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We report a new algorithm for constructing pathways between local minima that involve a large
number of intervening transition states on the potential energy surface. A significant improvement
in efficiency has been achieved by changing the strategy for choosing successive pairs of local
minima that serve as endpoints for the next search. We employ Dijkstra’s algorithmfE. W. Dijkstra,
Numer. Math.1, 269 s1959dg to identify the “shortest” path corresponding to missing connections
within an evolving database of local minima and the transition states that connect them. The metric
employed to determine the shortest missing connection is a function of the minimized Euclidean
distance. We present applications to the formation of buckminsterfullerene and to the folding of
various biomolecules: the B1 domain of protein G, tryptophan zippers, and the villin headpiece
subdomain. The corresponding pathways contain up to 163 transition states and will be used in
future discrete path sampling calculations. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1931587g

I. INTRODUCTION

The discrete path samplingsDPSd approach1–3 provides
a means to sample pathways corresponding to “rare events”
using a coarse-grained framework based on the underlying
potential energy surfacesPESd. The PES can be formally
partitioned into the catchment basins of local minima,4 while
rate constants for transitions between these basins can be
estimated using the statistical rate theory once transition
states5–9 on the basin boundaries have been found. Here we
adopt the geometrical definition of a transition state as a
stationary point on the PES with a single negative Hessian
eigenvalue, following Murrell and Laidler.10 Minima are sta-
tionary points with no negative Hessian eigenvalues.

Two minima may be connected via a single transition
state if they are sufficiently close to each other in configura-
tion space. More generally, local minima may interconvert
via any number of multistep paths, and the minimum number
of elementary steps will depend upon the isomers in
question.2 Here we consider an elementary step as a rear-
rangement that involves a single transition state. Locating
multistep pathways on a complex PES can be a difficult task.
Double-ended methods11–37usually do not reveal all the tran-
sition states at once, mainly because of the existence of mul-
tiple barrier height and path length scales.38 Consecutive
double-ended searches have proved to be an efficient way of
working around the above problem, and this strategy was
adopted in our previous work.1,37 An essential part of this
approach is a mechanism to incorporate the information ob-
tained in all the previous searches into the next one. Various
strategies can be adopted, the most general and effective be-
ing the one based on the Euclidean separation, and we refer
the reader to the original publications for details.1,37

A guess for the initial pathway is required for most
double-ended searches. Linear interpolation is a straightfor-

ward way to automate this part of the calculation.30–33,37For
large endpoint separations guessing the initial pathway can
be difficult, and there is a large probability of finding many
irrelevant stationary points at the beginning of the calcula-
tion.

Due to the discrete nature of the double-ended methods,
such as nudged elastic band31,32 sNEBd and doubly nudged
elastic bandsDNEBd,37 which use a series of images to rep-
resent the path, the candidate transition states obtained from
such searches usually need to be optimized further.35,37 For
this purpose we employ eigenvector-following methods.39–51

The connectivity is obtained by following the two unique
steepest-descentsSDd paths downhill from each transition
state. In our calculations the refinement of transition states
and the calculation of approximate steepest-descent paths are
the most time-consuming steps.

The connection algorithm described in Ref. 37 uses one
double-ended search per cycle. However, we have found that
this approach can be overwhelmed by the abundance of sta-
tionary points and pathways for complicated rearrangements.
In the present contribution we introduce the idea of an un-
connected pathway and make the connection algorithm more
focused by allowing more than one double-ended search per
cycle. This approach, in combination with some other modi-
fications described in Sec. II, greatly reduces the computa-
tional demands of the method and has allowed us to tackle
more complicated problems. The new algorithm has been
implemented within ourOPTIM package, and a public domain
version will be made available for download from the
internet.52 The examples presented below each involve the
search for an initial connection between distant endpoints for
use in subsequent DPS calculations, which will be described
in future publications. The DPS approach is a coarse-grained
analog of dynamical path sampling53,54 based upon discreteadElectronic mail: dw34@cam.ac.uk
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paths of connected minima and the intervening transition
states. The initial paths considered in the present work pro-
vide a starting point for such calculations, where new paths
are generated by successively replacing segments of an
evolving reference path.1–3 The final result is a database of
local minima and transition states, which can then be sub-
jected to kinetic analysis in various ways to extract phenom-
enological rate constants.1,3

II. METHODS

A. Outline of the connection algorithm

A detailed description of the previous version of our
connection algorithm was provided elsewhere.37 Each itera-
tion consists of one double-ended transition state search, fol-
lowed by refinement of transition state candidates usingshy-
bridd eigenvector-following,39–51 and calculation of
approximate steepest-descent paths for each transition state
to establish the connectivity. Double-ended transition state
searches employed the doubly nudged elastic band
algorithm37 to provide a guess for the transition state be-
tween a given pair of minima. For multistep paths there will
be more than one such structure, and each of these geom-
etries is subsequently used as the starting point for a hybrid
eigenvector-following calculation49,50 to provide tightly con-
verged transition states. The paths connecting each transition
state to the two corresponding minima were calculated by
energy minimization using a modified version of Nocedal’s
L-BFGS algorithm.55,56

We classify all the known local minima into three cat-
egories:S minima, which are connected to the starting struc-
ture, F minima, which are connected to the final structure,

andU minima, which are so far unconnected to theS andF
sets.U minima can be connected between themselves but not
to any S or F minima. When a connection is established
between members of theU and theS or F sets, the uncon-
nected minimum and all the minima connected to it become
members ofS or F, respectively. If a connection is found
between members of theS and F sets then the algorithm
terminates.

Before each cycle a decision must be made as to which
minima to try and connect next. Various strategies can be
adopted, for example, selection based on the order in which
transition states were found1 or selection of minima with the
smallest separation in Euclidean distance space.37 However,
when the endpoints are very distant in configuration space,
neither of these approaches is particularly efficient. The
number of possible connections that might be tried simply
grows too quickly if theS, F, and U sets become large.
However, the new algorithm described below seems to be
very effective.

B. A Dijkstra-based selector

The modified connection algorithm we have used in the
present work is based on a shortest path method proposed by
Dijkstra.57,58 We can describe the minima that are known at
the beginning of each connection cycle as a complete
graph,59 G=sM ,Ed, whereM is the set of all minima andE
is the set of all the edges between them. Edges are consid-
ered to exist between every pair of minimau andv, even if
they are in differentS, F, or U sets, and the weight of the
edge is chosen to be a function of the minimum Euclidean
distance between them,60

wsu,vd = 50, if u andv are connected via a single transition state,

`, if nsu,vd = nmax,

fsDsu,vdd, otherwise,
6 s1d

wherensu,vd is the number of times a pairsu,vd was se-
lected for a connection attempt,nmax is the maximal number
of times we may try to connect any pair of minima, and
Dsu,vd is the minimum Euclidean distance betweenu andv.
f should be a monotonically increasing function, such as
fsDsu,vdd=Dsu,vd2. We denote the number of minima in the
setM =SøUøF asm and the number of edges in the setE
ase=msm−1d /2.

Using the Dijkstra algorithm57,58and the weighted graph
representation described above, it is possible to determine
the shortest paths between any minima in the database. The
source is selected to be one of the endpoints. Upon termina-
tion of the Dijkstra algorithm, a shortest path from one end-
point to the other is extracted. If the weight of this pathway
is nonzero, it contains one or more “gaps.” Connection at-

tempts are then made for every pairsu,vd of adjacent
minima in the pathway with nonzerowsu,vd using the
DNEB approach.37

The computational complexity of the Dijkstra algorithm
is at worstOsm2d, and the memory requirements scale in a
similar fashion. The most appropriate data structure is a
weighted adjacency matrix. For the calculations presented in
this paper, the single-source shortest path problem was
solved at the beginning of each cycle, which altogether took
less than 10% of the total execution time for the largest da-
tabase encountered.

We emphasize here that once an initial path has been
found, the perturbations considered in typical DPS calcula-
tions will generally involve attempts to connect minima that
are separated by far fewer elementary rearrangements than
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the endpoints. It is also noteworthy that the initial path is
unlikely to contribute significantly to the overall rate con-
stant. Nevertheless, it is essential to construct such a path to
begin the DPS procedure.

The nature of the definition of the weight function al-
lows the Dijkstra algorithm to terminate whenever a second
endpoint, or any minimum connected to that endpoint via a
series of elementary rearrangements, is reached. This obser-
vation reduces the computational requirements by an amount
that depends on the distribution of the minima in the data-
base among theS, U, and F sets. One of the endpoints is
always a member of theSset, while the other is a member of
the F set. Either one can be chosen as the source, and we
have found it most efficient to select the one from the set
with fewest members. However, this choice does not im-
prove the asymptotic bounds of the algorithm.

III. RESULTS

A. Buckminsterfullerene

Various suggestions61–79 have been made for the forma-
tion mechanism of buckminsterfullerene80,81 in the gas
phase. In total, there are 1812 different C60 fullerene
isomers,82,83 which probably interconvert via the “pyra-
cylene” or “Stone–Wales”sSWd rearrangement.84 This pro-
cess has been investigated in several previous studies,85–92

and the most accurate calculations93,94 yield a picture of the
energy landscape that is quite similar to that obtained using a
tight-binding potential.90,95 The latter model96–98 was there-
fore used in this initial pathway calculation to minimize the
computational expense, which is significantly greater than
for analytical empirical potentials.99 The present calculation
therefore has most in common with the annealing study of
Xu and Scuseria,100 although the latter work did not involve
transition state calculations.

An initial high-energy starting point was constructed by
simply placing 60 carbon atoms in a container and minimiz-
ing the energy. The resulting structure, which contains a
number of large rings and chains, including polyacetylene
fragments, is shown in Fig. 1. Although the structure of the
buckminsterfullerene endpoint is well known, it is not at all
clear which would be the best permutational isomer to at-
tempt a connection with, since the endpoints are so different.
The distance between these structures was minimized with
respect to permutation-inversion isomers, center of mass, and
orientational coordinates. However, this connection still pre-
sents a significant challenge and required 383 cycles of the
Dijkstra-based algorithm to achieve a complete pathsFig. 1d.

An enlarged view of the pathway for the last two steps is
also shown in Fig. 1. Both rearrangements correspond to the
SW process mentioned above.84 The first step converts a
patch containing seven, six, and two five-membered rings
into a patch with three six-membered rings and one five-
membered ring. The second step involves a more conven-
tional process linking two patches that both contain two six-
membered and two five-membered rings. The energy profile
in this part of the pathway is consistent with the pattern of
high barriers previously discussed for the low-energy region
of the PES.90,94,95 The present results suggest that further

investigation of paths involving nonfullerene C60 isomers
may be worthwhile, although we note once again that this
initial path may not be dynamically significant.

B. GB1 hairpin

The GB1 hairpin consists of residues 41–56 from the
C-terminal fragment of the B1 domain of protein G. It forms
a b hairpin both in the complete protein101 and for the iso-
lated fragment in solution.102 A number of previous experi-
mental and theoretical studies have been conducted for this
system,103–115including a DPS investigation.116 Obtaining an
initial path between unfolded and hairpin conformations in
the latter study was not an easy task, and the new algorithm
speeded up this part of the calculation by at least a couple of
orders of magnitude.

The CHARMM program117 has previously been interfaced
to our OPTIM code,52 which includes a wide variety of algo-
rithms for locating stationary points and characterizing path-
ways, and now includes the Dijkstra-based connection ap-
proach. As for the previous DPS study we employed the

FIG. 1. Top: connected path between a high-energy C60 cluster and buck-
minsterfullerene. The path contains 82 transition states, and required
383 cycles of the Dijkstra-based connection algorithm, including 1620
DNEB searches.V is the potential energy in hartree ands is the integrated
path length in bohr. Bottom: enlargement of the above plot for the last two
SW rearrangements. The atoms mainly involved in these two steps are
shaded, and both local minima and transition state structures are indicated at
appropriate points along the path.
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CHARMM19 force field with the EEF1 implicit solvation
model.118 The path illustrated in Fig. 2 consists of 163 tran-
sition states and was found in 126 cycles of the Dijkstra-
based algorithm. It connects a partially collapsed non-native
structure, with two turns, to a conformation from the native
hairpin ensemble.

C. Tryptophan zippers

Tryptophan zippers are stable fast-foldingb hairpins de-
signed by Cochranet al.,119 which have recently generated
considerable interest.120,121In the present work we have ob-
tained native to denatured state rearrangement pathways for
five tryptophan zippers: trpzip 1, trpzip 2, trpzip 3, trpzip 3-I,
and trpzip 4. The notation is adopted from the work of Du
et al.121 All these peptides contain 12 residues, except for
trpzip 4, which has 16. Tryptophan zippers 1, 2, 3, and 3-I
differ only in the sequence of the turn. Experimental mea-
surements of characteristic folding times for these peptides
have shed some light on the significance of the turn sequence
in determining the stability and folding kinetics of peptides
with the b-hairpin structural motif.121

To model these molecules we used a modified
CHARMM19 force field,117 with symmetrized asparagine
sASNd, glutaminesGLNd and tyrosinesTYRd dihedral angle
and CTER improper dihedral angle terms, to ensure that
rotamers of these residues have the same energies and
geometries.122 Another small modification concerned the ad-
dition of a nonstandard amino acid, D-proline, which was
needed to model trpzip 3. The implicit solvent modelEEF1

was used to account for solvation,118 with a small change to
the original implementation to eliminate discontinuities.123

We have used the Dijkstra-based connection algorithm to
obtain folding pathways for all five trpzip peptides. In each
case the first endpoint was chosen to be the native state struc-
ture, which, for 1, 2, and 4 trpzips, was taken from the Pro-
tein Data BanksPDBd.124 There are no experimental struc-
tures available for 3 and 3-I, so for these peptides the first
endpoint was chosen to be the putative global minimum ob-
tained using the basin-hopping method.125–127 The second

endpoint was chosen to be an extended structure, which was
obtained by simply minimizing the energy of a conformation
with all the backbone dihedral angles set to 180°. All the
stationary pointssincluding these obtained during the con-
nection procedured were tightly converged to reduce the root-
mean-squared force below 10−10 kcal mol−1 Å−1.

Each of the five trpzip pathway searches was conducted
on a single Xeon 3.0-GHz CPU and required less than 24 h
of CPU time. The timings could certainly be improved by
optimizing the various parameters employed throughout the
searches. However, it is more important that the connections
actually succeed in a reasonably short time. It only requires
one complete path to seed a DPS run, and we expect the DPS

FIG. 3. Energy profiles for native to denatured state rearrangements of
tryptophan zippers found by the Dijksta-based connection algorithm. For
each profile the number of steps in the pathway, the number of connection
algorithm cycles, the total number of DNEB searches, and the total number
of stationary points in the databasesrecorded upon termination of the algo-
rithmd are shown. The total number of stationary points is presented in the
form sm,td, where m is the number of minima andt is the number of
transition states. The potential energyV is given in the units of kcal/mol, and
the integrated path lengths is given in the units of angstrom.

FIG. 2. Connected path between non-native andb-hairpin conformations
for the GB1 peptide. The path contains 163 transition states, and required
126 cycles of the Dijkstra-based connection algorithm, including 1610
DNEB searches.V is the potential energy in kcal/mol ands is the integrated
path length in angstrom.
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procedure to reduce the length of the initial path by a least a
factor of two in sampling the largest contributions to the
effective two-state rate constants. The results of all the trpzip
calculations are shown in Fig. 3.

D. Villin headpiece subdomain

The villin headpiece subdomain is the thermostable 35-
residue C-terminal section of the headpiece domain of
chicken villin protein. The sequence used for the NMR struc-
ture determination128 included an additional methionine resi-
due at the N-terminus from the expression system; thus, we
are considering the 36-residue entity here, PDB code 1VII.
The structure consists of a bundle of three short helices and a
closely packed hydrophobic core. The three helices are num-
bered from the N-terminus to the C-terminus. A turn con-
nects helices 2 and 3, and helices 1 and 2 are joined by a
loop.

Its small size and fast foldingsa folding time on the
order of tens of microseconds129,130d make the villin head-
piece subdomain an attractive target for computational stud-
ies, including the 1-ms explicit-water molecular-dynamics
sMDd simulation of Duan and Kollman.131–143 Our DPS
study of the villin headpiece subdomain employed the
UNRES united-residue force field and model,144–146in which
two interaction sites are assigned to each residue: one repre-
senting the main chain peptide group and one representing
the side chain.

As for the GB1 hairpin, the construction of an initial
path with the original connection algorithm proved difficult,
and a considerable increase in both the efficiency and the
success rate was attained with the Dijkstra-based strategy.
The example path illustrated in Fig. 4 contains 62 transition

states and required 142 cycles of the Dijkstra-based algo-
rithm. In this rearrangement, which connects a partially
folded minimum to the locally minimized PDB structure,
helices 2 and 3 are completed, the C-terminal residues pack
correctly between helices 1 and 3, and the three helices adopt
their native relative orientations.

IV. CONCLUSIONS

Discrete path sampling calculations of effective two-
state rate constants require an initial path consisting of local
minima and the transition states that connect
them.1–3,116,147,148For complex rearrangements the number of
elementary steps involved may be rather large, and new
methods for constructing an initial path are needed. This path
does not need to be the shortest, or the fastest, but it does
need to be fully connected. In the present work we have
described a connection procedure based upon Dijkstra’s
shortest path algorithm, which enables us to select the most
promising paths that include missing connections for subse-
quent double-ended searches. We have found that this ap-
proach, which is now implemented within theOPTIM

package,52 enables initial paths containing more than a hun-
dred steps to be calculated automatically for a variety of
systems. Some typical results have been presented for buck-
minsterfullerene, trpzip peptides, the GB1 hairpin, and the
villin headpiece subdomain. These paths will be employed to
seed future discrete path sampling calculations.
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