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Abstract

In machine lip-reading there is continued debate and research

around the correct classes to be used for recognition.

In this paper we use a structured approach for devising

speaker-dependent viseme classes, which enables the creation

of a set of phoneme-to-viseme maps where each has a different

quantity of visemes ranging from two to 45. Viseme classes

are based upon the mapping of articulated phonemes, which

have been confused during phoneme recognition, into viseme

groups.

Using these maps, with the LiLIR dataset, we show the

effect of changing the viseme map size in speaker-dependent

machine lip-reading, measured by word recognition correctness

and so demonstrate that word recognition with phoneme clas-

sifiers is not just possible, but often better than word recogni-

tion with viseme classifiers. Furthermore, there are intermedi-

ate units between visemes and phonemes which are better still.

Index Terms: visual-only speech recognition, computer lip-

reading, visemes, classification, pattern recognition

1. Introduction

Although visemes are yet to be formally defined, many possi-

bilities can be found across literature [1, 2, 3, 4]. Here we use

the definition “a viseme is a visual cue representative of a subset

of phonemes on the lips”. Therefore, a set of viseme classifiers

is inherently smaller than a set of phoneme classifiers. Whilst

this means that there are more training samples per class (ad-

dressing the limitation of currently available dataset sizes), this

also introduces generalisation between articulated sounds. So,

to find optimal viseme classes, we need to minimise this gener-

alisation in order to maximise recognition of correct utterances,

but also maximise the use of the data available.

The relationship between phonemes (the units of acoustic

speech) and visemes (the units of visual speech) can be de-

scribed with Phoneme-to-Viseme (P2V) maps. In [1] it is shown

how these maps can be derived automatically from phoneme

confusions. A by-product of the method is that we can control

how many visemes we need. This allows considerable precision

when answering questions about the optimal number and nature

of visemes.

2. Data

Our selected dataset is LiLIR [5]. This data consists of 12

British speakers (seven male and five female), 200 utterances

per speaker of resource management context independent sen-

tences from [6] which totals around 1000 words. The original

videos were recorded in high definition and in a full-frontal po-

sition. Individual speakers are tracked using Active Appearance

Models [7] and we extract features of concatenated shape and

appearance information.

The pronunciation dictionary used throughout these experi-

ments is British English [8] which we take to be represented by

46 phonemes.

3. Method

A high level overview of our method is shown in Figure 1 and

is described in [1]. We begin by performing word recognition

using classifiers based upon phoneme labels. This provides us

with both a baseline to benchmark against and, crucially, a set

of confusion matrices for each speaker which are used to cluster

together potential monophones.

However, we undertake a different clustering process (sec-

tion 3.2) during which we make a new P2V mapping each time a

phoneme is re-classified to a new viseme grouping, thereby de-

riving up to 45 (subject to the number of phonemes recognised

during the phoneme recognition stage) P2V maps per speaker.

These new classifiers (visemes) are then used to repeat our word

recognition task.

We use the word recognition as our performance measure as

this normalises for variance in training samples for each set of

classifiers. We note that it is not the performance itself which is

relevant here, rather it is any improvement a variance in classes

can provide. The reader should also note that we are not sug-

gesting our clustering process will deliver the optimum visemes

but rather address our need in this case for a method to enable a

controlled comparison of the visemes.

3.1. Step one: phoneme recognition

We implement 10-fold cross-validation with replacement [9],

of 200 sentences per speaker, 20 are randomly selected as test

samples and these are not included in the training folds. Us-

ing the HTK toolkit [10] to use Hidden Markov Model (HMM)

classes, we flat-start the HMMs, re-estimate them 11 times with

forced alignment between seventh and eighth estimates. Our

prototype is based upon a Gaussian mixture of five compo-

nents and three state HMMs. We use a single-state tied short-

pause, or ‘sp’ HMM for short silences between words in the

sentence utterances. We also use a bigram word network to sup-

port recognition. There are a maximum of 46 phonemes within

our phoneme recognition results, but not all speakers used all

phonemes within their speech utterances.

3.2. Step two: speaker-dependent phoneme clustering

We cluster the phonemes into new visemes classes as follows;

we have 10 confusion matrices for each speaker (one from each

fold), these are summed together to form one confusion matrix

representing all confusions for that speaker. We start with this

phoneme confusion matrix:

[Km]ij = N(p̂j |pi) (1)
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Figure 1: Three step process for word recognition from visemes.

Viseme Phonemes

V01 /ax/

V02 /v/

V03 /oy/

V04 /f/ /zh/ /w/

V05 /k/ /b/ /d/ /th/ /p/

V06 /l/ /jh/

V07 /g/ /m/ /z/ /y/ /ch/ /dh/ /s/ /r/ /t/ /sh/

V08 /n/ /hh/ /ng/

V09 /ea/ /ae/ /ao/ /uw/ /oh/ /ia/ /ey/ /ua/ /er/

V10 /ay/ /aa/ /ah/ /aw/ /uh/ /ow/ /ih/ /iy/ /az/ /eh/

Table 1: An example P2V map, this is the P2V for Speaker 01

with ten visemes

where the ijth element is the count of the number of times

phoneme i is classified as phoneme j. Our algorithm works

with the column normalised version,

[Pm]ij = Pr{pi|p̂j} (2)

the probability that, given a classification of pj that the

phoneme really was pi. The subscript m in Km and Pm in-

dicates that Km and Pm have m2 elements (m phonemes).

We merge phonemes by looking for the two most confused

phonemes and hence create a new class with confusions

Km−1, Pm−1.

Specifically for each possible merged pair, Pr, Ps, we cal-

culate a score:

q = [Pm]rs + [Pm]sr = Pr{P̂ r|Ps}+ Pr{Pr|P̂ s} (3)

Phonemes are assigned to one of two classes, V&C, vow-

els and consonants. Vowels and consonants can not be mixed.

The pair with the highest q is merged. Equal scores are broken

randomly. This process is repeated until M = 2. Each inter-

mittent step, M = 45, 44, 43...2 forms a possible set of visual

units.

This is a more formal approach than used in [1] and incor-

porates their conclusions that vowel and consonant phonemes

should not be clustered together when devising phoneme-to-

viseme mappings. An example P2V mapping is shown in Ta-

ble 1.

3.3. Step three: viseme recognition

Similar to Step one, we implement 10-fold cross-validation with

replacement [9], of 200 sentences per speaker, 20 are randomly

selected as test samples and these are not included in the train-

ing folds. Using the HTK toolkit [10] to use Hidden Markov

Model (HMM) classes, we flat-start the HMMs, re-estimate

them 16 times over with forced alignment between seventh and

eighth estimates.

Our prototype is based upon a gaussian mixture of five com-

ponents and three state HMMs. We use a single-state tied short-

pause, or ‘sp’ HMM for short silences between words in the sen-

tence utterances. We also use a bigram word network to support

recognition, apply a grammar scale factor of 1.0 (shown to be

optimum in Howell’s thesis [11]) and apply a transition penalty

of 0.5.

This time around we have viseme classes to use as recog-

nizers. By using these sets of classes which have shown in step

one are confusing on the lips, we perform recognition for each

class set. In total this is 45, where the smallest set is of two

classes (one with all the vowel phonemes and the other all the

consonant phonemes), and the largest set is of 45 classes with

one phoneme in each - a repeat of the phoneme recognition task

but using only phonemes which we know to have been identifi-

able.

4. Discussion

We note that word recognition performance of the HMMs can

be measured by both correctness, C, and accuracy, A, of the

recognition classes,

C =
N −D − S

N
, (4)

A =
C − I

N
, (5)

where S is the number of substitution errors, D is the number

of deletion errors, I is the number of insertion errors and N the

total number of labels in the reference transcriptions [10].

Figure 2 (subfigures a-l), show the correctness for all 12

speakers. Viseme sets containing fewer visemes produce more

viseme strings that represent more than one word: homophones.

An example of a homophone in these data are the words ‘port’

and ‘bass’. Using Speaker 1’s 10-viseme P2V map these both

become ‘v5 v9 v7’ i.e. a single identifier for identifying two

words. Thus distinguishing between ‘port’ and ‘bass’ becomes

impossible. The effect of these can be seen on the left side of

the graphs in Figure 2.

Although the correctness scores are low they are all sig-

nificantly above chance. The results for each speaker vary but

the overall trend is very clear. Superior performances are to be

found with larger numbers of visemes. Note that, had we re-

ported viseme error (as is commonplace) then this effect is not

visible and the imperative for large numbers of visemes would

be missed.

Also in Figure 2 (subfigures a-l), class sets are highlighted

in red and labelled which show where a particular combination

of two previous viseme classes delivers a significant improve-

ment in recognition. These combinations are listed in Table 2.

Whilst there is no apparent pattern through these pairings, this

does further reinforce our knowledge that all speakers are visu-

ally unique and how difficult finding a set of cross-talker viseme

sets will be when different phonemes require alternative group-

ing arrangements for each individual.

As has been noted before [12] the conventional wisdom

which is that visemes are needed for lip-reading is not bourne

out by these experiments. However it is an over simplification
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(c) Speaker 3 (d) Speaker 4
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(e) Speaker 5 (f) Speaker 6
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(k) Speaker 11 (l) Speaker 12

Figure 2: Individual speaker word recognition in correctness C for all viseme map sizes



Speaker Set No Vi Vj Set No Vn

SP01 35 /s/ /r/ /dh/ 34 /s/ /r/ /dh/

SP02 22 /d/ /z/ /y/ 21 /d/ /z/ /y/

SP03 34 /b/ /ch/ /zh/ 33 /b/ /ch/ /zh/

SP03 31 /zh/ /b/ /ch/ /z/ 30 /zh/ /b/ /ch/ /z/

SP03 25 /p/ /r/ /ng/ 24 /p/ /r/ /ng/

SP05 17 /ae/ /eh/ 16 /ae/ /eh/

SP06 35 /ae/ /ah/ /iy/ 34 /ae/ /ah/ /iy/

SP09 12 /b/ /w/ /v/ /jh/ /hh/ 11 /b/ /w/ /v/ /jh/ /hh/

SP12 36 /ah/ /ao/ 34 /ah/ /ao/

Table 2: Viseme class merges which improve word recognition

Speaker 1 2 3 4 5 6 7 8 9 10 11 12

Phoneme C 0.045 0.060 0.058 0.049 0.063 0.063 0.055 0.090 0.063 0.071 0.061 0.064

Table 3: Phoneme correctness values for each speaker, these are on the right hand side of each respective subfigure in Figure 2
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Figure 3: Word recognition measured by correctness of the classifiers. Error bars show ± one standard error.

to assert that better lip-reading can be achieved with phonemes

than visemes. It is true that, generally speaking, larger numbers

of visemes out-perform smaller numbers, but the curves in Fig-

ure 2 are far from monotonic. Even Figure 3, which is the mean

performance over all speakers, is not monotonic.

There are a number of proposed phoneme-to-viseme maps

in the literature, typically they generate between 10 and 20

visemes (see [1] for a summary) - the well known Lee set has six

consonant visemes and five vowels [13]; Jeffers eight & three

[14] and so on. Looking at Figures 2 & 3 there is certainly a

rapid drop-off in performance for fewer than ten visemes but

the region between ten and 20 contains the optimum viseme set

for three out of the 12 speakers which is no more than chance.

In other words, for each speaker there is an optimal number

of visual units (shown by the best performing result in Figure 2)

but that optimal number is not related to any of the conventional

viseme definitions, nor is the number of phonemes. The correct-

ness of the phoneme recognition for each speaker is shown in

Table 3.

The two factors at play in these graphs are, the underlying

accuracy with which the visual units represent the mouth shape

and appearances versus the introduction of homophones. For

large numbers of visemes we are close to phonetic recognition,

(with fewer homophones) but we run the risk of visual units

which are not visually very distinctive - several of the HMM

models will “match” on a particular sub-sequence. This latter

problem creates a decoding lattice in which there are several

near equal probability paths which, in turn, implies that state-

of-the-art language models would improve results still further.



5. Conclusions

We have described a method that allows us to construct any

number of visual units. We remind the reader that we are not

proposing that our visemes are the best, our priority in this case

is a method for enabling comparison of viseme sets in a con-

trolled manner.

The presence of an optimum is a result of two competing

effects. In the first, as the number of visemes shrinks the num-

ber of homophones rises and it becomes more difficult to recog-

nise words (correctness drops). In the second, as the number

of visemes rises we run out of training data to learn the sub-

tle differences in lip-shapes (if they exist), so again, correctness

drops.

Thus, the optimum number of visual units lies beween one

and 45. In practice we see this optimum is between the number

of phonemes and eight (which is the size of one of the smaller

viseme sets).

For future work we are interested to extend these methods

to work across speakers with a view to identify combinations of

phonemes which can improve more than an single speaker.

6. References

[1] H. L. Bear, R. W. Harvey, B.-J. Theobald, and Y. Lan, “Which
phoneme-to-viseme maps best improve visual-only computer lip-
reading?” in Advances in Visual Computing. Springer, 2014, pp.
230–239.

[2] T. Chen and R. R. Rao, “Audio-visual integration in multimodal
communication,” Proceedings of the IEEE, vol. 86, no. 5, pp. 837–
852, 1998.

[3] C. G. Fisher, “Confusions among visually perceived consonants,”
Journal of Speech, Language and Hearing Research, vol. 11,
no. 4, p. 796, 1968.

[4] T. J. Hazen, K. Saenko, C.-H. La, and J. R. Glass, “A
segment-based audio-visual speech recognizer: Data collection,
development, and initial experiments,” in Proceedings of the 6th

International Conference on Multimodal Interfaces, ser. ICMI
’04. New York, NY, USA: ACM, 2004, pp. 235–242. [Online].
Available: http://doi.acm.org/10.1145/1027933.1027972

[5] Y. Lan, B.-J. Theobald, R. Harvey, E.-J. Ong, and R. Bowden,
“Improving visual features for lip-reading.” in AVSP, 2010, pp.
7–3.

[6] W. M. Fisher, G. R. Doddington, and K. M. Goudie-Marshall,
“The darpa speech recognition research database: specifications
and status,” in Proc. DARPA Workshop on speech recognition,
1986, pp. 93–99.

[7] I. Matthews and S. Baker, “Active appearance models revisited,”
International Journal of Computer Vision, vol. 60, no. 2, pp.
135–164, 2004. [Online]. Available: http://www.springerlink.
com/openurl.asp?

[8] Cambridge University, UK. (1997) BEEP pronounciation dictio-
nary. [Online]. Available: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.
speech/dictionaries/beep.tar.gz

[9] B. Efron and G. Gong, “A leisurely look at the bootstrap, the jack-
knife, and cross-validation,” The American Statistician, vol. 37,
no. 1, pp. 36–48, 1983.

[10] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. A.
Liu, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchec, and
P. Woodland, The HTK Book (for HTK Version 3.4). Cambridge
University Engineering Department, 2006. [Online]. Available:
http://htk.eng.cam.ac.uk/docs/docs.shtml

[11] D. L. Howell, Confusion Modelling for Lip-Reading. PhD thesis.
University of East Anglia, 2014.

[12] T. J. Hazen, “Visual model structures and synchrony constraints
for audio-visual speech recognition,” Audio, Speech, and Lan-

guage Processing, IEEE Transactions on, vol. 14, no. 3, pp. 1082–
1089, 2006.

[13] S. Lee and D. Yook, “Audio-to-visual conversion using hidden
markov models,” in PRICAI 2002: Trends in Artificial Intelli-

gence. Springer, 2002, pp. 563–570.

[14] J. Jeffers and M. Barley, Speechreading (lipreading). Thomas
Springfield, IL:, 1971.

http://doi.acm.org/10.1145/1027933.1027972
http://www.springerlink.com/openurl.asp?
http://www.springerlink.com/openurl.asp?
ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz
ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz
http://htk.eng.cam.ac.uk/docs/docs.shtml

	1  Introduction
	2  Data
	3  Method
	3.1  Step one: phoneme recognition
	3.2  Step two: speaker-dependent phoneme clustering
	3.3  Step three: viseme recognition

	4  Discussion
	5  Conclusions
	6  References

