tile in isolation, and

the inaccuracy of the resulting heuristic stems from ig-

noring the interactions between the tiles. The obvious

next step is to repeat the above process on all possible

pairs of tiles. In other words, for each pair of tiles, and

each combination of positions they could occupy, per-

form a search to their goal positions, and count only

moves of the two tiles of interest. We call this value

the pairwise distance of the two tiles from their goal

locations. A state of this search consists of the posi-

1204 Planning

tions of the two tiles and the position of the blank,

since all other tiles are equivalent. Again for efficiency,

for each pair of tiles we can perform a single search

starting from their goal positions, with the blank also

in its goal position, and store the pairwise distances to

all other positions. The goal of this search is to find

the shortest path from the goal state to all possible

positions of the two tiles, where only moves of the two

tiles of interest are counted. We can do this with a

best-first search, counting only these moves.

Since states of these searches are only distinguish-

able by the positions of the two tiles and the blank,

the size of these search spaces is O(n3), where n is the

number of tiles. There are O(n2) such searches to per-

form, one for each pair of tiles, for a time complexity

of O(n5). The size of the resulting table is 0(n4), for

each pair of tiles in each combination of positions.

For almost all pairs of tiles and positions, their pair-

wise distances equal the sum of their Manhattan dis-

tances from their goal positions. However, there are

three types of cases where the pairwise distance ex-

ceeds the combined Manhattan distance. The first is

when the two tiles are in a linear conflict. The second

is when the two tiles are 1) a tile in its goal position

adjacent to a corner, and 2) the tile that either belongs

in, or that happens to be in, the corresponding corner.

The third case is tiles 1 and 5, which are adjacent to the

blank position in the goal state. The reason their pair-

wise distance may exceed their combined Manhattan

distances is that the backwards pairwise search starts

from the goal state, and hence the first move is to move

the 1 or the 5 tile into the corner. Thus, computing

all the pairwise distances by a simple search “ discov-

ers” Manhattan distance along with all three of the

heuristic enhancements described above, with very lit-

tle domain-specific reasoning. No other enhancements

are discovered by the pairwise searches.

Applying the Heuristics

The next question is how to automatically handle the

interactions between these heuristics to compute an ad-

missible heuristic estimate for a particular state. As-

sume that we have precomputed all the pairwise tile

distances and stored them in a table. Given a particu-

lar state, we look up all the pairwise distances for the

current positions of the tiles. To compute the over-

all heuristic, we then partition the tiles into groups of

two, and sum the corresponding pairwise distances, in

a way that maximizes the resulting heuristic value.

To see this problem more clearly, represent a state as

a graph with a node for each tile, and an edge between

each pair of tiles, labelled with their pairwise distance.

We need to select a set of edges from this graph, so that

no two edges are connected to a common node, and the

sum of the labels of the selected edges is maximized.

This problem is called the maximum weighted match-

ing problem, and can be solved in O(n3) time, where

n is the number of nodes (Papadimitriou and Steiglitz

1982). Thus, this approach to heuristic generation can

be automated, and runs in polynomial time.

Higher-Order Heuristics

Unfortunately, the pairwise distances do not account

for the full power of the heuristic enhancements de-

scribed above. For example, consider the linear con-

flicts represented by the tiles (3 2 l), in that order in

the top row. The linear conflict heuristic would add

four moves to the Manhattan distance of these tiles,

since all pairs are reversed, and two of the tiles must

move out of the row. The pairwise distance of each pair

of these tiles is two moves plus their Manhattan dis-

tances. The graph representation of this situation is a

triangle of tiles, with each edge of the triangle having

weight two, ignoring the Manhattan distances. The

maximum matching on this graph only contains one

edge, with a total weight of two, since any two edges

have a node in common. Thus, the pairwise distances

capture only part of the linear conflict heuristic.

As another example, consider the corner-tile heuris-

tic, and a state in which the 3 and 9 tiles are correctly

positioned, but the 4 tile is not. The corner heuristic

would add four moves to the Manhattan distance of

the 4 tile, since both the 3 and 9 tiles must move to

correctly place the 4 tile. The graphical representation

of this situation consists of an edge between the 3 and 4

tiles, and an edge between the 9 and 4 tiles, each with

a label of two, if we ignore the Manhattan distance.

Since both these edges include the 4 tile, we can only

select one of them, for an addition of only two moves.

Finally, while the pairwise distances capture the en-

hancement due to the last move of the solution, it

doesn’t capture the last two moves, since these involve

the 2, 6, and 10 tiles, in addition to the 1 and 5 tiles.

In order to capture the full power of these heuris-

tics, we extend the idea of pairwise distances to include

triples of tiles, quadruples, etc. The linear conflict ex-

ample of (3 2 1) requires us to consider all three tiles

together to get four additional moves. If we consider

each corner tile together with both adjacent tiles, we

get the full power of the corner-tile heuristic. Finally,

the last-two-moves enhancement requires considering

all five tiles that may be involved. The correspond-

ing matching problem is hypergraph matching, where

a single edge “ connects” three or more nodes, and un-

fortunately is NP-Complete. Thus, we may have to

rely on a greedy approach to the higher-dimensional

matching problem, and a lower heuristic value. As we

consider higher-order heuristics, the complexity of the

learning search, the size of the lookup table, and the

complexity of the matching all increase, in return for

more accurate heuristic values.

We believe this is a general theory for the discov-

ery and implementation of admissible heuristic func-

tions. All combinatorial problems involve solving mul-

tiple subgoals. Many admissible heuristics are con-

structed by considering the solution to each individual

Search 1205

subproblem in isolation, and ignoring the interactions

with other subproblems. We are proposing heuristics

based on the simultaneous consideration of-two, three,

or more subgoals. As another example, consider a job-

shop scheduling problem. There are a set of jobs to

be performed, and a collection of machines with which

to accomplish them. Each machine can only process a

single job at a time. One way to derive a lower bound

on the optimal solution is to consider the resources

required by each job individually, and sum this over

all jobs, ignoring resource conflicts between the jobs.

Following our approach, one would consider all pairs of

jobs, compute the resources required for each pair, and

then compute the total resources by summing these

values for a pairwise partition of the jobs.

last move was Up, however, the only allowable move

is another Up move. Similarly, if the last move was

Down, the only allowable move is another Down move.

This finite-state machine can only generate a single

path to each point of the grid, and hence a depth-first

search controlled by this machine runs in time O(d2),

which is the same as a breadth-first search.

These finite-state machines can be automatically

learned, from a small breadth-first search to discover

duplicate operator strings. In this case, a breadth-first

search to depth two is sufficient to learn all the dupli-

cate strings to construct the above machine. Once the

machine is constructed, there is almost no overhead to

using it to control the depth-first search.

This technique can be applied to other problems,

such as the sliding tile-puzzles. After rejecting inverse

operators, the next shortest cycle in the sliding-tile

puzzles is twelve moves long, corresponding to rotating

the tiles in a 2 x 2 square. Using a breadth-first search,

a finite-state machine for the Twenty-Four Puzzle was

constructed with over 619,000 states. This machine is

then used to control a depth-first search, rejecting op-

erators that lead to duplicate nodes. The effect of this

duplicate pruning is to reduce the asymptotic complex-

ity of a depth-first search from 0(2.368d) to 0(2.235d).

While this may seem like a small improvement, in the

two easiest problems reported below, duplicate prun-

ing decreased the running time of IDA* by factors of

2.4 and 3.6, with the larger improvement coming on

the harder problem.

Pruning Duplicate Nodes

While the main concern of this paper is the heuristic

functions, we also used another orthogonal technique

to significantly speed up the experiments.

Any depth-first search, such as IDA*, will generate

the same node multiple times on a graph with cycles.

For example, consider a square grid problem space,

with the moves Up, Down, Left, and Right, each mov-

ing one unit in the indicated direction. Since there are

four moves from every state, the asymptotic complex-

ity of a depth-first search to depth d is O(4d). How-

ever, there are only O(d2) distinct states at depth d

in a grid, and a breadth-first search, which stores all

nodes generated and checks for duplicates, will run in

O(d2) time. The difference in complexity between the

breadth-first and depth-first search in this example il-

lustrates the magnitude of this problem.

In the grid example, the operator pairs Left-Right

and Up-Down are inverses of each other. Any good

depth-first search implementation will remember the

last operator applied, and never immediately apply its

inverse. This can be done by encoding the last opera-

tor applied as the state of a finite-state machine. The

machine has five states, an initial transient state and

four recurrent states, one for each last move. Each

arc of the machine represents an operator, except that

the inverse of the last move is excluded. This reduces

the complexity of the depth-first search from O(4d) to

O(3d), a significant reduction, but still far from the

O(d2) complexity of the breadth-first search.

This idea can be carried further, and is described

in detail in (Taylor and Korf 1993). Ideally, we would

like to allow only one path to each node in the grid.

This can be done by first making all Left or Right

moves, if any, followed by a single turn, and then all Up

moves or all Down moves, if any. These rules can also

be enforced by a five-state finite-state machine. The

initial state allows all four operators, and each resulting

state encodes the last move applied. If the last move

was to the Right, all moves are allowed except a move

to the Left. Similarly, if the last move was to the Left,

all moves are allowed except a move to the Right. If the

Experimental Results

We implemented IDA *, taking full advantage of the

Manhattan distance, linear conflict, last-two-moves,

and corner-tile heuristics, as well as the finite-state

machine pruning. Since we were concerned with ef-

ficiency, our implementation was specialized to these

heuristics and their interactions, rather than using a

general table lookup and matching algorithm.

As a first test of our program, we ran it on 100

randomly generated solvable instances of the Nineteen

Puzzle. The Nineteen Puzzle is the 4 x 5 sliding-tile

puzzle, and its state space contains about 101’ states.

All the puzzle instances were solved optimally, and the

average solution length was 71.5 moves, as compared to

an average solution length of 52.6 moves for the Fifteen

Puzzle. The average number of node generations per

problem instance was almost a billion, which is compa-

rable to those generated by IDA* on the Fifteen Puzzle

using just the Manhattan distance heuristic. To our

knowledge, these are the first random Nineteen Puzzle

problem instances to be solved optimally.

We then turned our attention to the Twenty-Four

Puzzle. Ten random solvable instances were generated.

Since there is enormous variation in the time to solve

these problems, different iterations of IDA* were inter-

leaved on different problem instances, in order find and

solve the easier ones first. To date, nine of these prob-

1206 Planning

No. Initial State Nodes Generated Optimal Sol.

1 17 1 20 9 16 2 22 19 14 5 15 21 0 3 24 23 18 13 12 7 10 8 6 4 11 8,110,532,608 100

2 14 5 9 2 18 8 23 19 12 17 15 0 10 20 4 6 11 21 1 7 24 3 16 22 13 18,771,430,922 95

3 7 13 11 22 12 20 1 18 21 5 0 8 14 24 19 9 4 17 16 10 23 15 3 2 6 82,203,971,683 108

4 18 14 0 9 8 3 7 19 2 15 5 12 1 13 24 23 4 21 10 20 16 22 11 6 17 83,573,198,724 98

5 2 0 10 19 1 4 16 3 15 20 22 9 6 18 5 13 12 21 8 17 23 11 24 7 14 221,769,436,018 101

6 16 5 1 12 6 24 17 9 2 22 4 10 13 18 19 20 0 23 7 21 15 11 8 3 14 523,772,060,498 96

7 21 22 15 9 24 12 16 23 2 8 5 18 17 7 10 14 13 4 0 6 20 11 3 1 19 792,795,062,385 104

8 6 0 24 14 8 5 21 19 9 17 16 20 10 13 2 15 11 22 1 3 7 23 4 18 12 1,415,436,865,760 97

9 3 2 17 0 14 18 22 19 15 20 9 7 10 21 16 6 24 23 8 5 14 11 12 13 3,033,449,077,924 113

10 2314024179202121810132213114166571281519 >3,000,000,000,000 2 112

Table 1: Twenty-four puzzle problem instances, nodes generated, and optimal solution lengths

lems have been solved optimally, with a lower bound

established for the remaining one. Table 1 shows all ten

problem instances, sorted by difficulty. For the solved

problems, we give the number of nodes generated and

the optimal solution length, and for the unsolved one

we give lower bounds on these values. The tiles are

listed from left to right and top to bottom, with 0 rep-

resenting the blank. In this notation, the tiles of the

goal state in Figure 1 would be listed in numerical or-

der. The average optimal solution length for these ten

problems is at least 102.4 moves. The code was writ-

ten in C, runs on a Sun Ultra Spare workstation, and

generates about a million nodes per second. The eas-

iest problem took about two hours and 15 minutes to

solve, and the most difficult solved problem took over

a month. To date, the remaining unsolved problem

has run for over a month. These are the first random

Twenty-Four Puzzle instances to be solved optimally.

Conclusions

We have found the first optimal solutions to random

instances of the Twenty-Four Puzzle, a problem with

almost 1O25 states. The branching factor is 2.368, and

the optimal solutions average over 100 moves long. We

implemented IDA* on a state-of-the-art workstation,

with a more powerful admissible heuristic function,

and a method for pruning duplicate nodes in depth-

first search. The most important contribution of this

paper is a new general theory for the automatic dis-

covery and application of admissible heuristics. In-

stead of considering individual subgoals in isolation,

our approach considers two or more subgoals simulta-

neously. This theory allows one to automatically dis-

cover Manhattan distance, along with the linear con-

flict, last moves, and corner-tile enhancements to it,

with nothing more than small searches of the problem

space. By considering three or more subgoals at a time,

even more powerful heuristics can be derived.

A more powerful heuristic function increases the

time per node generation by a polynomial amount.

On the other hand, it generally decreases the effec-

tive branching factor by a small amount, yielding an

asymptotic improvement. For small problems, more

powerful heuristics may not be cost effective, since

one doesn’t search deep enough to overcome the poly-

nomial overhead. As machines get faster and larger

problems are addressed, however, seeming small im-

provements in a heuristic function eventually become

cost effective. Thus, as problem size increases, it be-

comes both necessary and cost-effective to encode more

knowledge of the problem in the form of improved

heuristics. We have developed an approach to doing

this automatically.

Acknowledgements

This work was supported by NSF Grant IRI-9119825,

and a grant from Rockwell International.

References

Dillenburg, J.F., and P.C. Nelson, Perimeter search,

Artificial Intelligence, Vol. 65, No. 1, Jan. 1994, pp.

165-178.

Hansson, O., A. Mayer, and M. Yung, Criticizing so-

lutions to relaxed models yields powerful admissible

heuristics, Information Sciences, Vol. 63, No. 3, 1992,

pp. 207-227.

Hart, P.E., N.J. Nilsson, and B. Raphael, A formal

basis for the heuristic determination of minimum cost

paths, IEEE Transactions on Systems Science and

Cybernetics, Vol. 4, No. 2, 1968, pp. 100-107.

Korf, R.E., Depth-first iterative-deepening: An opti-

mal admissible tree search, ArtificiaZ Intelligence, Vol.

27, No. 1, 1985, pp. 97-109.

Manzini, G., BIDA*: An improved perimeter search

algorithm, Artificial Intelligence, Vol. 75, No. 2, June

1995, pp. 347-360.

Papadimitriou, C.H., and K. Steiglitz, Combinatorial

Optimization: Algorithms and Complexity, Prentice-

Hall, Englewood Cliffs, N.J., 1982.

Pearl, J. Heuristics, Addison-Wesley, Reading, MA,

1984.

Taylor, L., and R.E. Korf, Pruning duplicate nodes in

depth-first search, Proceedings of the National Con-

ference on Artificial Intelligence (AAAI-93), Wash-

ington D.C., July 1993, pp. 756-761.

Search 1207

