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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We have found the first optimal solutions to random 

instances of the Twenty-Four Puzzle, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 x 5 ver- 

sion of the well-known sliding-tile puzzles. Our new 

contribution to this problem is a more powerful admis- 

sible heuristic function. We present a general theory 

for the automatic discovery of such heuristics, which 

is based on considering multiple subgoals simultane- 

ously. In addition, we apply a technique for pruning 

duplicate nodes in depth-first search using a finite- 

state machine. Finally, we observe that as heuristic 

search problems are scaled up, more powerful heuris- 

tic functions become both necessary and cost-effective. 
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The sliding-tile puzzles, such as the Eight and Fifteen 

Puzzle, have long served as testbeds for heuristic search 

in AI. A square frame is filled with numbered tiles, 

leaving one position empty, called the blank. Any tile 

that is horizontally or vertically adjacent to the blank 

can be slid into the blank position. The task is to 

rearrange the tiles from some random initial configu- 

ration into a particular goal configuration, ideally or 

optimally in a minimum number of moves. The state 

space for the Eight Puzzle contains over lo5 nodes, the 

Fifteen Puzzle space contains about 1013 nodes, and 

the Twenty-Four Puzzle contains almost 1O25 nodes. 

Figure 1: The Twenty-Four Puzzle in its goal state 

threshold for each succeeding iteration is the minimum 

total cost, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(n) = g(n)+h(n), of all nodes on the fron- 

tier of the previous iteration. The algorithm continues 

until a goal node is chosen for expansion. 

Due to its small search space, optimal solutions 

to the Eight Puzzle can be found with breadth-first 

search. We first found optimal solutions to the Fif- 

teen Puzzle using Iterative-Deepening-A* (IDA*) and 

the Manhattan distance heuristic function (Korf 1985). 

IDA* is a variant of the well-known A* algorithm 

(Hart, Nilsson, and Rafael 1968), which runs in space 

that is linear in the maximum search depth, rather 

than exponential. IDA* proceeds in a series of depth- 

first search iterations, starting from the initial state. 

Each path is explored until a node n is reached where 

the number of moves from the initial state, g(n), plus 

the heuristic estimate of the number of moves neces- 

sary to reach the goal state, h(n), exceeds a threshold 

for that iteration. The threshold for the first iteration 

is the heuristic estimate for the initial state, and the 

The Manhattan distance heuristic is computed by 

taking each tile, counting the number of grid units to 

its goal location, and then summing these values for all 

tiles. Since only one tile can move at a time, Manhat- 

tan distance never overestimates the number of moves 

needed to solve a given problem. Given such an admis- 

sible heuristic function, IDA* is guaranteed to return 

an optimal solution, if one exists. 

IDA* with the Manhattan distance heuristic can 

solve random instances of the Fifteen Puzzle (Korf 

1985). In spite of considerable work on this problem in 

the last decade, however, nobody has solved a signifi- 

cantly larger version of the puzzle. Note that the state 

space of the Twenty-Four Puzzle is almost a trillion 

times larger than that of the Fifteen Puzzle. 

We present the first random Twenty-Four Puzzle in- 

stances for which optimal solutions have been found. 

Ten random solvable instances were generated, and so 

far we have found optimal solutions to all but one. 
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Three factors have contributed to this limited success. 

The first is simply faster computers. The Sun Ultra 

Spare workstation that these experiments were run on 

is about 70 times faster than the DEC 2060 that the 

Fifteen Puzzle was originally solved on. The second is 

a technique we developed for pruning duplicate nodes 

in depth-first search (Taylor and Korf 1993). Finally, 

we have discovered more powerful heuristic functions 

for this problem. The most important contribution of 

this paper, however, is a new theory that allows these 

heuristics to be automatically learned and applied. All 

examples in this paper refer to the Twenty-Four Puz- 

zle, where positions are labelled by the tiles that oc- 

cupy them in the goal state shown in Figure 1. 

Improved Admissible Heuristics 

Linear Conflict Heuristic 

The first significant improvement to Manhattan dis- 

tance was the linear-conflict heuristic (Hansson, 

Mayer, and Yung 1992). It applies when two tiles are 

in their goal row or column, but are reversed relative to 

their goal positions. For example, if the top row of the 

puzzle contains the tiles (2 1) in that order, to reverse 

them, one of the tiles must move down out of the top 

row, to allow the other to pass by, and then back up. 

Since these two moves are not counted in the Manhat- 

tan distance of either tile, two moves can be added to 

Manhattan distance without violating admissibility. 

As another example, if the top row contains the tiles 

(3 2 1) in that order, four more moves can be added 

to the Manhattan distance, since every pair of tiles 

is reversed, and two tiles must move out of the row 

temporarily. Furthermore, a tile in its goal position 

may be in both a row and a column conflict. Since 

the extra moves required to resolve a row conflict are 

vertical moves, and those required by a column conflict 

are horizontal, both sets of moves can be added to the 

Manhattan distance, and still preserve admissibility. 

This addition to the Manhattan distance heuristic 

reduces the number of nodes generated by IDA* on the 

Fifteen Puzzle by roughly an order of magnitude. The 

additional complexity of computing the linear conflicts 

slows down node generation by about a factor of two, 

however, for a net improvement of a factor of five. Effi- 

ciently computing this heuristic involves precomputing 

and storing all possible permutations of tiles in a row 

or column, and incrementally computing the heuristic 

value of a child from that of its parent. 

Last Moves Heuristic 

The next enhancement to the heuristic is based on the 

last moves of a solution, which must return the blank 

to its goal position, the upper-left corner in this case. 

Thus, the last move must either move the 1 tile right, 

or the 5 tile down. Therefore, immediately before the 

last move, either the 1 or 5 tile must be in the upper- 

left corner. Since the Manhattan distance of these tiles 

is computed to their goal positions, unless the 1 tile is 

in the left-most column, its Manhattan distance will 

not accommodate a path through the upper-left corner. 

Similarly, unless the 5 tile is in the top row, its Man- 

hattan distance will not accommodate a path through 

the upper-left corner. Thus, if the 1 tile is not in the 

left-most column, and the 5 tile is not in the top row, 

we can add two moves to the Manhattan distance, and 

still preserve admissibility. 

While two moves may seem like a small improve- 

ment, it can be added to about 64% of random Twenty- 

Four Puzzle states. The effect of two additional moves 

is to save an entire iteration of IDA*. Since each it- 

eration of IDA* on the Twenty-Four Puzzle can gen- 

erate up to ten times as many nodes as the previous 

iteration, saving an iteration can result in an order of 

magnitude savings in nodes generated. 

We can extend the same idea to the last two moves. 

If the last move is made by the 1 tile, the next-to-last 

move must either move the 2 tile right, or the 6 tile 

down. Similarly, if the last move is made by the 5 

tile, the next-to-last move must either move the 6 tile 

right, or the 10 tile down. Considering the last two 

moves can add up to four moves to the Manhattan 

distance. Extending this idea to the last three moves 

was not cost effective on the Twenty-Four Puzzle. 

To benefit from both the linear conflict and last 

moves enhancements, and maintain admissibility, we 

must consider their interactions. For example, assume 

that the 1 tile is not in the left-most column, and the 5 

tile is not in the top row. If the 1 tile is in its goal col- 

umn, and in a column conflict with another tile, then 

the two additional moves added by the linear conflict 

could be used to move the 1 tile left, allowing it to pass 

through the upper-left corner. Similarly, if the 5 tile 

is in its goal row, and in a row conflict, the two addi- 

tional linear conflict moves could be used to move it up 

and hence through the upper-left corner. Thus, if ei- 

ther of these conditions occur, we can’t add two more 

moves for the last move, since that may count twice 

moves already added by the linear conflict heuristic. 

Similarly, any additional moves added for the last two 

moves must also be checked against linear conflicts in- 

volving the 2, 6, and 10 tiles. In general, whenever 

more than one heuristic is being used, we must com- 

pute their interactions to maintain admissibility. 

Relation to Bidirectional Search The reader may 

notice that a heuristic based on the last moves in 

the solution is related to bi-directional search. The 

most effective form of bidirectional heuristic search is 

called perimeter search (Dillenburg and Nelson 1994) 

(Manzini 1995). A limited breadth-first search back- 

ward from the goal state is performed, and the nodes 

on the perimeter of this search are stored. IDA* is then 

run from the initial state, with heuristic calculations 

made to determine the minimum distance to any state 

on the perimeter. This heuristic value is then added to 

the distance from the initial state to the given node, 
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plus the distance from the perimeter to the goal state, 

for a more accurate admissible heuristic. 

In a unidirectional search, the heuristic function is 

always computed to a single goal state. As a result, 

the heuristic calculation can be optimized to take ad- 

vantage of this. With any form of bidirectional search, 

however, the heuristic must be calculated between ar- 

bitrary pairs of states, reducing the opportunities for 

optimization. While (Manzini 1995) reports speedups 

of up to a factor of eight on the Fifteen Puzzle us- 

ing his improved perimeter search, he uses only the 

Manhattan distance heuristic function. It’s not clear if 

similar results could be achieved with a more complex 

heuristic such as linear conflict. 

Corner-Tiles Heuristic 

The next enhancement to our heuristic focuses on the 

corners of the puzzle. For example, if the 3 tile is in its 

goal position, but some tile other than the 4 is in the 

4 position, the 3 tile will have to move temporarily to 

correctly position the 4 tile. This requires two moves of 

the 3 tile, one to move it out of position, and another to 

move it back. If the 3 tile is involved in a row conflict, 

then two moves will already be counted for it, and no 

more can be added. It can’t be involved in a column 

conflict if it’s in its goal position. 

The same rule applies to the 9 tile, unless the 9 is 

involved in a column conflict. In fact, if both the 3 and 

9 tiles are correctly positioned, and the 4 tile is not, 

then four moves can be added, since both the 3 and 9 

tiles will have to move to correctly position the 4. 

This rule also applies to the 15, 19, 21, and 23 tiles. 

It applies to the 1 and 5 tiles as well, but the interac- 

tion of this heuristic with the last moves heuristic is so 

complex that to avoid the overhead of this calculation, 

we exclude the 1 and 5 tiles from the corner heuristic. 

The corner-tile heuristic can potentially add up to 

twelve additional moves to the Manhattan distance, 

two for each of the six tiles adjacent to three of the 

corners. These extra moves require that at least one of 

these six tiles be in its goal position, a situation that 

only occurs in about 22% of random states. A search 

for the goal, however, does not generate a random sam- 

ple of states, but is biased toward states that are close 

to the goal, or at least appear to the heuristic to be 

close. In other words, the search is trying to correctly 

position the tiles, and hence this heuristic adds extra 

moves much more often than would be expected from 

a random sample of states. 

In summary, we have considered three enhancements 

to the Manhattan distance heuristic, based on linear 

conflicts, the last moves, and the corner tiles. The last 

two are introduced here for the first time. 

A New Theory of Admissible 

While these enhancements result in a much more 

powerful heuristic, they appear to be a collection of 

domain-specific hacks. Furthermore, integrating the 

enhancements together into an admissible heuristic 

seems to require even more domain-specific reasoning. 

However, all these heuristics can be derived from a gen- 

eral theory that is largely domain-independent, and the 

heuristics can be automatically learned and applied. 

While we would like to be able to claim that these 

heuristics were discovered from the general theory, in 

reality the theory was discovered after the fact. 

The classic theory of admissible heuristic functions 

is that they are the costs of optimal solutions to sim- 

plified problems, derived by removing constraints from 

the original problem (Pearl 1984). For example, if we 

remove the condition that a tile can only be moved 

into the blank position, the resulting problem allows 

any tile to move to any adjacent position at any time, 

and allows multiple tiles to occupy the same position. 

The number of moves to optimally solve this simpli- 

fied problem is the Manhattan distance from the initial 

state to the goal state. While this theory accounts for 

many heuristics for many problems, it doesn’t explain 

any of the above enhancements to Manhattan distance. 

Automatically Learning the 

An alternative derivation of Manhattan distance is 

based on the original problem, but focuses on only one 

tile at a time. For each possible location of each indi- 

vidual tile, we perform a search to correctly position 

that tile, ignoring all other tiles, and only counting 

moves of the tile in question. In this search, a state 

is uniquely determined by the position of the tile of 

interest and the position of the blank, since all other 

tiles are equivalent. Since the operators of the sliding- 

tile puzzle are invertible, we can perform a single search 

for each tile, starting from its goal position, and record 

how many moves of the tile are required to move it to 

every other position. Doing this for all tiles results in a 

table which gives, for each possible position of each tile, 

its Manhattan distance from its goal position. Then, 

noticing that each move only moves one tile, for a given 

state we add up the Manhattan distances of each tile 

to get an admissible heuristic for the state. Of course, 

we don’t really need to do the search in this case, since 

we can easily determine the values from the problem, 

but we presented it in this way to eliminate as much 

domain-specific reasoning as possible, and replace it 

with domain-independent search. 

The value of this reconstruction of Manhattan dis- 

tance is that it suggests a further generalization. The 

above formulation considers each tile in isolation, and 

the inaccuracy of the resulting heuristic stems from ig- 

noring the interactions between the tiles. The obvious 

next step is to repeat the above process on all possible 

pairs of tiles. In other words, for each pair of tiles, and 

each combination of positions they could occupy, per- 

form a search to their goal positions, and count only 

moves of the two tiles of interest. We call this value 

the pairwise distance of the two tiles from their goal 

locations. A state of this search consists of the posi- 
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tions of the two tiles and the position of the blank, 

since all other tiles are equivalent. Again for efficiency, 

for each pair of tiles we can perform a single search 

starting from their goal positions, with the blank also 

in its goal position, and store the pairwise distances to 

all other positions. The goal of this search is to find 

the shortest path from the goal state to all possible 

positions of the two tiles, where only moves of the two 

tiles of interest are counted. We can do this with a 

best-first search, counting only these moves. 

Since states of these searches are only distinguish- 

able by the positions of the two tiles and the blank, 

the size of these search spaces is O(n3), where n is the 

number of tiles. There are O(n2) such searches to per- 

form, one for each pair of tiles, for a time complexity 

of O(n5). The size of the resulting table is 0(n4), for 

each pair of tiles in each combination of positions. 

For almost all pairs of tiles and positions, their pair- 

wise distances equal the sum of their Manhattan dis- 

tances from their goal positions. However, there are 

three types of cases where the pairwise distance ex- 

ceeds the combined Manhattan distance. The first is 

when the two tiles are in a linear conflict. The second 

is when the two tiles are 1) a tile in its goal position 

adjacent to a corner, and 2) the tile that either belongs 

in, or that happens to be in, the corresponding corner. 

The third case is tiles 1 and 5, which are adjacent to the 

blank position in the goal state. The reason their pair- 

wise distance may exceed their combined Manhattan 

distances is that the backwards pairwise search starts 

from the goal state, and hence the first move is to move 

the 1 or the 5 tile into the corner. Thus, computing 

all the pairwise distances by a simple search “ discov- 

ers”  Manhattan distance along with all three of the 

heuristic enhancements described above, with very lit- 

tle domain-specific reasoning. No other enhancements 

are discovered by the pairwise searches. 

Applying the Heuristics 

The next question is how to automatically handle the 

interactions between these heuristics to compute an ad- 

missible heuristic estimate for a particular state. As- 

sume that we have precomputed all the pairwise tile 

distances and stored them in a table. Given a particu- 

lar state, we look up all the pairwise distances for the 

current positions of the tiles. To compute the over- 

all heuristic, we then partition the tiles into groups of 

two, and sum the corresponding pairwise distances, in 

a way that maximizes the resulting heuristic value. 

To see this problem more clearly, represent a state as 

a graph with a node for each tile, and an edge between 

each pair of tiles, labelled with their pairwise distance. 

We need to select a set of edges from this graph, so that 

no two edges are connected to a common node, and the 

sum of the labels of the selected edges is maximized. 

This problem is called the maximum weighted match- 

ing problem, and can be solved in O(n3) time, where 

n is the number of nodes (Papadimitriou and Steiglitz 

1982). Thus, this approach to heuristic generation can 

be automated, and runs in polynomial time. 

Higher-Order Heuristics 

Unfortunately, the pairwise distances do not account 

for the full power of the heuristic enhancements de- 

scribed above. For example, consider the linear con- 

flicts represented by the tiles (3 2 l), in that order in 

the top row. The linear conflict heuristic would add 

four moves to the Manhattan distance of these tiles, 

since all pairs are reversed, and two of the tiles must 

move out of the row. The pairwise distance of each pair 

of these tiles is two moves plus their Manhattan dis- 

tances. The graph representation of this situation is a 

triangle of tiles, with each edge of the triangle having 

weight two, ignoring the Manhattan distances. The 

maximum matching on this graph only contains one 

edge, with a total weight of two, since any two edges 

have a node in common. Thus, the pairwise distances 

capture only part of the linear conflict heuristic. 

As another example, consider the corner-tile heuris- 

tic, and a state in which the 3 and 9 tiles are correctly 

positioned, but the 4 tile is not. The corner heuristic 

would add four moves to the Manhattan distance of 

the 4 tile, since both the 3 and 9 tiles must move to 

correctly place the 4 tile. The graphical representation 

of this situation consists of an edge between the 3 and 4 

tiles, and an edge between the 9 and 4 tiles, each with 

a label of two, if we ignore the Manhattan distance. 

Since both these edges include the 4 tile, we can only 

select one of them, for an addition of only two moves. 

Finally, while the pairwise distances capture the en- 

hancement due to the last move of the solution, it 

doesn’t capture the last two moves, since these involve 

the 2, 6, and 10 tiles, in addition to the 1 and 5 tiles. 

In order to capture the full power of these heuris- 

tics, we extend the idea of pairwise distances to include 

triples of tiles, quadruples, etc. The linear conflict ex- 

ample of (3 2 1) requires us to consider all three tiles 

together to get four additional moves. If we consider 

each corner tile together with both adjacent tiles, we 

get the full power of the corner-tile heuristic. Finally, 

the last-two-moves enhancement requires considering 

all five tiles that may be involved. The correspond- 

ing matching problem is hypergraph matching, where 

a single edge “ connects”  three or more nodes, and un- 

fortunately is NP-Complete. Thus, we may have to 

rely on a greedy approach to the higher-dimensional 

matching problem, and a lower heuristic value. As we 

consider higher-order heuristics, the complexity of the 

learning search, the size of the lookup table, and the 

complexity of the matching all increase, in return for 

more accurate heuristic values. 

We believe this is a general theory for the discov- 

ery and implementation of admissible heuristic func- 

tions. All combinatorial problems involve solving mul- 

tiple subgoals. Many admissible heuristics are con- 

structed by considering the solution to each individual 
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subproblem in isolation, and ignoring the interactions 

with other subproblems. We are proposing heuristics 

based on the simultaneous consideration of-two, three, 

or more subgoals. As another example, consider a job- 

shop scheduling problem. There are a set of jobs to 

be performed, and a collection of machines with which 

to accomplish them. Each machine can only process a 

single job at a time. One way to derive a lower bound 

on the optimal solution is to consider the resources 

required by each job individually, and sum this over 

all jobs, ignoring resource conflicts between the jobs. 

Following our approach, one would consider all pairs of 

jobs, compute the resources required for each pair, and 

then compute the total resources by summing these 

values for a pairwise partition of the jobs. 

last move was Up, however, the only allowable move 

is another Up move. Similarly, if the last move was 

Down, the only allowable move is another Down move. 

This finite-state machine can only generate a single 

path to each point of the grid, and hence a depth-first 

search controlled by this machine runs in time O(d2), 

which is the same as a breadth-first search. 

These finite-state machines can be automatically 

learned, from a small breadth-first search to discover 

duplicate operator strings. In this case, a breadth-first 

search to depth two is sufficient to learn all the dupli- 

cate strings to construct the above machine. Once the 

machine is constructed, there is almost no overhead to 

using it to control the depth-first search. 

This technique can be applied to other problems, 

such as the sliding tile-puzzles. After rejecting inverse 

operators, the next shortest cycle in the sliding-tile 

puzzles is twelve moves long, corresponding to rotating 

the tiles in a 2 x 2 square. Using a breadth-first search, 

a finite-state machine for the Twenty-Four Puzzle was 

constructed with over 619,000 states. This machine is 

then used to control a depth-first search, rejecting op- 

erators that lead to duplicate nodes. The effect of this 

duplicate pruning is to reduce the asymptotic complex- 

ity of a depth-first search from 0(2.368d) to 0(2.235d). 

While this may seem like a small improvement, in the 

two easiest problems reported below, duplicate prun- 

ing decreased the running time of IDA* by factors of 

2.4 and 3.6, with the larger improvement coming on 

the harder problem. 

Pruning Duplicate Nodes 

While the main concern of this paper is the heuristic 

functions, we also used another orthogonal technique 

to significantly speed up the experiments. 

Any depth-first search, such as IDA*, will generate 

the same node multiple times on a graph with cycles. 

For example, consider a square grid problem space, 

with the moves Up, Down, Left, and Right, each mov- 

ing one unit in the indicated direction. Since there are 

four moves from every state, the asymptotic complex- 

ity of a depth-first search to depth d is O(4d). How- 

ever, there are only O(d2) distinct states at depth d 

in a grid, and a breadth-first search, which stores all 

nodes generated and checks for duplicates, will run in 

O(d2) time. The difference in complexity between the 

breadth-first and depth-first search in this example il- 

lustrates the magnitude of this problem. 

In the grid example, the operator pairs Left-Right 

and Up-Down are inverses of each other. Any good 

depth-first search implementation will remember the 

last operator applied, and never immediately apply its 

inverse. This can be done by encoding the last opera- 

tor applied as the state of a finite-state machine. The 

machine has five states, an initial transient state and 

four recurrent states, one for each last move. Each 

arc of the machine represents an operator, except that 

the inverse of the last move is excluded. This reduces 

the complexity of the depth-first search from O(4d) to 

O(3d), a significant reduction, but still far from the 

O(d2) complexity of the breadth-first search. 

This idea can be carried further, and is described 

in detail in (Taylor and Korf 1993). Ideally, we would 

like to allow only one path to each node in the grid. 

This can be done by first making all Left or Right 

moves, if any, followed by a single turn, and then all Up 

moves or all Down moves, if any. These rules can also 

be enforced by a five-state finite-state machine. The 

initial state allows all four operators, and each resulting 

state encodes the last move applied. If the last move 

was to the Right, all moves are allowed except a move 

to the Left. Similarly, if the last move was to the Left, 

all moves are allowed except a move to the Right. If the 

Experimental Results 

We implemented IDA *, taking full advantage of the 

Manhattan distance, linear conflict, last-two-moves, 

and corner-tile heuristics, as well as the finite-state 

machine pruning. Since we were concerned with ef- 

ficiency, our implementation was specialized to these 

heuristics and their interactions, rather than using a 

general table lookup and matching algorithm. 

As a first test of our program, we ran it on 100 

randomly generated solvable instances of the Nineteen 

Puzzle. The Nineteen Puzzle is the 4 x 5 sliding-tile 

puzzle, and its state space contains about 101’ states. 

All the puzzle instances were solved optimally, and the 

average solution length was 71.5 moves, as compared to 

an average solution length of 52.6 moves for the Fifteen 

Puzzle. The average number of node generations per 

problem instance was almost a billion, which is compa- 

rable to those generated by IDA* on the Fifteen Puzzle 

using just the Manhattan distance heuristic. To our 

knowledge, these are the first random Nineteen Puzzle 

problem instances to be solved optimally. 

We then turned our attention to the Twenty-Four 

Puzzle. Ten random solvable instances were generated. 

Since there is enormous variation in the time to solve 

these problems, different iterations of IDA* were inter- 

leaved on different problem instances, in order find and 

solve the easier ones first. To date, nine of these prob- 
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No. Initial State Nodes Generated Optimal Sol. 

1 17 1 20 9 16 2 22 19 14 5 15 21 0 3 24 23 18 13 12 7 10 8 6 4 11 8,110,532,608 100 

2 14 5 9 2 18 8 23 19 12 17 15 0 10 20 4 6 11 21 1 7 24 3 16 22 13 18,771,430,922 95 

3 7 13 11 22 12 20 1 18 21 5 0 8 14 24 19 9 4 17 16 10 23 15 3 2 6 82,203,971,683 108 

4 18 14 0 9 8 3 7 19 2 15 5 12 1 13 24 23 4 21 10 20 16 22 11 6 17 83,573,198,724 98 

5 2 0 10 19 1 4 16 3 15 20 22 9 6 18 5 13 12 21 8 17 23 11 24 7 14 221,769,436,018 101 

6 16 5 1 12 6 24 17 9 2 22 4 10 13 18 19 20 0 23 7 21 15 11 8 3 14 523,772,060,498 96 

7 21 22 15 9 24 12 16 23 2 8 5 18 17 7 10 14 13 4 0 6 20 11 3 1 19 792,795,062,385 104 

8 6 0 24 14 8 5 21 19 9 17 16 20 10 13 2 15 11 22 1 3 7 23 4 18 12 1,415,436,865,760 97 

9 3 2 17 0 14 18 22 19 15 20 9 7 10 21 16 6 24 23 8 5 14 11 12 13 3,033,449,077,924 113 

10 2314024179202121810132213114166571281519 >3,000,000,000,000 2 112 

Table 1: Twenty-four puzzle problem instances, nodes generated, and optimal solution lengths 

lems have been solved optimally, with a lower bound 

established for the remaining one. Table 1 shows all ten 

problem instances, sorted by difficulty. For the solved 

problems, we give the number of nodes generated and 

the optimal solution length, and for the unsolved one 

we give lower bounds on these values. The tiles are 

listed from left to right and top to bottom, with 0 rep- 

resenting the blank. In this notation, the tiles of the 

goal state in Figure 1 would be listed in numerical or- 

der. The average optimal solution length for these ten 

problems is at least 102.4 moves. The code was writ- 

ten in C, runs on a Sun Ultra Spare workstation, and 

generates about a million nodes per second. The eas- 

iest problem took about two hours and 15 minutes to 

solve, and the most difficult solved problem took over 

a month. To date, the remaining unsolved problem 

has run for over a month. These are the first random 

Twenty-Four Puzzle instances to be solved optimally. 

Conclusions 

We have found the first optimal solutions to random 

instances of the Twenty-Four Puzzle, a problem with 

almost 1O25 states. The branching factor is 2.368, and 

the optimal solutions average over 100 moves long. We 

implemented IDA* on a state-of-the-art workstation, 

with a more powerful admissible heuristic function, 

and a method for pruning duplicate nodes in depth- 

first search. The most important contribution of this 

paper is a new general theory for the automatic dis- 

covery and application of admissible heuristics. In- 

stead of considering individual subgoals in isolation, 

our approach considers two or more subgoals simulta- 

neously. This theory allows one to automatically dis- 

cover Manhattan distance, along with the linear con- 

flict, last moves, and corner-tile enhancements to it, 

with nothing more than small searches of the problem 

space. By considering three or more subgoals at a time, 

even more powerful heuristics can be derived. 

A more powerful heuristic function increases the 

time per node generation by a polynomial amount. 

On the other hand, it generally decreases the effec- 

tive branching factor by a small amount, yielding an 

asymptotic improvement. For small problems, more 

powerful heuristics may not be cost effective, since 

one doesn’t search deep enough to overcome the poly- 

nomial overhead. As machines get faster and larger 

problems are addressed, however, seeming small im- 

provements in a heuristic function eventually become 

cost effective. Thus, as problem size increases, it be- 

comes both necessary and cost-effective to encode more 

knowledge of the problem in the form of improved 

heuristics. We have developed an approach to doing 

this automatically. 
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