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Abstract

In this paper the problem of computing the point correspondences in 3-
frames of a sequence of time-varying images of a 3D object undergoing non-
rigid (affine) motion is addressed. It is assumed that the images are obtained
through weak-perspective projections. The correspondences are established
only from the analysis of the unknown affine structure of the object, with-
out, making use of any attributes of the feature points. It is shown that
it. is possible to establish the point correspondences uniquely (upto symme-
try) in the sense that they yield a unique affine structure of the object and
that, the computation is possible in polynomial time. Further, two differ-
ent, algorithms for computing the point correspondences are presented and
theoretical results regarding the correctness of the solutions are provided.
Results, on real image data demonstrate that the algorithms are fast and
robust.

1 Introduction

Finding correspondences between point configurations in a monocular sequence of time
varying images of a 3D object undergoing arbitrary motion is a long standing problem
in Computational Vision. Such correspondences are essential for motion tracking, esti-
mation of motion parameters and determining the structure of the 3D object. In this
paper we address the problems of i) establishing the point, correspondences over three
frames of a sequence of weak-perspective views of a single 3D object undergoing affine
(non-rigid) motion, and ii) determining the affine structure of the object. Such a solution
at the bootstrap stage of tracking of a 3D object can be used to predict the images in
the subsequent frames making subsequent tracking a simple task.

The correspondence problem and the structure/motion analysis problem have typi-
cally been treated separately. On the one hand, most, approaches for establishing cor-
respondences between successive frames have relied on the principle that under small
motion the image features of corresponding points are similar [1, 2, 3, 4, 5]. On the other
hand, most approaches to feature-based motion analysis [6, 7, 8, 9, 10] have assumed
that point correspondences between successive frames are already established and have
addressed the problem of determining the structure and/or motion. In a recent paper
which is significant, to our approach, Koenderink and van Doom [11] have shown that it
is possible to uniquely determine the affine structure of a 3D non-rigid object from the
point correspondences in two weak-perspective views. The successes of these approaches
are crucially dependent on the correctness of the assumed correspondence.
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In contrast, we derive the constraints for the correspondence process from the un-
known structure itself. In fact, the primary aim of the present investigation is to examine
to what extent the correspondences can be established only from such constraints. The
use of local structures/features can only enhance the performance of our method.

In a similar approach Lee and Huang [12] have shown that, for the case of rigid-body
motion and weak-perspective projections, given the correspondences of four non-coplanar
(of which any three are non-collinear) points in two frames, the matches of all other
points are restricted to lie along a specific straight line. They have used this constraint
to give a polynomial time algorithm (exhaustive) to establish the point correspondences
between two frames. However, this epipolar restriction only provides a necessary condi-
tion for the correspondences of all other points. We show that under the assumptions
of affine (non-rigid) motion and weak-perspective projections, by considering the three
frame correspondence problem centered on the middle frame, it becomes possible to de-
rive additional constraints to make the correspondences unique (upto symmetry). Based
on these constraints we present two alternative schemes for solving the three frame cor-
respondence problem. The first is a fast polynomial time backtracking algorithm for the
traversal of the search tree. Our second scheme is a randomized algorithm, based on
the relaxation labeling framework, which invokes the constraints to solve the three frame
correspondence problem. We provide theoretical results regarding the correctness of our
algorithms and compare the applicability of the two algorithms under different situations.

The main assumptions of our paper are i) The motion of the object between any
two time frames is an arbitrary 3D affine transformation, and ii) the views are weak-
perspective projections of the 3D object (a 3D affine transformation followed by ortho-
graphic projection).

The rest of the paper is organized as follows. In Sec. 2 we bring out the relationship
between the correspondence problem and the affine structure and show that the three
frame correspondence problem has a unique solution (upto symmetry). In Sec. 3 we
describe the search algorithm for solving the three frame correspondence problem and
examine its time complexity. In Sec. 4 we describe our randomized algorithm and prove
its correctness. In Sec. 5 we present results for some real image data.

2 The Relationship between the Affine Struc-
ture and Motion Correspondence

In this section we examine how the motion correspondence problem is related to the
unknown affine structure of a AD non-rigid object undergoing affine motion.
Let A = (AuA2,...,An), B = (Bi,B2,...,Bn) and C = (Cs, C 2 , . . . , C n ) be three n

point configurations of a 3D object in affine motion. Thus these configurations are
affine transformations of each other. Let A = (Ai,A2,... ,An), B = (B\, B2,. • •, Bn),
C — (C\, (?2, • • •, Cn) be three orthographic projections of A, B and C respectively.
Thus, A, B and C are weak perspective views of the object in affine motion. Without
loss of generality, we assume that A is the middle frame and B, A and C is the sequence
of time-varying images under consideration, and address the problem of simultaneously
establishing the correspondences between ,4 to B and A to C.

In what follows, we derive the constraints for establishing the correspondences from
the unknown affine structure of the object. To this end, we first bring out the fact that,
under general motion, it is possible to derive the affine structure of the object, uniquely,
from the point correspondences between any two views, say A and B [11].

2.1 The Affine Structure from Motion Theorem

Note, that two sets of 2D point configurations, say A and B, are similar (equivalent upto
uniform scaling and rotation) if the affine motion between A and B is a case of fronto-
parallel translation or a rotation about an axis parallel to the viewing direction. We call
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such motions degenerate. In this subsection, we describe the affine structure from motion
theorem considering only non-degenerate motions. The treatment follows [11].

Let the point correspondences in A and B be given and let A\, A2 and A3 be three
non-collinear points. Since they are projections of the world points Ai, A2 and A3
respectively, we can assign the 3D aflfine coordinates (0,0,0), (1,0,0) and (0,1,0) to
A\, A2 and /I3, and this assignment completely fixes the 2D affine basis for the plane
formed by A\, A2 and ^3- If /(•) is the 2D affine transformation induced between the
images A and B by the correspondence of the first three points (i.e., f(Ai) — Bi for
i = 1, 2, 3), then, the vector Bi — f(At) along the image plane can be taken as the third
basis vector for the 3D object. In fact, it is easy to show [11] that repeating the above
operation with a fifth point Ak, we obtain a vector Bk — f(Ak), which must be parallel
to B\ — f(Ai). Thus, it is possible to assign unique affine coordinates (a,/?, 7) to any
other world point Ak where the coordinates a and /? are obtained by expressing Ak as
an affine combination of A\, A2 and A3, and 7 is given by the ratio of the lengths of the
parallel vectors Bk - f{Ak) and 5 4 - f(AA )•

2.2 The Constraints for 3-frame, AfRne Structure Preserv-
ing Correspondence

Our objective is to simultaneously obtain the point correspondences between set A to
B and set A to C such that the affine structure of the 3D object is preserved. In other
words, the affine structure derived from the correspondences in A to C must be identical
to that derived from A to B. This observation and the affine structure from motion
result described in the previous sub-section gives us the following theorem.

Theorem 2.1 Consider non-degenerate motions from B to A and A to C. Sup-
pose that the three frame correspondences for four non-coplanar points are given such
that (B^Bi.Bi.Bi) (^,,^,^,.4,) < (C,,C2,C3,Ct). Let / ( ) and g() be the
2D affine transformations induced by the correspondences of the first three points, i.e.,
f(A,) = B, and g(Ai) = C, for i = 1,2,3. Then tlie necessary and sufficient conditions
for Bu and Ck to be corresponding points of an arbitrary fifth point Ak (such that a
unique affine structure is obtained) are

(a) Bk - f(Ak) is parallel to Bt - f(At)

(b) C'k — g(Ak) is parallel to C\ — g{Ai)

While conditions (</) and (b) in the above theorem specify the matching directions for
points Bk and Ck respectively, the third condition fixes the 3D affine coordinate of the
point Ak uniquely and guarantees the preservation of the affine structure. Any three
frame correspondence which satisfies the above three conditions for all possible choice of
5 points yields a unique affine structure for the object. Thus, these conditions can be
viewed as constraints for the correspondence process. Lee and Huang [12] consider the
2-frame correspondence problem and give the condition (a) in the above theorem as a
necessary condition. In fact, it becomes necessary to consider the 3-frame correspondence
problem to obtain the sufficient condition also. However, if either of the motions between
B to A or A to C is degenerate, the third basis vector cannot be found at all, and,
consequently, the constraints derived from the above theorem cannot be applied. In such
a case the 3D affine structure of the object cannot be determined. The correspondence
problem then reduces to a 2D affine point matching problem between two frames. The
resulting constraint is then given by the following theorem.

Theorem 2.2 Consider degenerate motion from B to A. Suppose the two frame corre-
spondences for 3 non-collinear points are given such that (B\, B2, B3) « • (A\, A2, A3).
Let / () 6e the 2D affine transformation induced by the correspondences of these three
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points,i.e., f(Ai) = B, for i = 1, 2, 3. Then the necessary and sufficient condition for Bk
to be the corresponding point, of an arbitrary fourth point Ak is f(Ak) = Bk-

It is important to note that while the constraints derived from the above theorems
guarantee a unique affine structure (2D or 3D), they by no means guarantee that there is
a unique way of establishing the 3-frame correspondence. If the object has some inherent
symmetry then more than one correspondence can satisfy the constraints derived from the
above theorems. However, all such correspondences will yield a unique affine structure
and will be considered correct for our purpose.

In what follows we present our algorithms for establishing the three frame correspon-
dence. We assume that either both the motions (from B to A and A to C) are degenerate
or both are non-degenerate. If only one of them is non-degenerate, then no structure pre-
serving constraints can be invoked and the correspondence problem will have to be solved
as two independent 2-frame problems.

3 The Search Algorithm for the Correspondence
Problem

In what follows we describe the search algorithm for obtaining a solution to the corre-
spondence problem and examine its time complexity. The algorithm is similar to the
alignment method in object recognition [13]. We assume that each point A, has k po-
tential matches in each of B and C on the average.
Algorithm

1. Choose four points in A such that any three are non-collinear. There are O(k*) pos-
sible matches of these four points in either B or C. Thus there are O(k6) possible
three frame correspondences of these four points. Each of these correspondences
define the affine basis for each of the two 2-frame correspondences.

2. Check each one of these O(fc8) four point correspondences to see whether the
affine structure (either 3D if the four point correspondence yields the third basis
vector, or 2D if it. doesn't) is preserved for any of the O(k2) possible three frame
correspondences of a pre-determined fifth point A, £ A. Go to Step 3 when such
a four point correspondence is found.

3. W t̂h the three frame correspondence of four points found in Step 2 attempt to
determine an affine structure preserving three frame correspondence ( from the
O(k2) possible ones) for each of the remaining n. — 5 points. If affine structure
cannot be preserved for more than 20% of these points, backtrack to step 2 and
select another three frame correspondence of the four points.

The worst case complexity for Step 2 in the above algorithm is O(fc10), and the com-
plexity of Step 3 is O(nk2). Thus worst case complexity, when backtracking is necessary
for each of the three frame correspondences of four points, is O{nki0). Note that in such
a case exhaustive enumeration occurs and with this time complexity it is possible to find
all possible structure preserving three frame correspondences. However, the preservation
of the affine structure in the three frame correspondence of five points almost always
indicates a correct, correspondence, and the average time complexity of the algorithm
to find one structure preserving correspondence is only O(k10 -\-nk2). Note that this
is a pessimistic bound because many of the O(fc8) four point mapping are usually not
one-to-one and can be discarded without, any further checks.

The algorithm presented above is fast and reliable as verified by our results presented
in Sec. 5. However it relies heavily on the initial choice of four points in A (Step 1). This
may pose problems in practice in the case of spurious or missing points. Considering
different initial choice of four points in A increases the time complexity considerably. In
view of this, we present a. randomized algorithm in the next section which is driven by
repeated random choices of the four basis points.
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4 A Relaxation Algorithm for the Correspon-
dence Problem

In this section, we present an algorithm for solving the 3-frame correspondence problem
of finding a mapping M : A —' B x C such that a unique affine structure can be
obtained. We pose the correspondence problem in the framework of Relaxation Labeling
(RL) [14] and solve it using a cooperating team of Learning Automata (LA) [15]. To pose
the 3-frame correspondence problem in the framework of relaxation labeling, we consider
two coupled relaxation processes. For both the processes we identify the object set O
as A = (Ai,A-2,..., An). For the first process we identify the label sets as A1 = B Vi,
and for the second process we identify the label sets as A1 = C Vi. The weighted label
assignments for the two processes are given as

£l = <ph{Xf), Xf €B, iTphiXf) = 1 \
i= ] ,2 n

p2 = J P2,(Ap). Xf € C, £ p2i(Xf) = 1 I
I >=' J . = 1,2,...,»

(1)

where, p\,{Xf) and />2,(Ap) are the probabilities of choosing the labels A* and Xf for
object A, from the sets B and C by the two processes respectively. Thus, for each Ai,
the labels are chosen from the sets B and C independently.

We solve the relaxation labeling problem using a cooperative team of Learning Au-
tomata [15]. A Learning Automaton can be considered as a simple decision making
device. It has a set of actions and the decision it has to make is choosing an action.
The automaton functions in a random environment which supplies a random reaction
for every choice made by the automaton. The automaton learns to choose that action
which has the highest expected value of environmental reaction. For this, the automaton
maintains a probability distribution over the set of actions and at each instant it chooses
an action at random depending on the probability distribution. Then, using the ran-
dom reaction supplied by the environment, it updates the action probability distribution
through a Learning Algorithm.

For solving the labeling problem using a team of Learning Automata, we associate
a Learning Automaton with each object. O, and identify its action set as the label set
A'. Let p\k) = (p(ik)(Al ),...,;>!•*'(AJjJ) l>e the action probability distribution of the

automaton O, (Object and Automaton used synonymously) at instant k. Here, p\ (A)
is the probability of O, choosing the action (label) A at instant k.

The automata team functions as follows. Each automaton O, starts with a initial
probability distribution p\ over its label set. At each instant k, each of the automata
O, chooses a label at random depending on p'*'. This results in a tentative labeling of
the objects by the team. For this choice, a reaction which depends on the constraints
is supplied to each automaton Ot. Let /?,, denote the response to O; when it chooses
the action A .̂ ftiq = 0 or 1 (penalty/reward) depending on whether the constraints are
violated or satisfied.

Using this response l3,q, each automaton O, updates its action probability distribu-
tion using the LR-I (Linear Reward-Inaction) [15] learning algorithm described by the
following equation.

Vk,+iiK) = P$iK)-atfqpUxi.) Vr^q (2)
Here 0 < a < 1 is a constant.

A convergence result for the above algorithm is given in [15]. In what follows we
describe the LA algorithm for establishing the three frame correspondence. Algorithm
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Start with initial labeling £(0) such that

pi' and p2; are uniform distribntionss over the label sets
Set. k = 0.

1. Selection of labels

for each Ai(i = 1,2,..., n) do (simultaneously)
choose a label Xf £ A s according to pi'
choose a label Af € Ac according to p2l

t
k)

2. Generation of responses

for each Ai do
randomly (uniform) select four other object points A} Ak Ai Am

such that i ^ j ^ k ^ / ^ m and Ai Aj Ak are non-collinear

Let. /() be the 2D affine transformation that maps
A.AjAk to Xf Xf Xf

Let </() be the 2D affine transformation that maps
At Aj Ak to XY Xj Xk

Let V't — Af - f(A,), V2 Xfn - f(Am)

V3 -— Af — g(Ai), \'i -— A ,̂ — g(Am)

Case
a) V\ = V2 — V3 = V4 = 0 : (degenerate case)

b) V\ l| V-} , V3 || \\ and r̂- = p*- : (non-degenerate case)

lhxB !hxc '••— I'
else

l'i\f P>Xf
 u

end.

3. Update pi'*' and p2'*' through the LR-I scheme described in Eqn. 2

if k > T (a pre-determined number) stop else GO TO 1.

It can be shown [16] that an object, point. Ai can have incorrect labels A; and A,
((Xf ^ Bi) or (Af ^ Ci)) only if there exists (k — 1) other object points such that these
(k — 1) points together with A, preserve some affine structure (distinct from the correct
one) and it > 5, k > m. where m is the number of object points with correct labels.

5 Results

In this section, we present, results for some real test data. However, to apply the algo-
rithms presented above in practical situations, we make several modifications. The epipo-
lar constraint for matching can never be strictly satisfied because the weak-perspective
approximation is always violated by real images. Consequently, to determine whether
vectors / ( ^ O — B* and f(Ak) — Bk are parallel, we test whether the perpendicular
projection of the point. f(Ak) — Bk on to the direction given by f(A\) — Bt is less than a
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Figure 1: The three frames of a toy jeep undergoing non-degenerate motion. The bright
crosses are the corners considered for the 3-frame correspondence

Figure 2: The numbered corners in the three frames for the toy jeep undergoing non-
degenerate motion

threshold T\. We also assume that a vector f(Au) — Bk is the zero vector if its distance
from the origin is less than same threshold Tj. Further, we restrict the label sets for
the point A, to only those points in B and C which fall within a fixed radius (say R) of
Ai. This restriction not only speeds up the algorithms significantly, but also limits the
number of possible correspondences by breaking the symmetry. In all our experiments
we assume such restrictions. However, note that our algorithms are perfectly valid even
without this restriction.

Example 5.1 Our first example is with real image data of a toy jeep undergoing non-
degenerate motion. The images were grabbed from sufficient distance to ensure that the
weak perspective approximation is not severely violated. The three images are given
in Fig. 1 with the corners considered for the 3-frame correspondence marked as bright
crosses. These points were selected from the output of a state of the art corner detection
algorithm [17]. These corners with their number labels are shown in Fig. 2. The label set
for each point in the middle frame was restricted to those falling within a 30 pixel radius
in the other two frames. With this restriction, the typical size of each label set was 3 to
5. A threshold of 5 pixels was used to detect the parallelism and a threshold of 0.2 was
used to check the equality of the third coordinates. The LA algorithm was run for 300
iterations which took about 1.5 minutes on a SUN spark station. The search algorithm
took about 15 sees on the average with different rearrangements of the input list. The
results are given in Table 1.

Example 5.2 Our second example is with real image data of a toy jeep undergoing
degenerate motion. The three images are given in Fig. 3 with the corners considered for
the 3-frame correspondence marked as bright, crosses. These corners with their number
labels are shown in Fig. 4. The various parameters chosen for this example were identical
to the previous one. Correct convergence was obtained for all the object points and the
results are given in Table 2.
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Table 1: Results on real perspective images of a toy jeep undergoing nondegen-
erate motion

Points in
Middle
Frame

1
2
3

4
5
6
7
8
9
10
11
12

Label Set
(First Frame)

{1,2,5,12}
1,2,5
2,3,9
4,7,9

{2,3,5}
6,10
7,11

\s\
{4,9}

{6,9,10}
{11,12}
{1,12}

Label Set
(Third Frame)

{1,2,12}
{1,2,3,5}

3,5

4,9'
{3,5
{6,10}
{4,7}
{8,11}

{3,4,9,10}
6,10
7,11

{1,2,12}

Search
Final Label

Pairs

(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)

n,v(8,8)
(9,9)

(10,10)
(11,11)
(12,12)

Relaxation
Final Label

Pairs

(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)
(7,7;
(8,8)
(9,9)

(10,10)
(11,11)
(12,12)

Figure 3: The three frames for the toy jeep undergoing degenerate motion

Figure 4: The numbered corners in the three frames for the toy jeep undergoing degen-
erate motion
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Table 2: Results on real perspective images of a toy jeep undergoing degenerate
motion

Points in
Middle
Frame

1
2
3

4
5
6
7
8
9
10
11
12
13

14

Label Set
(First Frame)

{1,2,3,14}
{2,4,5,6}

{2,3,13,14}
{4,5,6,10}

{5,6,7,8,10}
{6,10}

{7,9,10,11,12}
{7,8,9,10,11,12}

{9}
9,10,11}
9,10,11}

{7,9,11,12}
{8,13}

{4,5,8,13,14}

Label Set
(Third Frame)

{1\
{1,2,3,4.14}

{1,3}
2,4,5,14
2,4,5,14
{ 4,5,6}

{5,7,8,12}
{8,13,14}

{7,8,9,10,11,12}
{7,8,10,11}

{7,8,9,10,11,12}
{5,6,7,8,12}
{3,13,14}

{1,2,3,13,14}

Search
Final Label

Pairs

(1.1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)

(%v(8,8)
(9,9)

(10,10)
(11,11)
(12,12)
(13,13)
(1444)

Relaxation
Final Label

Pairs

(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)
(7,V
(8,8)
(9,9)

(10,10)
(11,11)
(12,12)
(13,13)
(14,W

6 Conclusion

We have addressed the problem of computing the point correspondences in 3-frames of
a sequence of time-varying images of a 37? non-rigid object undergoing affine motion.
We have assumed that the images are obtained using weak-perspective projections. We
have shown that it is possible to compute the 3-frame point, correspondences uniquely
(upto symmetry) using only the constraints derived from the unknown affine structure of
the object (see also [18, 19]). Further, this computation is possible in polynomial time.
We have presented two algorithms for computing the 3-frame correspondences. Our first
algorithm is based on a deterministic search technique while the second is based on a
stochastic relaxation framework. We have also presented results on some real image data.

The primary aim of this paper has been to examine to what extent the point corre-
spondences can be established only from an analysis based on the unknown affine struc-
ture of the object. Hence we have not made use of any local attributes of the feature
points. However, the similarity of local features can be used to enhance the performance
of both our algorithms. In the search algorithm, the point correspondences based on
local features can be used to determine the four initial points and the sequence in which
the search can be conducted. In the relaxation algorithm similarity of local features can
be used to bias the initial probability distributions for the coupled relaxation processes
towards the correct matches. Thus the use of local features can increase the speed of
computation for both our algorithms.

The basic computation in both our algorithms is the verification of the preservation of
affine structure for a three frame correspondence of five points. In the Search algorithm
this operation has to be performed O(k +nk2) times. In practice, however, the Search
algorithm works much faster than this because many of the O(k9) four point mappings
are not one-to-one and can be discarded straight away. Further, it is seldom necessary to
check all of these four point mappings, and the correct one can be found much faster. In
the Relaxation Algorithm this operation has to be performed O(nT) times (where T is
the number of iterations), But the relaxation algorithm requires the expensive floating
point computations for the generation of random samples and the update of probability
vectors and is the slower of the two. However, the relaxation algorithm is inherently
parallel and can be implemented very efficiently on an array processor. Further, the
Relaxation algorithm has the advantage that in the relaxation process the preservation
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of the affine structure is verified by random choices of five points. Since different affine
bases are chosen randomly, the algorithm is less susceptible to spurious/missing points.
If for a particular object point the corresponding point in any one of the other views is
missing, then the automaton corresponding to the object point will not. get any support
and consequently will not converge. Correct convergence for the subset, of points which
are present in all the three views can still be obtained. In contrast, in the search algorithm
the four basis points remain fixed, and, consequently, it is less robust to spurious/missing
points. We have obtained encouraging results in our experiments with spurious/missing
points [16] which we will present in a forthcoming paper. Current, work extends the ideas
to scenes with multiple objects. The simultaneous solution of the correspondence problem
and the structure from motion problem presented in this paper can be considered as a
first step towards affine invariant model based recognition of 3D objects [18].
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