From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Finding Optimal Strategies for Imperfect Information Games*

Ian Frank
Complex Games Lab
Electrotechnical Laboratory
Umezono 1-1-4, Tsukuba
Ibaraki, JAPAN 305
ianf@etl.go.jp

Abstract

‘We examine three heuristic algorithms for games with
imperfect information: Monte-carlo sampling, and two
new algorithms we call vector minimazing and payoff-
reduction minimazing. We compare these algorithms
theoretically and experimentally, using both simple
game trees and a large database of problems from the
game of Bridge. Our experiments show that the new
algorithms both out-perform Monte-carlo sampling,
with the superiority of payoff-reduction minimaxing
being especially marked. On the Bridge problem set,
for example, Monte-carlo sampling only sclves 66%
of the problems, whereas payoff-reduction minimax-
ing solves over 95%. This level of performance was
even good enough to allow us to discover five errors in
the expert text used to generate the test database.

Introduction

In games with imperfect information, the actual ‘state
of the world’ may be unknown; for example, the posi-
tion of some of the opponents’ playing pieces may be
hidden. Finding the optimal strategy in such games is
NP-hard in the size of the game tree (see e.g., (Blair,
Mutchler, & Liu 1993)), and thus a heuristic approach
is required to solve non-trivial games of this kind.

For any imperfect information game, we will call
each possible outcome of the uncertainties (e.g., where
the hidden pieces might be) a possible world state or
world. Figure 1 shows a game tree with five such pos-
sible worlds wy, - - -, ws. The squares in this figure cor-
respond to MAX nodes and the circles to MIN nodes.
For a more general game with n possible worlds, each
leaf node of the game tree would have n payoffs, each
corresponding to the utility for MAX of reaching that
node in each of the n worlds.!

*Copyright ©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

1For the reader familiar with basic game-theory, (von
Neumann & Morgenstern 1944; Luce & Raiffa 1957), Fig-
ure 1 is a compact representation of the extensive form of a
particular kind of two-person, zero-sum game with imper-
fect information. Specifically, it represents a game tree with
a single chance-move at the root and n identically shaped
subtrees. Such a tree can be ‘flattened’, as in Figure 1, by

David Basin
Institut fiir Informatik
Universitdt Freiburg
Am Flughafen 17
Freiburg, Germany
basin@informatik.uni-~freiburg.de

Hitoshi Matsubara
Complex Games Lab
Electrotechnical Laboratory
Umezono 1-1-4, Tsukuba
Ibaraki, JAPAN 305
matsubar@etl.go. jp

w, 1 0 1 0 1
w, 1] 1 0 1
w,] 1 0 1 1
W, 0 1 0 1 1
Wy 0 1 0 1 0

Figure 1: A game tree with five possible worlds

If both MAX and MIN know the world to be in
some state w; then all the payoffs corresponding to
the other worlds can be ignored and the well-known
minimax algorithm (Shannon 1950) used to find the
optimal strategies. In this paper we will consider the
more general case where the state of the world depends
on information that MAX does not know, but to which
he can attach a probability distribution (for example,
the toss of a coin or the deal of a deck of cards). We
examine this situation for various levels of MIN knowl-
edge about the world state.

We follow the standard practice in game theory of
assuming that the best strategy is one that would not
change if it was made available to the opponent (von

assigning payoff n-tuples to each leaf node so that the ith
component is the payoff for that leaf in the ¢th subtree. It
is assumed that the only move with an unknown outcome
is the chance move that starts the game. Thus, a single
node in the flattened tree represents between 1 and n in-
formation sets: one if the player knows the exact outcome
of the chance move, = if the player has no knowledge.

Neumann & Morgenstern 1944). For a MIN player
with no knowledge of the world state the situation is
very simple, as an expected value computation can be
used to convert the multiple payoffs at each leaf node
into a single value, and the standard minimax algo-
rithm applied to the resulting tree. As MIN’s knowl-
edge increases, however, games with imperfect infor-
mation have the property that it is in general impor-
tant for MAX to prevent MIN from ‘finding out’ his
strategy, by making his choices probabilistically. In
this paper, however, we will restrict our consideration
to pure strategies, which make no use of probabilities.
In practice, this need not be a serious limitation, as we
will see when we consider the game of Bridge.

We examine three algorithms in detail: Monte-carlo
sampling (Corlett & Todd 1985) and two new algo-
rithms we call vector minimazing and payoff-reduction
minimazing. We compare these algorithms theoreti-
cally and experimentally, using both simple game trees
and a large database of problems from the game of
Bridge. Our experiments show that Monte-carlo sam-
pling is out-performed by both of the new algorithms,
with the superiority of payoff-reduction minimaxing
being especially marked.

Monte-carlo Sampling

We begin by introducing the technique of Monte-carlo
sampling. This approach to handling imperfect infor-
mation has in fact been used in practical game-playing
programs, such as the QUETZAL Scrabble program
(written by Tony Guilfoyle and Richard Hooker, as
described in (Frank 1989)) and also in the game of
Bridge, where it was proposed by (Levy 1989) and re-
cently implemented by (Ginsberg 1996b).

In the context of game trees like that of Figure 1,
the technique consists of guessing a possible world and
then finding a solution to the game tree for this com-
plete information sub-problem. This is much easier
than solving the original game, since (as we mentioned
in the Introduction) if attention is restricted to just one
world, the minimax algorithm can be used to find the
best strategy. By guessing different worlds and repeat-
ing this process, it is hoped that an action that works
well in a large number of worlds can be identified.

To make this description more concrete, let us con-
sider a general MAX node with branches M, Ms,---
in a game with n worlds. If e;; represents the minimax
value of the node under branch M; in world w;, we can
construct a scoring function, f, such as:

F(M:) = ei; Pr(wy), 1

Jj=1

where Pr(wj;) represents MAX’s assessment of the
probability of the actual world being w;. Monte-carlo
sampling can then be viewed as selecting a move by
using the minimax algorithm to generate values of the
eijs, and determining the M; for which the value of

F(M;) is greatest. If there is sufficient time, all the e;;
can be generated, but in practice only some ‘represen-
tative’ sample of worlds is examined.

As an example, consider how the tree of Figure 1
is analysed by the above characterisation of Monte-
carlo sampling. If we examine world w;, the minimax
values of the left-hand and the right-hand moves at
node a are as shown in Figure 2 (these correspond to
e11 and e for this tree). It is easy to check that the

These worlds ignared

ogo_‘-‘
andiale

Figure 2: Finding the minimax value of world w;

minimax value at node b is again 1 if we examine any
of the remaining worlds, and that the value at node
¢ is 1 in worlds wsy, w3, and wy, but 0 in world ws.
Thus, if we assume equally likely worlds, Monte-carlo
sampling using (1) to make its branch selection will
choose the left-hand branch at node a whenever world
ws is included in its sample. Unfortunately, this is
not the best strategy for this tree, as the right-hand
branch at node a offers a payoff of 1 in four worlds.
The best return that MAX can hope for when choosing
the left-hand branch at node a is a payoff of 1 in just
three worlds (for any reasonable assumptions about a
rational MIN opponent). .

Note that, as it stands, Monte-carlo sampling iden-
tifies pure strategies that make no use of probabilities.
Furthermore, by repeatedly applying the minimax al-
gorithm, Monte-carlo sampling models the situation
where both MIN and MAX play optimally in each in-
dividual world. Thus, the algorithm carries the im-
plicit assumption that both players know the state of
the world.

Vector Minimaxing

That Monte-carlo sampling makes mistakes in situa-
tions like that of Figure 1 has been remarked on in the
literature on computer game-playing (see, e.g., (Frank
1989)). The primary reason for such errors has also re-
cently been formalised as strategy fusion in (Frank &

Basin 1998). In the example of Figure 2, the essence of
the problem with a sampling approach is that it allows
different choices to be made at nodes d and e in dif-
ferent worlds. In reality, a MAX player who does not
know the state of the world must make a single choice
for all worlds at node d and another single choice for
all worlds at node e. Combining the minimax values of
separate choices results in an over-optimistic analysis
of node b. In effect, the false assumption mentioned
above that MAX knows the state of the world allows
the results of different moves — or strategies — to be
‘fused’ together.

We present here an algorithm that removes the prob-
lem of strategy fusion from Monte-carlo sampling by
ensuring that at any MAX node a single branch is cho-
sen in all worlds. This algorithm requires the definition
of a payoff vector, K (v), for leaf nodes of the game tree,
v, such that K [71(») (where K[j] is the jth element of
the vector K) takes the value of the payoff at v in world
w; (1 <j < n). Figure 3 defines our algorithm, which
we call vector minimazing. It uses payoff vectors to
identify a strategy for a tree £, where sub(t) computes
the set of ¢’s immediate subtrees.

Algorithm vector-mm(t):
Take the following actions, depending on t.

| condition 1 Result |

t is leaf node K@)

root of ¢ is a MIN node | min wvector-mm(t;)
t:€sub(t)

root of t isa MAX node | max wvector-mm(t;)
t; €sub(t)

Figure 3: The vector minimaxing algorithm

In this algorithm, the normal min and max functions
are extended so that they are defined over a set of
payoff vectors. The max function returns the single

vector K , for which

n
> Pr(w;)K1j] @
i=1
is maximum, resolving equal choices randomly. In this
way, vector minimaxing commits to just one choice of
branch at each MAX node, avoiding strategy fusion
(the actual strategy selected by the algorithm is just
the set of the choices made at the MAX nodes).

As for the min function, it is possible to define this
as the dual of the max function, returning the single
vector for which (2) is minimum. However, this would
result in modelling the simple situation, described in
the Introduction, where MIN, like MAX, has no knowl-
edge of the state of the world. Instead, we therefore
say that for a node with m branches and therefore m

payoff vectors J2¢ 150, I?m to choose between, the min
function is defined as:

min K; = (min K;[1], min K;[2], - -, min K;[n]) . (3)

That is, the min function returns a vector in which
the payoff for each possible world is the lowest possible.
This models a MIN player who has complete knowl-
edge of the state of the world, and uses this to choose
the best branch in each possible world. As we pointed
out in the previous section, this is the same assump-
tion that is implicitly made by Monte-carlo sampling.
We use the assumption again as it represents the most
conservative approach: modelling the strongest possi-
ble opponents provides a lower bound on the payoff
that can be expected when the opponents are less in-
formed. Also, we shall see later that this assumption is
actually used by human experts when analysing some
imperfect information games.

As an example of vector minimaxing in practice, Fig-
ure 4 shows how the algorithm would analyse the tree
of Figure 1, using ovals to represent the vectors pro-
duced at each node. The branches selected at MAX
nodes by the max operator (assuming equally likely
worlds) are highlighted in bold, showing that the right-
hand branch is correctly chosen at node a.

2 1 0 1 0 1
w, 1 0 1 0 1
Wy 0 1 0 1 1
w, 0 1 0 1 1
Wg 0 1 0 1 0

Figure 4: Vector minimaxing applied to example tree

Payoff-reduction Minimaxing

Consider Figure 5, which depicts a game tree with just
three worlds. If we assume that MIN has complete
knowledge of the world state in this game (as implic-
itly modelled by Monte-carlo sampling and vector min-
imaxing) the best strategy for MAX is to choose the
left-hand branch at node d and the right-hand branch
at node e. This guarantees a payoff of 1 in world w;.
In the figure, however, we have annotated the tree
to show how it is analysed by vector minimaxing. The

branches in bold show that the algorithm would choose
the right-hand branch at both node d and node e.
The vector produced at node b correctly indicates that
when MAX makes these selections, a MIN player who
knows the world state will always be able to restrict
MAX to a payoff of 0 (by choosing the left branch at
node b in world w; and the right branch in worlds wy
and ws). Thus, at the root of the tree, both subtrees
have the same analysis, and vector minimaxing never
wins on this tree.

Applying Monte-carlo sampling to the same tree, in
the limiting case where all possible worlds are exam-
ined, we see that node b has a minimax value of 1
in world wy, so that the left-hand branch would be
selected at the root of the tree. However, the same
selections as vector minimaxing will then be made
when subsequently playing at node d or node e. Thus,
despite both modelling the situation where MIN has
complete knowledge of the actual world state, neither
Monte-carlo sampling nor vector minimaxing choose
the best strategy against a MIN player with complete
information on this tree.

W, 1 0 0 1 0
w, 0 1 0 0 0
Wy 0 1 0 0 0

Figure 5: Example tree with three worlds

The difficulty here is that MIN can always restrict
MAX to a payoff of 0 in worlds we and wg by choosing
the right-hand branch at node b. Thus, at node d the
payoffs of 1 under the right-hand branch will never ac-
tually be realised, and should be ignored. Effectively,
and perhaps counterintuitively, the analysis of node d
is dependent on first correctly analysing node e. This
is an example of how imperfect information games can
not be solved by search algorithms that are ‘composi-
tional’ (i.e., algorithms that determine the best play
at an internal node v of a search space by analysing
only the local subtree beneath v). Such algorithms do
not take into account information from other portions
of the game tree. In particular, they do not recognise
that under some worlds the play may never actually
reach any given internal node, v. At such nodes, they

may therefore mistakenly select moves on the basis of
high expected payoffs in world states that are in fact of
no consequence at that position in the tree (as happens
in Figure 5). This problem, which is more difficult to
eliminate than strategy fusion, has been formalised as
non-locality in (Frank & Basin 1998).

We propose here a new algorithm that lessens the
impact of non-locality by reducing the payoffs at the
frontier nodes of a search tree. As in the case of Monte-
carlo sampling and vector minimaxing, the assumption
in this algorithm is that MIN plays as well as possible
in each individual world. However, this time we im-
plement this assumption by reducing the payoff in any
given world wy, to the maximum possible (minimax)
return that can be produced when the game tree is ex-
amined as a single, complete information search tree
in world wg. The resulting algorithm, which we call
payoff-reduction minimazing, or prm, is shown in its
simplest form in Figure 6 (it can be implemented more
efficiently, for example by combining steps 2 and 3 to-
gether).

Algorithm prm(t):
Identifies strategies for game trees, ¢

1. Conduct minimaxing of each world, wg, finding for
each MIN node its minimax value, my, in that world.

2. Examine the payoff vectors of each leaf node. Re-
duce the payoffs p;, in each world wy, to the minimum
of pi, and all the m; of the node’s MIN ancestors.

3. Apply the vector-mm algorithm to the resulting tree.

Figure 6: Simple form of the prm algorithm

The reduction step in this algorithm addresses the
problem of non-locality by, in effect, parameterising the
payoffs at each leaf node with information on the re-
sults obtainable in other portions of the tree. By using
minimax values for this reduction, the game-theoretic
value of the tree in each individual world is also left
unaltered, since no payoff is reduced to the extent that
it would offer MIN a better branch selection at any
node in any world.

As an example, let us consider how the algorithm
would behave on the tree of Figure 5. The minimax
value of node c is zero in every world, but all the payoffs
at node f are also zero, so no reduction is possible. At
node b, however, the minimax values in the three pos-
sible worlds are 1, 0, and 0, respectively. Thus, all the
payoffs in each world at nodes d and e are reduced to
at most these values. This leaves only the two payoffs
of 1 in world wy as shown in Figure 7, where the strat-
egy selection subsequently made by vector-minimaxing
has also been highlighted in bold. In this tree, then,
the prm algorithm results in the correct strategy being
chosen. In the next section, we examine how often this
holds in general.

w, 1 0 0 1 0
w, 0 0 0 0
w, 0 0 0 0 0

Figure 7: Applying vector-mm after payoff reduction

Experiments on Random Trees

We tested the performance of Monte-carlo sampling,
vector minimaxing and payoff-reduction minimaxing
on randomly generated trees. For simplicity, the trees
we use in our tests are complete binary trees, with
n = 10 worlds and payoffs of just one or zero. These
payoffs are assigned by an application of the Last
Player Theorem (Nau 1982), so that the probability
of there being a forced win for MAX in the complete
information game tree in any individual world is the
same for all depths of tree.?

We assume that MAX has no information about
the state of the world, so that each world appears to
have the equally likely probability of 1/n (in our tests,
1/10). For MIN’s moves, on the other hand, we as-
sume that for ¢ (0 < 7 < n), the rules of the game
allow MIN to identify the actual world state in ¢ cases.
In each of these (randomly selected) 7 worlds, MIN can
therefore make branch selections based on the actual
payoffs in that particular world, and will only require
an expected value computation for the remaining n — 4
worlds. We define the level of knowledge of such a MIN
player as being i/(n — 1).

The graphs of Figure 8 show the performance of each
of the three algorithms on these test game trees. These
graphs were produced by carrying out the following

2The Last Player Theorem introduces a probability, p,
that governs the assignment of leaf node payoffs as follows:
if the last player is MAX, choose a 1 with probability p; if
the last player is MIN, choose a 1 with probability 1—p. For
complete information binary trees with a MAX node at the
root, (Nau 1982) shows that if p = (3 — v/5)/2 =~ 0.38197
the probability of any node having a minimax value of 1 is
constant for all sizes of tree (1 — p for MAX nodes, and p
for MIN nodes). For lower values of p, the chance of the
last player having a forced win quickly decreases to zero as
the tree depth increases. For higher values, the chance of
a forced win for the last player increases to unity.

Performance of Monte-carlo sampling

_ Depth=6 ..

% Error

T Depthi2

0 19 219 39 6/9 79 8/9 1

4/9 5/9
MIN Knowledge

Perfo of vector minimaxing

% Error

TrTT— Depth=2

0 119 2/9 4/9 5/9 6/9 779 8/9 1
MIN Knowledge
Perfc of payoff-red

% Error

Depth=2

0 19 2/9 39 4/9 5/9 6/9 719 8/9 1
MIN Knowledge

Figure 8: The error in Monte-carlo sampling, vec-
tor minimaxing and payoff-reduction minimaxing, for
trees of depth 2 to 8

steps 1000 times for each data point of tree depth and
opponent knowledge:

1. Generate a random test tree of the required depth.

2. Use each algorithm to identify a strategy. (For each
algorithm, assume that the payoffs in all worlds can
be examined.)?

3. Compute the payoff of the selected strategies, for an
opponent with the level of knowledge specified.

4. Use an ineflicient, but correct, algorithm (based on
examining every strategy) to find an optimal strat-
egy and payoff, for an opponent with the level of
knowledge specified.

5. For each algorithm, check whether they are in error
(i.e., if any of the values of the strategies found in
Step 3 are inferior to the value of the strategy found
in step 4, assuming equally likely worlds).

Our results demonstrate that vector minimaxing
out-performs Monte-carlo sampling by a small amount,
for almost all levels of MIN knowledge and tree depths.
This is due to the removal of strategy fusion. How-
ever, even when strategy fusion is removed, the prob-
lem of non-locality remains, to the extent that the per-
formance of vector minimaxing is only slightly supe-
rior to Monte-carlo sampling. A far more dramatic
improvement is therefore produced by the prm algo-
rithm, which removes strategy fusion and further re-
duces the error caused by non-locality. When MIN
has no knowledge on the state of the world, prm actu-
ally introduces errors through its improved modelling
of the assumption that MIN will play as well as pos-
sible in each world. However, as MIN’s knowledge in-
creases, this assumption becomes more accurate, until
for levels of knowledge of about 5/9 and above, the
prm algorithm out-performs both Monte-carlo sam-
pling and vector minimaxing. When MIN’s knowledge
of the world state is 1 the performance advantage of
prm is particularly marked, with the error of prm for
trees of depth 8 being just over a third of the error rate
of Monte-carlo sampling.

To test the performance advantage of prm on larger
trees, we extended the range of our tests to cover trees
of depth up to 13 (the largest size that our algorithm
for finding optimal solutions could handle), with the
opponent knowledge fixed at 1. The results of this test
are shown in Figure 9. When the trees reach depth 9,
Monte-carlo sampling and vector minimaxing have er-
ror rates of 99.9% and 96%, whereas prm still identifies
the optimal strategy in over 40% of the trials. For trees
of depth 11 and over, where Monte-carlo sampling and
vector minimaxing never find a correct solution, prm
still performs at between 40% and 30%.

3Note that in general, examining all the payoffs may not
be possible, but just as Monte-carlo sampling deals with
this problem by selecting a subset of possible worlds, vector
minimaxing and prm can also be applied with vectors of
size less than n.

when O is1
100 B
| —
90 |-]
80 o
70 - B S—
M R/
N 60 f A o
&
@ SO e e e]
40 | S—
30 b b T bt .
20 b]
10 s 1
0
1 2 3 4 10 11 12 13

6 7 8
Tree Depth

Figure 9: Superiority of payoff-reduction minimaxing,
with opponent knowledge of 1, trees of depth up to 13

The ability to find optimal solutions when the oppo-
nents have full knowledge of the world state is highly
significant in games with imperfect information. For
instance, we have already pointed out that the pay-
off obtainable against the strongest possible opponents
can be used as a lower bound on the expected pay-
off when the opponents are less informed. We have
also noted that the other extreme, where MIN has no
knowledge, is easily modelled (thus, it is not significant
that all the algorithms in Figure 8 perform badly when
MIN’s knowledge is zero). Most significant of all, how-
ever, is that the assumption that the opponents know
the state of the world is, in fact, made by human ex-
perts when analysing real games with imperfect infor-
mation. We examine an example of this below.

Experiments on the Game of Bridge

As we mentioned earlier, Monte-carlo sampling has in
fact been used in practical game-playing programs for
games like Scrabble and Bridge. Bridge is of particular
interest to us here as we have shown in previous work
(Frank & Basin 1998) that expert analysis of single-
suit Bridge problems is typically carried out under the
best defence assumption that the opponents know the
exact state of the world (i.e., the layout of the hidden
cards). Further, Bridge has been heavily analysed by
human experts, who have produced texts that describe
the optimal play in large numbers of situations. The
availability of such references provides a natural way
of assessing the performance of automated algorithms.

To construct a Bridge test set, we used as an ex-
pert reference the Official Encyclopedia of Bridge,
published by the American Contract Bridge League
(ACBL 1994). This book contains a 55-page section
presenting optimal lines of play for a selection of 665
single-suit problems. Of these, we collected the 650

examples that gave pure strategies for obtaining the
maximum possible payoff against best defence.* Us-
ing the FINESSE Bridge-playing system (Frank, Basin,
& Bundy 1992; Frank 1996), we then tested Monte-
carlo sampling, vector minimaxing and prm against
the solutions from the Encyclopedia. In each case, the
expected payoff of the strategy produced by the algo-
rithms (for the maximum possible payoff) was com-
pared to that of the Encyclopedia, producing the re-
sults summarised in Figure 10.

|| Algorithm jl Correct] Incorrect WJ
431 (66.3%) | 219 (33.7%)
462 (71.1%) | 188 (28.9%)
623 (95.8%) | 27 (4.2%)

Monte-carlo sample

Vector minimaxing

The prm algorithm

Figure 10: Performance on the 650 single-suit Bridge
problems from the Encyclopedia

As before, these results demonstrate that vector
minimaxing is slightly superior to Monte-carlo sam-
pling, and that the prm algorithm dramatically out-
performs them both. In terms of the expected loss
if the entire set of 650 problems were to be played
once (against best defence and with a random choice
among the possible holdings for the defence) the prm
algorithm would be expected to lose just 0.83 times,
compared to 16.97 and 12.78 times for Monte-carlo
sampling and vector minimaxing, respectively.

The performance of prm was even good enough to
enable us to identify five errors in the Encyclopedia
(in fact, these errors could also have been found with
the other two algorithms, but they were overlooked
because the number of incorrect cases was too large
to check manually). Space limitations prevent us from
presenting more than the briefest summaries of one of
these errors here, in Figure 11. In our tests, the line
of play generated for this problem has a probability of
success of 0.266 and starts by leading small to the Ten.

More Experiments on Random Trees

To understand why the performance of all the algo-
rithms is better on Bridge than on our random game
trees, we conducted one further test. The aim of this
experiment was to modify the payoffs of our game trees
so that each algorithm could identify optimal strategies
with the same success rate as in Bridge. We achieved

4The remaining fifteen examples split into four cate-
gories: six problems that give no line of play for the max-
imum number of tricks, four problems involving the as-
sumption of a mized strategy defence, four for which the
solution relies on assumptions about the defenders playing
sub-optimally by not false-carding, and one where there are
restrictions on the resources available.

KT8xx
N For four tricks, run the Jack.
If this is covered, finesse the
W E eight next. Chance of suc-
S cess: 25%
Jxx

Figure 11: Problem 543 from the Bridge Encyclopedia

this by the simple expedient of parameterising our trees
with a probability, ¢, that determines how similar the
possible worlds are. To generate a tree with n worlds
and a given value of g¢:

o first generate the payoffs for n worlds randomly, as
in the original experiment, then

» generate a set of payofls for a dummy world wp41,

¢ and finally, for each of the original n worlds, over-
write the complete set of payoffs with the payoffs
from the dummy world, with probability g.

Trees with a higher value of ¢ tend to be easier to
solve, because an optimal strategy in one world is also
more likely to be an optimal strategy in another. Cor-
respondingly, we found that by modifying ¢ it was pos-
sible to improve the performance of each algorithm.
What was unexpected, however, was that the value
of ¢ for which each algorithm performed at the same
level as in Bridge roughly coincided, at ¢ = 0.75. For
this value, the error rates obtained were approximately
34.1%, 31.5% and 6.1%, as shown in Figure 12. Thus,
on two different types of game we have found the rel-
ative strengths of the three algorithms to be almost
identical. With this observation, the conclusion that
similar results will hold for other imperfect information
games becomes more sustainable.

Efficiency Issues

All of the algorithms we have presented execute in time
polynomial in the size of the game tree. In our tests,
the prm algorithm achieves its performance gains with
a small, constant factor, slowdown in execution time.
For example, to select a strategy on 1000 trees of depth
13 takes the prm algorithm 571 seconds, compared to
333 seconds for vector minimaxing and 372 seconds for
the Monte-carlo sampling algorithm (all timings ob-
tained on a SUN UltraSparc II running at 300MHz),
Over all depths of trees, the prm algorithm ranges be-
tween 1.08 and 1.39 times as expensive as our imple-
mentation of Monte-carlo sampling. Similarly for the
Bridge test set, prm takes an average of 11.9 seconds to
solve each problem, compared to 1.9 seconds for vector
minimaxing and 4.1 seconds for Monte-carlo sampling.

However, the efficiency of the implementations was
not our major concern for the current paper, where

dge is 1 and q=0.75
T T
g :
w H
® i —]
i —

6 7 8 10 i1 12 13
Tree Depth

Figure 12: Superiority of payoff-reduction minimaxing
on random game trees where the optimal strategy in
one world is more likely to be optimal in another

we were interested instead in producing a qualitative
characterisation of the relative strengths of the differ-
ent algorithms. Thus, the data presented in this pa-
per was obtained without employing any of the well-
known search enhancement techniques such as alpha-
beta pruning or partition search (Ginsberg 1996c).

Note, though, that it is possible to quite simply
incorporate the alpha-beta algorithm into the vector
minimaxing framework via a simple adaptation that
prunes branches based on a pointwise > (or <) com-
parison of vectors. Whether this kind of enhancement
can improve the efficiency of prm to the point where
it can tackle larger problems such as the full game of
Bridge is a topic for further research. In this context, it
is noteworthy that the 66.3% performance of Monte-
carlo sampling in our single-suit tests correlates well
with the results reported by (Ginsberg 1996a), where
the technique was found to solve 64.4% of the prob-
lems from a hard test set of complete deals. Combined
with the results of the previous sections, this extra data
point strengthens the suggestion that the accuracy of
prm will hold at 95% on larger Bridge problems.

Conclusions and Further Work

We have investigated the problem of finding opti-
mal strategies for games with imperfect information.
We formalised vector minimazing and payoff-reduction
minimazing by discussing in turn how the problems of
strategy fusion and non-locality affect the basic tech-
nique of Monte-carlo sampling. We tested these algo-
rithms, and showed in particular that payoff-reduction
minimaxing dramatically outperforms the other two,
both on simple random game trees and for an exten-
sive set of problems from the game of Bridge. For these
single-suit Bridge problems, prm’s speed and level of
performance was good enough to allow us to detect

errors in the analysis of human experts.

The application of prm to larger, real-world games,
as well as the further improvement of its accuracy, are
important topics for further research. We are also in-
vestigating algorithms that solve weakened forms of
the best defence model, for example taking advantage
of mistakes made by less-than-perfect opponents.

References
ACBL. 1994. The Official Encyclopedia of Bridge.
2990 Airways Blvd, Memphis, Tennessee 38116-3875:
American Contract Bridge League, Inc., 5th edition.
Blair, J.; Mutchler, D.; and Liu, C. 1993. Games
with imperfect information. In Games: Planning and
Learning, 1998 AAAI Fall Symposium, 59-67.
Corlett, R., and Todd, S. 1985. A Monte-carlo ap-
proach to uncertain inference. In Ross, P., ed., Pro-
ceedings of the Conference on Artificial Intelligence
and Simulation of Behaviour, 28-34.
Frank, I., and Basin, D. 1998. Search in games with
incomplete information: A case study using bridge
card play. Artificiel Intelligence. To appear.

Frank, L; Basin, D.; and Bundy, A. 1992. An adap-
tation of proof-planning to declarer play in bridge. In
Proceedings of ECAI-92, 72-76.

Frank, A. 1989. Brute force search in games of im-
perfect information. In Levy, D., and Beal, D., eds.,
Heuristic Programming in Artificial Intelligence 2. El-
lis Horwood. 204-209.

Frank, I. 1996. Search and Planning under Incom-
plete Information: A Study using Bridge Card Play.
Ph.D. Dissertation, Department of Artificial Intelli-
gence, Edinburgh. Also to be published by Springer
Verlag in the Distinguished Dissertations series.
Ginsberg, M. 1996a. GIB vs Bridge Baron: re-
sults. Usenet newsgroup rec.games.bridge. Message-
Id: <56cqmi$914@pith.uoregon.edu>.

Ginsberg, M. 1996b. How computers will play bridge.
The Bridge World. Also available for anonymous ftp
from dt.cirl.uoregon.edu as the file /papers/bridge.ps.
Ginsberg, M. 1996¢. Partition search. In Proceedings
of AAAI-96, 228-233.

Levy, D. 1989. The million pound bridge program. In
Levy, D., and Beal, D., eds., Heuristic Programming
in Artificial Intelligence. Ellis Horwood. 95-103.
Luce, R. D., and Raiffa, H. 1957. Games and
Decisions—Introduction and Critical Survey. New
York: Wiley.

Nau, D. S. 1982. The last player theorem. Artificial
Intelligence 18:53-65.

Shannon, C. E. 1950. Programming & computer for
playing chess. Philosophical Magazine 41:256-275.
von Neumann, J., and Morgenstern, O. 1944. The-
ory of Games and Economic Behaviour. Princeton
University Press.

