
Finding Paths through the World’s Photos

Noah Snavely

University of Washington

Rahul Garg

University of Washington

Steven M. Seitz

University of Washington

Richard Szeliski

Microsoft Research

Abstract

When a scene is photographed many times by different people, the
viewpoints often cluster along certain paths. These paths are largely
specific to the scene being photographed, and follow interesting re-
gions and viewpoints. We seek to discover a range of such paths
and turn them into controls for image-based rendering. Our ap-
proach takes as input a large set of community or personal photos,
reconstructs camera viewpoints, and automatically computes orbits,
panoramas, canonical views, and optimal paths between views. The
scene can then be interactively browsed in 3D using these con-
trols or with six degree-of-freedom free-viewpoint control. As the
user browses the scene, nearby views are continuously selected and
transformed, using control-adaptive reprojection techniques.

1 Introduction

Image-based rendering (IBR) has long been a fertile area of re-
search in the computer graphics community. A main goal of IBR
is to recreate a compelling experience of “being there”—virtually
traveling to a remote place or interacting with a virtual object. Most
research in IBR has focused on the rendering aspect of this prob-
lem, seeking to synthesize photo-realistic views of a scene from a
database of captured images. However, navigation is just as much a
key part of the experience. Even for the simplest scenes (e.g., a sin-
gle object), certain modes of navigation can be much more effective
than others. For more complex scenes, good controls are even more
critical to guide the user to interesting parts of the scene. As IBR
methods scale up to handle larger and larger scenes, the problem of
devising good viewpoint controls becomes increasingly important.

One solution to this problem is to carefully plan a set of de-
sired paths through a scene and capture those views. This approach
is used for many simple IBR experiences such as panoramas, ob-
ject movies [Chen 1995], and moviemaps [Lippman 1980]. While
effective, this kind of approach cannot leverage the vast majority
of existing photos, including the billions of images in community
photo collections (CPCs) found on the Internet through resources
like Flickr and Google. CPCs capture many popular world land-
marks from thousands of different viewpoints and illumination con-
ditions, providing an ideal data-set for IBR [Snavely et al. 2006].
For these types of collections, the problem is to discover or devise
the best controls for navigating each scene, based on the distribution
of captured views and the appearance and content of the scene.

For example, consider the overhead view of a reconstruction of
Statue of Liberty from 388 photos downloaded from Flickr (Fig-
ure 1). Most photos are captured from the island or from boats out
in the water, and are distributed roughly along two circular arcs.

Figure 1: Paths through photo collections. The reconstructed cam-
era viewpoints from hundreds of Flickr photos of the Statue of Lib-
erty (top) reveal two clear orbits (bottom), shown here superim-
posed on a satellite view. We seek to automatically discover such
orbits and other paths through view space to create scene-specific
controls for browsing photo collections.

This viewpoint distribution suggests two natural orbit controls for
browsing this scene. While this scene’s viewpoints have a partic-
ularly simple structure, we have observed that many CPCs can be
modeled by a combination of simple paths through the space of
captured views.

While deriving such controls is a challenging research problem,
using CPCs to generate controls also has major advantages. CPCs
represent samples of views from places people actually stood and
thought were worth photographing. Therefore, through consensus,
they tend to capture the “interesting” views and paths through a
scene. We leverage this observation to generate controls that lead
users to interesting views and along interesting paths.

In this paper, we explore the problem of creating compelling,
fluid IBR experiences with effective controls from CPCs and per-
sonal photo collections. We address both the rendering and naviga-
tion aspects of this problem. On the rendering side, we introduce
new techniques for selecting and warping images for display as the
user moves around the scene, and for maintaining a consistent scene
appearance. On the navigation side, we provide controls that make
it easy to find the interesting aspects of a scene. A key feature
of these controls is that they are generated automatically from the
photos themselves, through analysis of the distribution of recov-
ered camera viewpoints and 3D feature distributions, using novel
path fitting and path planning algorithms.

Our approach is based on defining view scoring functions that
predict the quality of reprojecting every input photo to every new

viewpoint. Our novel scoring function is used as the basis of our pa-
per’s two main contributions. The first is a real-time rendering en-
gine that continuously renders the scene to the user’s viewpoint by
reprojecting the best scoring input view, compensating for changes
in viewpoint and appearance. The second contribution is a set of
path planning and optimization algorithms that solve for optimal
trajectories through view space, using the view scoring function to
evaluate path costs.

We demonstrate our approach on a variety of scenes and for a
range of visualization tasks including free-form 3D scene browsing,
object movie creation from Internet photos or video, and enhanced
browsing of personal photo collections.

2 Related work

Creating interactive, photo-realistic, 3D visualizations of real ob-
jects and environments is the goal of image-based rendering. In
this section, we review the most closely related work in this field.

Moviemaps and Object Movies In the pioneering Moviemap
project from the late 1970’s and early 1980’s [Lippman 1980], thou-
sands of images of Aspen Colorado were captured from a moving
car and registered to a street map. Once the images were stored, a
trackball-based user interface allowed a user to interactively move
through the streets by recalling and displaying images based on the
user’s locations. The authors noted that playing “canned” image se-
quences of a scene in new orders transforms the passive experience
of watching a video into a very compelling interactive experience.

While creating the original Aspen Moviemap was a monumental
task requiring more than a year to complete, more recent efforts
have used omnidirectional video cameras and tracking systems to
simplify the image acquisition process [Aliaga and Carlbom 2001;
Taylor 2002; Uyttendaele et al. 2004]. Google StreetView has now
captured entire cities in this manner.

Chen [1995] further developed the moviemap idea to enable two
DOF rotational motion, allowing a user to interactively rotate an
object within a hemisphere of previously captured views. Although
the setup required to capture such object movies is simpler than with
more complex scene tours, creating object movies still typically
requires carefully planning and/or special equipment. EyeVision
[Kanade 2001], made famous for its use in the Superbowl, presents
a hardware solution for creating time-varying object movies of real-
time events, but requires specially calibrated and instrumented cam-
eras, and cannot be applied to unstructured photo collections.

In contrast, our work makes it easy to create not only object
movies, but also to navigate a range of more general scenes.

View Interpolation An alternative to simply displaying the
nearest image, as is done in moviemaps and object movies, is to
smoothly interpolate between neighboring views using computer
vision and image warping techniques. Early examples of these
approaches include z-buffer-based view interpolation for synthetic
scenes [Chen and Williams 1993], Plenoptic Modeling [McMillan
and Bishop 1995], and ViewMorphing [Seitz and Dyer 1996]. Spe-
cialized view interpolation techniques can also be developed using
image-based modeling techniques to reconstruct full 3D models of
the scene, such as the Facade system [Debevec et al. 1996] and
more recent large-scale architectural modeling systems [Pollefeys
et al. 2004]. The Facade system uses the concept of view-dependent
texture maps andmodel-based stereo to enhance the realism in their
texture-mapped polyhedral models. Unfortunately, view interpola-
tion and image-based modeling methods are only as good as the
3D computer vision algorithms used to build the models or depth
maps, which still have problems with the kinds of highly variable
photographs found on the Internet, though promising progress is
being made on this problem [Goesele et al. 2007].

Light Fields To best capture the full visual realism inherent
in the scene, ray-based rendering can be used to synthesize novel
views. Examples of this approach include the Light Field [Levoy
and Hanrahan 1996] and Lumigraph [Gortler et al. 1996], the Un-
structured Lumigraph [Buehler et al. 2001], and Concentric Mo-
saics [Shum and He 1999]. Our work is closest to the Unstruc-
tured Lumigraph in that an arbitrary set of images can be used as
input and for rendering. Unfortunately, these techniques require a
lot of input images to get high-fidelity results, even when 3D ge-
ometric proxies are used, so they have yet to be applied to large-
scale scenes. Applying ray-based methods to photos taken under
variable conditions (illumination, weather, exposure, etc.) is par-
ticularly problematic, in that the appearance conditions may vary
incoherently between different pixels of the same rendered image.

Photo Tourism Our original work on Photo Tourism [Snavely
et al. 2006] presented a robust technique for registering and brows-
ing photos from both Internet and personal photo collections. The
work presented here is a significant advance over Photo Tourism
and Microsoft’s related Photosynth1 in two primary ways.

First, we present a fundamentally different rendering engine that
addresses key limitations of these previous methods. The IBR ap-
proach that underlies Photo Tourism and Photosynth is based on the
assumption that the scene is well approximated by a planar facades,
enabling good results on scenes like the Notre Dame Cathedral,
the Trevi Fountain, and Half Dome. These same techniques break
down, however, for general objects that contain many sides (e.g.,
statues, monuments, people, plants, etc.) and for large rotational
motions. In addition, navigation in Photosynth and Phototourism is
based on the user selecting a photo and moving to it, and does not
support the fluid, free-form 6-DOF navigation capabilities common
in games and other interactive 3D applications. Our approach ad-
dresses both of these issues.

Second, a major focus of our paper is discovering scene-specific
controls by analyzing the distribution of camera viewpoints, appear-
ance, and scene geometry. Achieving this goal enables much more
natural and efficient exploration of many scenes that are currently
cumbersome to navigate using Photo Tourism and Photosynth. The
benefits of our approach become particularly apparent as the scenes
become more complex.

3 System overview

Our system takes as input a set of photos taken from a variety of
viewpoints, directions, and conditions, taken with different cam-
eras, and potentially with many different foreground people and
objects. From this input, we create an interactive 3D browsing ex-
perience in which the scene is depicted through photographs that
are registered and displayed as a function of the current viewpoint.
Moreover, the system guides the user through the scene by means of
a set of automatically computed controls that expose orbits, panora-
mas, and interesting views, and optimal trajectories specific to that
scene and distribution of input views.

Our system consists of the following components:

A set of input images and camera viewpoints. The input is an un-
structured collection of photographs taken by one or more photog-
raphers. We register the images using structure-from-motion and
pose estimation techniques to compute camera viewpoints.

Image reprojection and viewpoint scoring functions that evalu-
ate the expected quality of rendering each input image at any possi-
ble camera viewpoint. The reprojection process takes into account
such factors as viewpoint, field of view, resolution, and image ap-
pearance to synthesize high quality rendered views. The viewpoint
scoring function can assess the quality of any possible rendered

1http://labs.live.com/photosynth/

view, providing a basis for planning optimal paths and controls
through viewpoint space.

Navigation controls for a scene. Given the distribution of view-
points in the input camera database and view selection function, the
system automatically discovers scene-specific navigation controls
such as orbits, panoramas, and representative images, and plans op-
timal paths between images.

A rendering engine for displaying input photos. As the user
moves through the scene, the engine computes the best scoring in-
put image and reprojects it to the new viewpoint, transformed geo-
metrically and photometrically to correct for variations. To this end,
we introduce an orbit stabilization technique for geometrically reg-
istering images to synthesize motion on a sphere, and an appearance
stabilization technique for reducing appearance variation.

A user interface for exploring the scene. A 3D viewer exposes the
derived controls to users, allowing them to explore the scene using
these controls, move between different parts of the scene, or sim-
ply fly around using traditional free-viewpoint navigation. These
controls can be sequenced and combined in an intuitive way.

These components are used in the three main stages of our system.
First, an offline structure frommotion process recovers the 3D loca-
tions of each photograph. Next, we introduce functions to evaluate
the quality of reprojecting each input image to any possible new
camera viewpoint. This information is used to automatically derive
controls for the scene and optimal paths between images. Finally,
the scene can be browsed in our interactive viewer. The following
sections present these components in detail.

4 Scene reconstruction

We use our previously developed structure from motion system to
recover the camera parameters for each photograph along with a
sparse point cloud [Snavely et al. 2006]. The system first detects
SIFT features in each of the input photos [Lowe 2004], matches
features between all pairs of photos, and finally uses the matches to
recover the camera positions, orientations, and focal lengths, along
with a sparse set of 3D points. For efficiency, we run this system on
a subset of the photos for each collection, then use pose estimation
techniques to register the remainder of the photos. A more prin-
cipled approach to reconstructing large image sets is described in
[Snavely et al. 2008].

A sample of the inputs and outputs of this procedure for the
Statue of Liberty data set is shown in Figure 1.

5 Viewpoint Scoring

Our approach is based on 1) the ability to reproject input images to
synthesize new viewpoints, and 2) to evaluate the expected quality
of such reprojections. The former capability enables rendering, and
the latter is needed for computing controls that move the viewer
along high quality paths in viewpoint space. In this section we de-
scribe our approach for evaluating reprojection quality.

First some terminology. We assume we are given a database of
input images I whose camera parameters (intrinsics and extrinsics)
have been computed. The term camera denotes the viewing param-
eters of an input image. The term image denotes an input photo
I , with associated camera, from the database. The term view de-
notes an output photo v that we seek to render. A view is produced
by reprojecting an input photo, through a rendering process, to the
desired new viewpoint.

We wish to define a reprojection score S(I, v) that rates how
well a database image I can be used to render a new view v.
The best reprojection is obtained by maximizing S(I, v) over the
database, yielding a viewpoint score S(v):

S(v) = max
I
S(I, v) (1)

Ideally, S(I, v) would measure the difference between the synthe-
sized view and a real photo of the same scene captured at v. Be-
cause we do not have access to the real photo, we instead use the
following three criteria:

1. Angular deviation: the relative change in viewpoint between
I and v should be small.

2. Field of view: the projected image should cover as much of
the field of view as possible in v.

3. Resolution: I should be of sufficient resolution to avoid blur
when projected into v.

For a given image and viewpoint, each of these criteria is scored on
a scale from 0 to 1. To compute these scores, we require a geometric
proxy for each image in order to reproject that image into a view v;
the proxy geometry is discussed in Section 7.2.

The angular deviation score Sang(I, v) is proportional to the an-
gle between rays from the current viewpoint through a set of points
in the scene and rays from image I through the same points. This
is akin to the minimum angular deviation measure used in Unstruc-
tured Lumigraph Rendering [Buehler et al. 2001]. Rather than scor-
ing individual rays, however, our system scores the entire image by
averaging the angular deviation over a set of 3D points observed
by I . These points, Pts(I), are selected for each image in a pre-
processing step. To ensure that the points are evenly distributed
over the image, we take the set of 3D points observed by I , project
them into I , and sort them into a 10×10 grid of bins defined on the
image plane, then select one point from each non-empty bin. The
average angular deviation is computed as:

S
′
ang(I, v) =

1

n

∑

p∈Pts(I)

angle(p− p(I), p− p(v)). (2)

where p(I) is the 3D position of camera I , p(v) is the 3D position
of v, and angle(a, b) gives the angle between a and b. The aver-
age deviation is clamped to a maximum value of αmax (for all our
examples, we set αmax = 12◦), and mapped to the interval [0, 1]:

Sang(I, v) = 1 −
min(S′

ang(I, v), αmax)

αmax
. (3)

The field-of-view score Sfov(I, v) is computed by projecting I
onto its proxy geometry, then into v, and computing the area of the
view that is covered by the reprojected image. We use a weighted
area, with higher weight in the center of the view, as we found that it
is generally more important to cover the center of the view than the
boundaries. The weighted area is computed by dividing the view
into a grid of cells, G, and accumulating weighted contributions
from each cell:

Sfov(I, v) =
∑

Gi∈G

wi

Area(Project(I, v) ∪Gi)

Area(Gi)
, (4)

where Project(I, v) is the polygon resulting from reprojecting I
into v (if any point of the projected image is behind the view,
Project returns the empty set).

Finally, the resolution score Sres(I, v) is computed by projecting
I into v and finding the average number of pixels of I per screen
pixel. This is computed as the ratio of the number of pixels in I to
the area, in screen pixels, of the reprojected image Project(I, v):

S
′
res(I, v) =

Area(I)

Area(Project(I, v))
. (5)

If this ratio is greater than 1, then, on average, the resolution of I is
sufficient to avoid blur when I is projected onto the screen (we use

mip-mapping to avoid aliasing). We then transform S′
res to map the

interval [ratiomin, ratiomax] to [0, 1]:

Sres(I, v) = clamp

(

S′
res(I, v) − ratiomin

ratiomax − ratiomin
, ǫ, 1

)

, (6)

where clamp(x, a, b) clamps x to the range [a, b]. We use values of
0.2 and 1.0 for ratiomin and ratiomax, and enforce a non-zero min-
imum resolution score ǫ because we favor viewing a low-resolution
image rather than no image at all.

The three scores are multiplied to give the view score S:

S(I, v) = Sang(I, v) · Sfov(I, v) · Sres(I, v). (7)

6 Scene-specific navigation controls

The development of controls for navigating virtual 3D environ-
ments dates back to at least the work of Sutherland [1968]. Since
then, such controls have appeared in numerous settings: games,
simulations, mapping applications such as Google Earth, etc. Pro-
viding good navigation controls is critical for 3D interfaces in gen-
eral, whether they are based on a 3D model, IBR, or other scene
representations; without good exploration controls it can be easy to
get lost in a scene. But even beyond simply keeping the user ori-
ented, navigation controls should make it easy to carry out some set
of navigation tasks [Tan et al. 2001]. We focus mainly on tasks a
user unfamiliar with a scene might want to perform: familiarizing
oneself with its basic layout and finding its interesting parts.

In general, controls that facilitate these exploration tasks are
scene-specific. One reason is that certain types of controls natu-
rally work well for certain types of content. For instance, Ware and
Osborne [1990] showed that for scenes comprised of a dominant
object, users prefer controls for orbiting the scene (the scene-in-
hand metaphor) over controls that let the user pan the camera and
move it forward and backward (the flying vehicle metaphor). A
second reason why good controls are scene-specific is that different
scenes have different parts that are “interesting.” For instance, in
a virtual art museum, a good set of controls might naturally lead a
user from one painting to the next. Indeed, some approaches, such
as Galyean’s River Analogy [1995], simply move users automati-
cally along a pre-specified path, but give the user some freedom to
control certain parameters, such as viewing direction and speed.

CPCs can be helpful in creating controls for exploration tasks,
as they represent samples of how people actually experienced the
scene, where they stood, and what views they found interesting [Si-
mon et al. 2007]. Accordingly, the distribution of samples can help
inform what controls would help a user find and explore interesting
views, e.g., orbit controls for the Statue of Liberty. Of course, the
regions near the input samples will also be the areas where we can
likely render good views of the scene. We take advantage of this
information through a set of automatic techniques for deriving con-
trols from a reconstructed scene. The result of this analysis is a set
of scene-specific controls. For instance, the Statue of Liberty scene
shown in Figure 1 might have two scene-specific controls, one for
the inner orbit, and one for the outer orbit.

In the rest of this section, we describe the navigation modes of
our system, focusing particularly on how scene-specific controls are
discovered.

6.1 Navigation modes

Our system supports three basic navigation modes:

1. Free-viewpoint navigation.

2. Constrained navigation using scene-specific controls.

3. Optimized transitions from one part of the scene to another.

Free-viewpoint navigation. The free-viewpoint navigation
mode allows a user to move around the scene using standard 6-
DOF (3D translation, pan, tilt, and zoom) “flying vehicle” naviga-
tion controls, as well as an orbit control.

While free-viewpoint controls give users the freedom to move
wherever they choose, they are not always the easiest way to move
around complex scenes, as the user has to continually manipulate
many degrees of freedom while (at least in IBR) ideally staying
near the available photos.

Scene-specific controls. Our system supports two types of
scene-specific controls: orbits and panoramas. Each such control
is defined by its type (e.g., orbit), a set of viewpoints, and a set of
images associated with that control. For an orbit control, the set of
viewpoints is a circular arc of a given radius centered at and focused
on a 3D point; for a panorama the set of viewpoints is a range of
viewing directions from a single 3D nodal point. When a control
is active, the user can navigate the corresponding set of viewpoints
using the mouse or keyboard. In addition to scene-specific con-
trols, we also compute a set of representative canonical images for
a scene.

Transitions between controls. The final type of control is
a transition between scene-specific controls or canonical images.
Our interface allows a user to select a control or image. The user’s
viewpoint is then moved on an automated path to the selected des-
tination. The transition is computed using a new path planning al-
gorithm that adapts the path to the database images, as described
in Section 8. This method of directly selecting and moving to dif-
ferent parts of the scene is designed to make it easy to find all the
interesting views.

6.2 Discovering controls

Once a scene is reconstructed, our system automatically analyzes
the recovered geometry to discover interesting orbits, panoramas,
and canonical images.

Orbit detection. We define an orbit to be a distribution of views
positioned on a circle all converging on (looking at) a single point.
We further constrain the point of convergence to lie on the axis
passing through the center of the circle, which in our implementa-
tion must be perpendicular to the ground plane. The height of this
convergence point determines the tilt at which the object of interest
is viewed. Because full 360◦ view distributions are uncommon, we
allow an orbit to occupy a circular arc. We wish to find orbits that
optimize the following objectives, as illustrated in Figure 2:

• quality: maximize the quality of rendered views everywhere
along the arc.

• length: prefer arcs that span large angles.

• convergence: prefer views oriented towards the center of the
orbit.

• object-centered: prefer orbits around solid objects (as op-
posed to empty space).

Given these objectives, the problem of detecting orbits involves 1)
defining a suitable objective function, 2) enumerating and scoring
candidate orbits, and 3) choosing zero or more best-scoring can-
didates. One could imagine many possible techniques for each of
these steps; in what follows, we describe one approach that we have
found to work quite well in practice.

We first define our objective function for evaluating orbits. We
note that an orbit is fully specified by a center orbit axis o and an im-
age I; the image defines the radius of the circle (distance of camera
center from o), and the convergence point pfocus on the orbit axis
(pfocus is the closest point on the axis o to the optical axis of I).
Assume further that I is the point on the arc midway between the
arc endpoints.

Figure 2: Scoring an orbit. An orbit is evaluated by regularly sam-
pling viewpoints along the arc. For each such position, we want to
find a nearby image with a high reprojection score that is oriented
towards the orbit center (thus eliminating the red cameras). The
light samples score well on these objectives while the black sam-
ples do not. We search for large orbits where the sum of the sample
scores is high, and that do not contain large low-scoring gaps.

We define our objective scoring function, Sorbit(o, I), as the sum
of individual view scores, Sorbit(o, I, θ), sampled at positions θ
along the arc. To compute Sorbit(o, I, θ) at a sample location v(θ)
(the view on the arc at angle θ from I), we look for support for that
view in the set of database images I. In particular, we score each
image J ∈ I based on (a) how well J can be used to synthesize
view v (estimated using our reprojection score S(J, v)), and (b)
whether J is looking at the orbit axis. Sorbit(o, I, θ) is then the
score of the best image J at v(θ):

Sorbit(o, I, θ) = max
J∈I

{S(J, v(θ)) · fo(J)}. (8)

The convergence score fo is defined as:

fo(J) = max(0, 1 −
ψ

ψmax

) (9)

where ψ = angle(v(J), pfocus−p(J)), i.e., the angle between the
viewing direction v(J) and the ray from the optical center p(J)
of J to pfocus (we use a value of ψmax = 20◦). This term down-
weights images for which pfocus is not near the center of the field
of view.

We place a few additional constraints on the images J considered
when computing Sorbit(o, I, θ):

• pfocus must be in the field of view of J .

• The tilt of J above the ground plane is less than 45◦ (orbits
with large tilt angles do not produce attractive results).

• There are a sufficient number (we use k = 100) of 3D points
visible to J whose distance from J is less than the orbit radius.
We enforce this condition to ensure that we find orbits around
an object (as opposed to empty space).

We compute Sorbit(o, I, θ) at every degree along the circle
−180 < θ ≤ 180. For simplicity, we refer to these samples as
sθ . A good orbit will have a long arc of relatively high values of sθ .
Simply summing the values sθ , however, could favor orbits with
a few sparsely scattered good scores. Instead, we explicitly find
a long chain of uninterrupted good scores centered around I , then
sum the scores on this chain. We define this chain as the longest
consecutive interval [−θi, θi] such that the maximum sθ in each
subinterval of width 15◦ is at least ǫ = 0.01. This definition allows
for small “gaps,” or intervals with low scores, in the arc. If this
longest chain subtends an angle less than 60◦, the score of the orbit
is zero. Otherwise, the score is the sum of the individual scores in
the chain:

Sorbit(o, I) =

θi
∑

−θi

sθ. (10)

Figure 3: Density function and detected orbits for the Pantheon
dataset. The top image shows each intersection point superimposed
on the point cloud of the Pantheon. The color of each point corre-
sponds to the density of points in its neighborhood (a red point has
the highest density, a dark blue point the lowest). There are sev-
eral clear maxima of this function, including a point just behind the
front facade and a point at the altar (at the extreme left of the fig-
ure). The bottom image shows the three detected orbits as blue arcs
centered at the red orbit points.

Our strategy for enumerating candidate orbits operates in two
stages. First, we compute good orbit axes, by finding axes in 3D
space on which many database images are converged. Second, we
evaluate Sorbit(o, I) only at database images I .

To identify a set of candidate orbit axes, we take an approach
similar to that of Epshtien et al.[2007] and use the idea that an ob-
ject of interest will often occupy the center of the field of view of an
image. We first project all cameras onto the ground plane and con-
sider the 2D intersections of the optical axes of all pairs of cameras
(discarding intersection points which lie in back of either camera,
or which are not approximately equidistant from both cameras). We
compute the densityD of these intersection points at each point x:

D(x) = number of intersection points within distance w of x.

(we use w = 0.02, although this value should ideally depend on
the scale of the scene). The local maxima in this density function
identify vertical axes in the scene which are at the center of many
different photos, and are thus potentially interesting. A plot of the
density function for the Pantheon dataset is shown in Figure 3.

Next, we find the point with the highest density Dmax, then se-
lect all local maxima (points that have the highest density in a circle
of radius w and that have a density at least 0.3Dmax). These points
form the set of candidate orbit axes.

The next step is to find arcs centered at these axes. We form a set
of candidate orbits by considering all pairings of orbit axes o and
input images I and evaluate Sorbit(o, I) for each such combination.

We only accept orbits that satisfy the three constraints enumer-
ated above, i.e., that the point of convergence is in the field of view,
the tilt is less than 45◦, and a sufficient number of points are visible
in front of the orbit radius.

We now have a set of orbits and a score for each orbit. To form a
final set of orbits, we select the orbit with the highest score, remove
it and all similar orbits from the set of candidates, then repeat, until
no more orbits with a score of at least 0.5 times the maximum score
remain. Two orbits are deemed similar if the area of intersection of
the two circles defined by the orbits is at least 50% of their aver-
age area. Detected orbits for the Pantheon collection are shown in
Figure 3.

When computing viewpoint scores for orbit samples, we use a
default vertical field of view of 50 degrees and a default screen res-
olution of 1024x768 (for the purposes of computing the field of
view and resolution scores). Extending the approach to automati-
cally compute a good field of view for viewing a given orbit is an
interesting topic for future work.

Panorama detection. A panorama consists of a set of images
taken close to a nodal point. Similar to orbits, a good panorama
has good views available from a wide range of directions. To find
panoramas in a scene, we first consider each image I to be the
center of a candidate panorama and compute a panoramas score
Spano(I) for each candidate. Spano(I) is computed as the sum of
view scores S for a range of viewing directions around I:

Spano(I) =

25◦
∑

φ=−5◦

360◦
∑

θ=0◦

max
J∈I

S(J, vI(θ, φ)) (11)

where vI(θ, φ) is the viewpoint located at the optical center of im-
age I with viewing direction given by angles θ (pan) and φ (tilt). We
select the top scoring candidate panorama I∗, remove all images
that have a non-zero reprojection score for some view vI∗(θ, φ),
then repeat this process until no remaining candidate’s score is
above a threshold.

Choosing canonical images. To find canonical images, we
use the scene summarization algorithm of Simon et al.[2007]. This
algorithm seeks to capture the essence of a scene through a small
set of representative images that cover the most popular viewpoints.
It selects the images by clustering them based on their SIFT fea-
ture matches, then choosing a representative image for each cluster.
We also choose a representative image for each detected orbit and
panorama, which is shown as a thumbnail in the scene viewer. As
in [Simon et al. 2007], we represent each image I as a feature inci-
dence vector fI . fI has an entry for each 3D point pj in the scene
(or, in the case of orbits, every 3D point inside the orbit circle);
fI(j) = 1 if pj is visible in I and 0 otherwise. These vectors are
then normalized. For a given set of images S, the representative
image is chosen as: arg maxIj∈S

∑

Ik∈S,Ij 6=Ik
fIj

· fIk
, i.e., the

image whose normalized feature vector is most similar to those of
all other images in S.

7 Scene viewer

The 3D reconstruction and derived controls are used in our interac-
tive scene viewer. The viewer situates the user in the scene with
the object, exposes the derived controls to the user, and depicts
the scene by continually selecting and warping appropriate images
as the user moves. This section describes the navigation interface,
view selection, and rendering components of the viewer.

7.1 Navigation interface

Our viewer supports standard 3D translation, panning, and zoom-
ing controls, as well as an orbit control, which rotates the camera

Figure 4: Scene viewer interface. The scene viewer displays the
currently photo in the main view, and shows suggested controls in
the thumbnail pane at the bottom of the screen. The pane is cur-
rently showing detected panoramas. Arrows on the sides of the
screen indicate which directions the user can pan the view.

about a fixed 3D point or axis. Typically, the orbital motion is con-
strained to a ring around an orbit axis, as many objects are viewed
from a single elevation, but our viewer also supports orbital motion
on a sphere. When the user is moving on a discovered orbit, the
orbit axis is automatically set to be the axis discovered for that con-
trol. Alternatively the user can manually specify an orbit point by
clicking on a 3D point in the scene. Once an orbit point is defined,
the user can drag the mouse left and right to orbit around a vertical
axis, or up and down to move the viewpoint vertically (when two
dimensional orbital motion is enabled). The process is rapid and
seamless: the user simply shift-clicks on a point in the image (the
closest 3D feature defines the orbit point), and the orbit begins as
soon as the mouse is moved.

The user interface shows the pre-defined controls in a thumbnail
pane at the bottom of the screen (see Figure 4). The user can choose
between displaying pre-defined panoramas, orbits, and canonical
images. Each control is represented with a thumbnail in this pane.
The thumbnails are annotated with small arrow icons to show the
type of control. This pane is designed to make it easy to find and
explore the interesting parts of the scene.

When the user clicks on a thumbnail, the system computes a
path from the current image to the selected control as described in
Section 8 and animates the camera along that path. When the user
arrives at a panorama, left, right, up, and down arrows are drawn on
the sides of the screen indicating directions in which more images
can be found, as as shown in Figure 4. For an orbit, left and right
“orbit” arrows appear. To determine if a particular arrow cue should
be shown, the system computes the viewpoint score for the view the
user would see by moving in that direction. If the score is above a
threshold, the arrow is displayed.

7.2 Rendering

As the user moves through the scene, the viewer continually
chooses an image to display based on the reprojection score,
S(I, v), which rates how well each database image I can be used
to render the current viewpoint v (Section 5). The image with the
top score is selected as the next image to be displayed. If no image
has a non-zero viewpoint score, only the point cloud is displayed.

If the input images densely sample the space of all viewpoints
(as in Quicktime VR object movies and moviemaps), the rendering
process is straightforward—simply display the photo correspond-
ing to the desired viewpoint. In practice, however, casually ac-

oD

D

S

P

oS
oD

O

D

S

P

oS

O

Figure 5: Proxy planes should intersect the orbit point. Left: to
warp an image from view S to D, image S is projected onto the
proxy plane P , which is then rendered into D. P passes through
the orbit point o, ensuring that o is rendered to the correct position
in D. Right: P does not pass though the orbit plane, causing o to
be rendered to the wrong position.

quired image collections tend to be incomplete and irregularly sam-
pled, with objects centered and rotated differently in each image.
Hence, it is necessary to warp each image to better match the de-
sired viewpoint. This is the function of our rendering engine.

We warp an image to match a desired viewpoint by projecting
the image onto a geometric proxy. Our system normally renders
the scene using planar proxies for the scene geometry, but can also
render using a dense 3D model, if available.

Warping with proxy planes. When using planar proxy geom-
etry, we associate a plane with each image and render the image by
projecting it onto the plane and back into the virtual view. Planar
proxies are also used in the Photo Tourism system, which fits planes
to image points for use in transitions. While these best-fit planes
work well for some scenes and navigation modes, they can produce
jerky motion in situations where the user is moving rapidly through
a wide range of views. This is especially true when orbiting; while
the viewer is fixated on a particular object, the per-image best-fit
planes can stabilize different parts of the scene (including the back-
ground) in different images, causing the object to jump around from
frame to frame (please see the video for a demonstration).

Our solution to this problem is extremely simple but effective.
Suppose the user is orbiting around an orbit point o, indicating an
object of interest, and suppose we wish to render the scene cap-
tured by a “source” photo S into the “destination” viewpoint D.
Consider a proxy-plane P in the scene. We compute the warp by
perspectively projecting S onto P , then back into D. As shown in
Figure 5, making P intersect the orbit point o ensures that o projects
to the correct location in D. Hence, we can stabilize o in the ren-
dered images (make o project to the same pixel (x, y) in all views)
by 1) choosing P to intersect o for each input view, and 2) orienting
the rendered views so that the viewing ray through (x, y) for each
view passes through o. While any choice of P that passes through
o will suffice, choosing P to be parallel to the image plane of S re-
sults in well-behaved warps (Figure 6). When we wish to stabilize
an orbit axis, rather than a single point, we choose the normal to P
to be the projection of the viewing direction of S onto the plane or-
thogonal to the axis. We call this form of image stabilization orbit
stabilization.

Orbit stabilization performs a similar function to software anti-
shake methods that reduce jitter in video. However, it has the ad-
vantage of performing a globally-consistent stabilization, produc-
ing the effect of rotation about a single center, and avoiding the
drift problems that can occur with frame-to-frame video stabiliza-
tion methods. Note also that orbit stabilization does not require

x�

D

S

P

D

S

P
x x

x�

Figure 6: Proxy plane orientation. Left: If P is parallel to S’s
image plane, a point x near the orbit point will get mapped to a
nearby point x′ on P , causing a small error inD. Right: An oblique
choice of P will generally result in larger errors.

any knowledge of scene geometry, although it does require known
camera viewpoints and a reasonable orbit point.

Our system defaults to using best-fit planar proxies, until an orbit
point is selected, at which point it switches to orbit stabilization.
The user can also opt to use best-fit planes even when an orbit point
is selected, which can produce better results if the scene is truly
planar (as in the video of orbiting the facade of the Notre Dame
cathedral).

Warping with a 3D model. When a 3D scene model is avail-
able, it can be used in place of the planar proxy to further improve
rendering quality. In particular, Goesele et al.[2007] demonstrated a
multi-view stereo method capable of reconstructing dense 3D mod-
els from images on Flickr. To render an image with a 3D proxy, we
project the image onto the proxy and back into the image, and place
an additional plane in back of the model to account for unmodeled
geometry.

Using a 3Dmodel for rendering usually results in a more realistic
experience, but can also suffer from artifacts resulting from holes in
the model or from projecting foreground objects onto the geometry.
In our experience, planar proxies tend to produce less objectionable
artifacts in these situations.

Rendering the scene. The scene is rendered by first drawing a
background layer consisting of the reconstructed point cloud drawn
on top of a solid color, then rendering the currently selected image,
projected onto its proxy plane. Rather than instantaneously switch-
ing between images as new ones are selected for display, images
are faded in and out. The system maintains an alpha value for each
image; whenever a new image is selected for display, the alpha of
the previous image decays to zero, and the alpha of the new image
rises to one, over a user-specified interval of time. When the user is
moving on a planned path, the system can look ahead on the path
and fade images in early, so that each image reaches full opacity
when it becomes optimal. When the user moves on a free-form
path, this prediction is more difficult, so the system starts fading in
an image at the moment it becomes optimal.

If the user is moving fairly quickly, multiple images can simul-
taneously have non-zero alphas. We blend the images by first nor-
malizing all alphas to sum to one, then compositing the rendered
images in an off-screen buffer. This image layer is then composited
onto the background layer.

Once the photos are cached in memory, our object movie viewer
runs at over 30 frames per second with up to 1700 photos (the most
we tried) on a machine with a 3.3GHz processor and an nVidia
Quadro FX graphics card.

8 Path planning
The discrete controls supported by our system move the user au-
tomatically on a path from one image to another. Unlike in the
Photo Tourism system [2006], which performs two-image morphs,
our system can display multiple images in between the endpoints.
This makes our system much more effective for moving on long,
complex paths. In order to make effective use of intermediate im-
ages, we plan paths between pairs of images. Our path planning
algorithm attempts to find a path along which there are many good
views, so that at any point on the path the user is presented with a
high quality view of the scene. An additional benefit of constraining
the path to pass near photos in the database is that it will be more
likely to be physically plausible, e.g., to not pass through walls or
other obstacles.

Path planning, often been used in robotics, has also been used in
computer graphics for computing camera paths through a 3D envi-
ronment. For instance, Drucker and Zeltzer [1994] use planning to
help create paths through a 3D scene which satisfy task-based ob-
jectives (such as focusing on a specific object) and geometric con-
straints. In the realm of IBR, Kang et al.[2000] analyze a sequence
of images to predict which views or portions of views can be syn-
thesized. In our work, we extend these ideas to use our prediction
score to plan good camera paths.

In order to find the best path between two images given a
database of existing image samples I, suppose we have a cost func-
tion CostI(v) (to be defined shortly) over the space of possible
viewpoints, where Cost is low for viewpoints close to existing
samples, and large for distant views. The optimal path between
two viewpoints is then defined as the lowest-cost path (geodesic)
connecting them.

The dimension of the viewpoint space, however, is relatively
high (five in our interface, or six if zoom is included), and therefore
this continuous approach is computationally expensive. We instead
find a discrete solution by first computing an optimal piecewise lin-
ear path through the existing camera samples, and then smooth this
path. This discrete problem can be posed as finding a shortest path
in a transition graph GT whose vertices are the camera samples I.
GT contains a weighted edge between every pair of images

(Ij , Ik) that see common 3D points. One component of the edge
weight w(Ij , Ik) is the transition cost τ(Ij , Ik), i.e., the integral
of the cost function over a straight-line path γ(t) between Ij and
Ik. Because (Ij , Ik) represents a two-image transition, we compute
each edge weight using a cost function CostIj ,Ik

(v) that restricts
the rendering process to consider only Ij and Ik when generating
in-between views on γ(t). Thus,

τ(Ij , Ik) =

∫ 1

0

CostIj ,Ik
(γ(t)) dt. (12)

We define CostIj ,Ik
by first considering the cost of rendering a

new viewpoint with one of the images samples, Ij . In Section 5 we
defined a scoring function S for computing how well an image Ij

can be used to synthesize a new view v. We now turn this scoring
function into a cost function:

CostIj
(v) = e

α(1−S(Ij ,v)) − 1. (13)

This function evaluates to 0 when S(Ij , v) = 1, and to eα − 1
when S = 0 (for our experiments, we use a value α = 8). We now
define the two-view cost function CostIj ,Ik

over the path γ(t) as
the weighted sum of the single viewpoint cost function:

CostIj ,Ik
(γ(t)) = (1− t)CostIj

(γ(t))+ t CostIk
(γ(t)). (14)

We approximate the integral in Eq. (12) by computing the average
value of CostIj ,Ik

at 30 samples along γ(t).

Figure 7: Transition computed using path planning. We use our
algorithm to compute a transition from an image outside the Pan-
theon (green) to an image inside (red). The blue cameras are the
intermediate nodes visited on the transition graph, and the blue line
is the linearly interpolated path. The black curve shows the path
resulting from smoothing this initial discrete path, and the red lines
indicate the viewing directions at samples along this path.

If we weight edges using the transition cost alone, the shortest
paths in the graph are not guaranteed to be smooth, and could tra-
verse a convoluted path through viewpoint space. To avoid such
paths, we add a smoothness cost σ(Ij , Ik) to the edge weight w.
This cost is simply the length of the edge in viewpoint space, which
we compute as a weighted combination of the difference in position
and orientation between Ij and Ik:

σ(Ij , Ik) = ‖p(Ij) − p(Ik)‖ + β angle(v(Ij),v(Ik)), (15)

where p(I) is the 3D position of image I and v(I) is its viewing
direction. We use a value β = 3.0 in our experiments.

The final weight of an edge (Ij , Ik) is the weighted sum of the
transition cost τ and the smoothness cost σ:

w(Ij , Ik) = τ(Ij , Ik) + λσ(Ij , Ik). (16)

For our experiments, we used a value λ = 400.

Generating smooth paths. We use Djikstra’s algorithm to
compute a shortest path π∗ between two images inGT . π

∗ can also
be interpreted as a piecewise linear physical path through viewpoint
space. In order to produce a more continuous path for animating the
camera, we smooth this initial path. First, we uniformly sample π∗

to produce a sequence of viewpoint samples v0
i , i = 1 to n (we use

100 samples in our implementation). We then repeatedly average
each sample with its two neighbors, and with its original position
v0

i (in order to keep the sample close to π∗):

v
t+1
i =

1

1 + µ

(

0.5
(

v
t
i−1 + v

t
i+1

)

+ µv
0
i

)

. (17)

We iterate this smoothing for 50 rounds. The parameter µ controls
how closely the samples match π∗, versus how smooth the path
is. In our implementation we set µ = 0.02, which produces nice,

smooth paths which still stay close enough to the images along π∗

to produce good views. An example of a path computed between
two images in the Pantheon collection is shown in Figure 7.

9 Appearance stabilization

Unstructured photo sets can exhibit a wide range of lighting and
appearance variation, which can include night and day, sunny and
cloudy days, and photos taken with different exposures. The sim-
ple version of our browser displays photos based only on the user’s
current viewpoint, which can result in large changes in scene ap-
pearance as the user moves. These large, random variations can
be useful in getting a sense of the variation in appearance space of
a scene, but they can also be visually distracting. To reduce this
appearance variation, the user can enable a visual similarity mode,
which limits transitions to visually similar photos, and a color com-
pensation feature, which hides appearance changes by modifying
the color balance of new images. In addition, our system allows the
photo collection to be separated into classes, such as day and night,
to allow the user to explicitly control the appearance state of the
object.

This section describes these features in more detail. We first dis-
cuss the metric used to compute photo similarity, then describe how
this metric is incorporated into the viewer and how color compen-
sation is done. Finally, we describe how an object can be browsed
in different states.

9.1 Computing image distances

To reduce the amount of appearance variation that occurs while
viewing a scene, we first need a way to measure the visual distance
between two images. To compute this distance, we first register the
images geometrically and photometrically, then find theL2 distance
between pixel values.

Geometric alignment. To compute the distance between im-
ages I and J , we first downsample I to a resolution of 64x64 pixels,
and downsample J to approximately the same sampling rate with
respect to the scene, resulting in low-resolution images I ′ and J ′.

Next, we warp J ′ into geometric alignment with I ′. If we know
the complete scene geometry, we can use this information to pro-
duce the warped version of J ′, but since we do not assume geome-
try is available, we instead use a non-rigid 2D deformation, namely
thin-plate splines (TPS) [Bookstein 1989] to model the warp.

In particular, we project all 3D points visible to I into both I ′ and
J ′ to form a set of 2D basis points, and compute the correspond-
ing TPS deformation D mapping I ′ onto J ′ (so as to transform J ′

through an inverse warp).

Given the deformation D, for each pixel location i of I ′, we
compute the corresponding pixel location D(i) of J ′; if D(i) lies
inside J ′, we sample J ′ at D(i) using bilinear interpolation. This
results in a sequence of pairs of RGB samples:

[I ′(i1), J
′(D(i1))], [I

′(i2), J
′(D(i2))], . . . , [I

′(in), J ′(D(in))]

The TPS deformationD will not necessarily extrapolate well far
away from the basis points, i.e., we have more confidence in the
deformation near known 3D point projections. To make the image
comparison more robust to misregistration, we precompute a spatial
confidence mapWI for each image I . WI is created by centering a
2D Gaussian at the projection of each 3D point observed by I , with
standard deviation proportional to the scale of the SIFT feature cor-
responding to that point, and with height 1

2
. The Gaussians are then

summed, sampled at each pixel, and clamped to the range [0, 1].
When comparing images I and J , we sample the weight maps

WI and WJ in the same way as the images, and store the mini-
mum of the two sampled weights, giving a sequence of weights,
w1, w2, . . . , wn.

Figure 8: Similarity and color compensation. The first row shows a
sequence of images, going from left to right, from an object movie
of the Trevi Fountain resulting from orbiting the site. The second
row shows the result of orbiting through the same path with simi-
larity mode turned on. Note that a different set of images with more
similar lighting is selected. The third row shows the same images
as in the second row, but with color compensation turned on. Now
the color balance of each image better matches that of the first.

Photometric alignment. After applying a spatial warp to J ′,
we next align the color spaces of the two images. In order to achieve
invariance to exposure, we use a simple gain and offset model to
warp each color channel of I to match that of J . To achieve ro-
bustness to bad samples from misaligned or saturated pixels, we
use RANSAC [Fischler and Bolles 1987] to compute the gain and
offset, resulting in a color compensation transform CI,J .

Finally, we compute the distance measure d(I, J) as the
weighted average of color-shifted RGB samples:

d(I, J) =
1

∑

wk

n
∑

k=1

wk

∥

∥CI,J(I ′(ik)) − J
′(D(ik))

∥

∥ (18)

using RGB values in the range [0, 255].
Because it is difficult to reliably warp photos with wide baselines

into alignment, we only compute image distances between pairs of
photos that are relatively close to each other. In our viewer, it is still
possible to move a large distance when similarity mode is enabled,
via a sequence of transitions between nearby, similar images.

9.2 Browsing with similarity

At startup, the object movie viewer reads the pre-computed sim-
ilarity scores. When the similarity mode is enabled, these scores
are used to prune the set of possible image transitions and to favor
transitions between images that are more similar. This is imple-
mented by multiplying the reprojection score S(I, v) with a simi-
larity factor Ssim(I, Icurr), where Icurr is the currently displayed
image. To compute the function Ssim(I, J), we remap the interval
[dmin, dmax] to [0, 1] and clamp:

Ssim(I, J) = 1 − clamp

(

d(I, J) − dmin

dmax − dmin
, 0, 1

)

. (19)

We use values of dmin = 12 and dmax = 30. Enabling simi-
larity mode results in the selection of a sparser set of photos, so
though their visual appearance is much more stable, the motion can
be more jerky.

9.3 Color compensation

The object movie viewer can also use the pairwise RGB gain and
offset parameters estimated during similarity computation to dis-
guise changes in appearance by adjusting the color balance of new

images to match that of the previously displayed image. At run-
time, the viewer maintains a 3x4 color compensation matrix C(I)
for each image, which it applies to the rendered image using a frag-
ment shader. When color compensation is enabled, during a tran-
sition from an image I to an image J , C(J) is set to CJ,I , pre-
multipled by the color compensation already in effect for I ,

C(J) = C(I) · CJ,I .

Examples of color corrected images are shown in Figure 8. To re-
duce problems with accumulated drift over time and eventually re-
turn images to their true color balance, the matrices C(I) fade back
to the identity transform [I|0] over time.

9.4 Viewing different appearance states

As with QuickTime VR object movies, our system allows an ob-
ject to be viewed in different appearance states, such as day and
night. This feature requires the photos to be classified into sets cor-
responding to each state; once the photos are classified and a user
selects a certain state, the system will only display photos from that
state. At a given viewpoint, the user can toggle to any state for
which a photo I with non-zero viewpoint score S(I) exists.

We experimented with this feature using the Trevi Fountain data
set, which contains a large number of both daytime and nighttime
photos. We were able to semi-automatically classify the photos into
day and night sets fairly easily, using the observation that many
3D points (corresponding to SIFT features in the original images)
are highly correlated with either daytime or nighttime images. We
first hand-labeled seven daytime and seven nighttime photos, then
automatically propagated that information to other photos through
the 3D points. In particular, we iteratively updated a set of image
weights U(I) and point weights V (I) ∈ [−1, 1], where -1 corre-
sponded to a nighttime image and 1 to a daytime image. Initializing
U(I) = 1 for images labeled daytime and U(I) = −1 for im-
ages labeled nighttime, we iteratively adjusted the point and image
weights with the following update equations:

V (p) =

∑

I∈Imgs(p)
U(I)

∑

I∈Imgs(p)
|U(I)|

, U(I) =
1

|Pts(I)|

∑

p∈Pts(I)

V (I),

where Pts(I) is the set of points visible in image I , and Imgs(p)
is the set of images in which point p is visible. In other words,
points that were seen in mostly “night” (resp. “day”) images are
labeled as “night” (resp. “day”) points, and vice versa. For the
Trevi Fountain data set, the update steps converged after about five
iterations, and cleanly separated the images into daytime (U(I) >
0) and nighttime (U(I) < 0) sets.

Please see the accompanying video for an example of toggling
between day and night states at the Trevi Fountain.

10 Results
We have applied our system to several large collections of images
downloaded from Flickr. Please refer to the companion video to see
interactions with these scenes in our viewer. Two of these scenes
consist of dominant objects and provide an object movie experi-
ence: the Statue of Liberty, created from 388 photos, and the Venus
de Milo, created from 461 images. Our system detected two or-
bits for the Statue of Liberty, and one orbit for the Venus de Milo.
Our reconstruction of the Notre Dame Cathedral (created from 597
photos) has a wide distribution of camera viewpoints on the square
in front of the Cathedral, and is therefore well suited for free-form
6-DOF navigation. This is a case where automatic orbit detection is
less useful, as you can produce a good orbit from almost anywhere
on the square, as shown in the video. Our reconstruction of the
Trevi Fountain (1771 photos) contains a large numbers of both day-
and night-time images, making this a good candidate for evaluating
both appearance stabilization and also state-based modes.

We also demonstrate how our system makes it easy to create an
object movie experience by manually rotating a hand-held object in
front of a camera. In this case, the user manually specified a sphere
of orbits, as our current implementation does not support spherical
orbit detection.

Finally, we demonstrate our system with a collection of photos
of the Pantheon (602 images), a relative complex scene consisting
of both interior and exterior views. For this scene, our system de-
tected three orbits, several panoramas, and a number of canonical
images, including photos of the front facade, the altar, the oculus,
and several sculptures inside the building. The accompanying video
shows sample interactions with each of these types of controls, and
demonstrates the results of our path planning algorithm. We also
created a 3D slideshow of a collection of personal photos taken at
the Pantheon, by planning paths between the personal photos using
the community photos to fill in the gaps.

11 Discussion

We have successfully used our approach to create IBR experiences
for several different community photo collections. However our ap-
proach also has several limitations. Our geometric model for orbits
is a circle, whereas many paths around objects are ellipses, lines,
or more freeform shapes. In the future, it would be interesting to
explore the detection of more general types of paths in a scene, per-
haps by unifying our path planning algorithm with our orbit and
panorama detection algorithms. An additional challenge is to de-
vise better rendering algorithms for these more general paths, as
orbit stabilization is not applicable.

In our current system, zoom is handled differently than other
viewing parameters when computing paths, because we found that
it is difficult to produce good transitions while both adjusting the
field of view and moving the virtual view. Developing a principled
way of integrating zoom into our path planning and orbit detection
algorithms is an interesting direction for future work.

Our color compensation method works well for images that
are fairly similar, so it goes hand in hand with the similarity
mode. However, because our color compensation only models sim-
ple transformations, compensating two very different images (e.g.,
sunny and cloudy) can result in unstable estimates and limit the
number of possible transitions between images. Developing a more
flexible appearance compensation model would help avoid these
problems. It would be interesting to explore more sophisticated im-
age models that detect and treat foreground objects, such as people,
separately from the scene (e.g., removing them during transitions,
or popping them up on their own planes).

In summary, we have developed a new approach for creating
fluid 3D experiences with scene-specific controls from unstructured
community photo collections. We believe that our techniques rep-
resent an important step towards leveraging the massive amounts of
imagery available both online and in personal photo collections in
order to create compelling 3D experiences of our world.

Acknowledgements. We thank Kevin Chiu and Andy Hou for
their invaluable help with this project. This work was supported
in part by National Science Foundation grants IIS-0413198, IIS-
0743635, and CNS-0321235, the Office of Naval Research, Mi-
crosoft, and an endowment by Rob Short and Emer Dooley.

Many thanks to the following people for allowing us to re-
produce their photos in our paper and video (the full name and
Flickr user ID are listed; photos for a user can be found at http:
//www.flickr.com/photos/flickr-id/): Storm Crypt
(storm-crypt), James McPherson (jamesontheweb), Wolfgang We-
denig (wuschl2202), AJP79 (90523335@N00), Tony Thomp-
son (14489588@N00), Warren Buckley (studio85), Keith Bar-
low (keithbarlow), beautifulcataya (beautifulcataya), Smiley Ap-
ple (smileyapple), crewealexandra (28062159@N00), Ian Turk

(ianturk), Randy Fish (randyfish), Justin Kauk (justinkauk), Air-
plane Lane (photons), Katie Holmes (katieholmes), Cher Kian Tan
(70573485@N00), Erin Longdo (eel), James McKenzie (jmcken-
zie), Eli Garrett (portenaeli), Francesco Gasparetti (gaspa), Emily
Galopin (theshrtone), Sandro Mancuso (worldwalker), Ian Mon-
roe (eean), Noam Freedman (noamf), morbin (morbin), Margrethe
Store (margrethe), Eugenia and Julian (eugeniayjulian), Allyson
Boggess (allysonkalea), Ed Costello (epc), Paul Kim (fmg2001),
Susan Elnadi (30596986@N00), Mathieu Pinet (altermativ), c©
Ariane Gaudefroy (kicouette), Briana Baldwin (breezy421), An-
drew Nguyen (nguy0833), Curtis Townson (fifty50), Rob Thatcher
(pondskater) (rob@hypereal.co.uk), Greg Scher (gregscher).

References

ALIAGA, D. G., AND CARLBOM, I. 2001. Plenoptic stitching: A
scalable method for reconstructing 3D interactive walkthroughs.
In SIGGRAPH Conf. Proc., 443–450.

BOOKSTEIN, F. L. 1989. Principal warps: Thin-plate splines
and the decomposition of deformations. IEEE Trans. on Pattern
Analysis and Machine Intelligence 11, 6, 567–585.

BUEHLER, C., BOSSE, M., MCMILLAN, L., GORTLER, S., AND

COHEN, M. 2001. Unstructured lumigraph rendering. In SIG-
GRAPH Conf. Proc., 425–432.

CHEN, S., AND WILLIAMS, L. 1993. View interpolation for image
synthesis. In SIGGRAPH Conf. Proc., 279–288.

CHEN, S. E. 1995. QuickTime VR – an image-based approach
to virtual environment navigation. In SIGGRAPH Conf. Proc.,
29–38.

DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Mod-
eling and rendering architecture from photographs: a hybrid
geometry- and image-based approach. In SIGGRAPH Conf.
Proc., 11–20.

DRUCKER, S. M., AND ZELTZER, D. 1994. Intelligent camera
control in a virtual environment. In Proc. of Graphics Interface,
190–199.

EPSHTIEN, B., OFEK, E., WEXLER, Y., AND ZHANG, P. 2007.
Hierarchical photo organization using geometric relevance. In
ACM Int. Symp. on Advances in Geographic Information Sys-
tems.

FISCHLER, M., AND BOLLES, R. 1987. Random sample con-
sensus: a paradigm for model fitting with applications to image
analysis and automated cartography. Readings in computer vi-
sion: issues, problems, principles, and paradigms, 726–740.

GALYEAN, T. A. 1995. Guided navigation of virtual environments.
In SI3D ’95: Proc. Symposium on Interactive 3D Graphics, 103–
104.

GOESELE, M., SNAVELY, N., SEITZ, S. M., CURLESS, B., AND

HOPPE, H. 2007. Multi-view stereo for community photo col-
lections. In Proc. Int. Conf. on Computer Vision.

GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN,
M. F. 1996. The lumigraph. In SIGGRAPH Conf. Proc., 43–54.

KANADE, T., 2001. Carnegie Mellon goes to the Su-
perbowl. http://www.ri.cmu.edu/events/sb35/

tksuperbowl.html.

KANG, S. B., SLOAN, P.-P., AND SEITZ, S. M. 2000. Visual
tunnel analysis for visibility prediction and camera planning. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
2195–2202.

LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering. In
SIGGRAPH Conf. Proc., 31–42.

LIPPMAN, A. 1980. Movie maps: An application of the optical
videodisc to computer graphics. In SIGGRAPH Conf. Proc., 32–
43.

LOWE, D. 2004. Distinctive image features from scale-invariant
keypoints. Int. J. of Computer Vision 60, 2, 91–110.

MCMILLAN, L., AND BISHOP, G. 1995. Plenoptic modeling:
An image-based rendering system. In SIGGRAPH Conf. Proc.,
39–46.

POLLEFEYS, M., VAN GOOL, L., VERGAUWEN, M., EST, F. V.,
CORNELIS, K., TOPS, J., AND KOCH, R. 2004. Visual mod-
eling with a hand-held camera. Int. J. of Computer Vision 59, 3,
207–232.

SEITZ, S. M., AND DYER, C. M. 1996. View morphing. In
SIGGRAPH Conf. Proc., 21–30.

SHUM, H.-Y., AND HE, L.-W. 1999. Rendering with concentric
mosaics. In SIGGRAPH Conf. Proc., 299–306.

SIMON, I., SNAVELY, N., AND SEITZ, S. M. 2007. Scene sum-
marization for online image collections. In Proc. Int. Conf. on
Computer Vision.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2006. Photo
tourism: exploring photo collections in 3D. In SIGGRAPH Conf.
Proc., 835–846.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2008. Skeletal
sets for efficient structure frommotion. In Proc. Computer Vision
and Pattern Recognition (to appear).

SUTHERLAND, I. E. 1968. A head-mounted three dimensional
display. In Proc. Fall Joint Computer Conf., 757–764.

TAN, D. S., ROBERTSON, G. G., AND CZERWINSKI, M. 2001.
Exploring 3d navigation: combining speed-coupled flying with
orbiting. In Proc. Conf. on Human Factors in Computing Sys-
tems, ACM Press, 418–425.

TAYLOR, C. J. 2002. VideoPlus: a method for capturing the struc-
ture and appearance of immersive environments. IEEE Transac-
tions on Visualization and Computer Graphics 8, 2 (April-June),
171–182.

UYTTENDAELE, M., CRIMINISI, A., KANG, S. B., WINDER, S.,
SZELISKI, R., AND HARTLEY, R. 2004. Image-based inter-
active exploration of real-world environments. IEEE Computer
Graphics and Applications 24, 3, 52–63.

WARE, C., AND OSBORNE, S. 1990. Exploration and virtual
camera control in virtual three dimensional environments. In
Proc. Symposium on Interactive 3D Graphics, ACM Press, 175–
183.

