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Abstract. In this paper, we present the first cryptographic preimage
attack on the full MD5 hash function. This attack, with a complexity
of 2116.9, generates a pseudo-preimage of MD5 and, with a complexity
of 2123.4 , generates a preimage of MD5. The memory complexity of the
attack is 245 ×11 words. Our attack is based on splice-and-cut and local-
collision techniques that have been applied to step-reduced MD5 and
other hash functions. We first generalize and improve these techniques
so that they can be more efficiently applied to many hash functions
whose message expansions are a permutation of message-word order in
each round. We then apply these techniques to MD5 and optimize the
attack by considering the details of MD5 structure.

Keywords: MD5, splice-and-cut, local collision, hash function, one-way,
preimage.

1 Introduction
Cryptographic hash functions are important primitives of cryptographic tech-
niques, which generate short-length strings from arbitrary length input messages.
There are many applications to make a scheme secure using a hash function: mes-
sage compression in digital signatures and message authentication, for example.
A hash function H should satisfy several security properties such as

– Preimage resistance: for given y, x s.t. H(x) = y must be difficult to find,
– 2nd-preimage resistance: for given x, x′ s.t. H(x) = H(x′), x �= x′ must

be difficult to find,
– Collision resistance: A pair of (x, x′) s.t. H(x) = H(x′), x �= x′ must be

difficult to find.

For a given n-bit hash value y, if the hash values of 2n distinct messages are
computed, there is a high probability that one of those values will match with y.
Therefore, any method that can find a preimage faster than 2n hash computation
is a threat for hash functions. We stress that National Institute of Standards
and Technology (NIST) requires preimage resistance with a complexity of 2n for
SHA-3 candidates [15].
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MD5 [11] was proposed by Rivest in 1991. It generates 128-bit hash values by
iteratively applying a compression function consisting of 64 steps. Though its
security is suspect, MD5 is one of the most widely used hash functions in the
world. So, a detailed analysis of the preimage resistance of MD5 is required.

Variants of collision attacks on MD5 were proposed by den Boer and Bosse-
laers in 1993 [5] and by Dobbertin in 1996 [6]. The first collision attack on MD5
was proposed by Wang et al. in 2005 [16]. Since then, several improved collision
attacks have been proposed. The most effective attack, proposed by Klima [8],
can generate a collision in one minute with a standard PC. Although there have
been several powerful collision attacks on MD5, the preimage resistance of MD5
has not been broken yet.

1.1 History of Preimage Attacks on MD4-Family

The history of preimage attacks on MD4-based hash functions is as follows. (In
this paper, we omit the unit of complexity, which is the computational complexity
of the compression function of the corresponding hash function.)

The first successful preimage attack was the one proposed by Leurent on MD4
at FSE 2008. The attack, with a complexity of 2100.5, generates a preimage
[9]. The first preimage attack on MD5 was presented by De et al. in 2007. It
attacked the first 26 steps with a SAT solver [4]. At ACISP 2008, Sasaki and
Aoki presented a preimage attack with a complexity of 296 on intermediate 44
steps of MD5 [13]. The paper shows that if the round order of MD5 is modified,
intermediate 51 steps can be attacked. At SAC 2008, Aumasson et al. proposed
a preimage attack with a complexity of 2102 on the first 47 steps of MD5 and
an attack on full HAVAL-3 [2]. Also at SAC 2008, Aoki and Sasaki [1] showed
an attack with a complexity of 2121 on the last 63 steps of MD5, and showed
how to find a preimage of full MD5 slightly faster than the preimage resistance
complexity 2128 by using a clever brute force algorithm. They also show one-
block preimage attack on MD4. At CRYPTO 2008, Cannière and Rechberger
attacked 49 steps of SHA-0 and 44 steps of SHA-1 [3]. Sasaki and Aoki proposed
attacks on intermediate 52 steps of HAS-160 at ICISC 2008 [12] and 3-, 4-, and
5-pass HAVAL at Asiacrypt 2008 [14].

So far, the preimage resistance of full MD4, full HAVAL-3 and full HAVAL-
4 were broken. Although these attacks are theoretically very interesting, they
are not important from the industrial view point. On the other hand, regarding
widely used hash functions such as MD5 or SHA-1, only step-reduced versions
are analyzed and no preimage attack on the full specification has been conducted.

1.2 Related Techniques

Here, we explain previous attack techniques related to our work. See Section 3
for details of each technique.

The attacks on full HAVAL-3 and 47-steps MD5 by Aumasson et al. [2], which
are later generalized by Sasaki and Aoki [14] use the local-collision technique,
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where the absorption properties are used to make a local collision and the con-
sistency check is performed in the attack. On the other hand, the attacks on
one-block MD4 and 63-steps MD5 by Aoki and Sasaki [1] use the splice-and-cut
technique, where the attacks are made to be more efficient with the partial-
matching technique and the partial-fixing technique.

1.3 Our Results

This paper proposes the first cryptanalytic preimage attack on the full MD5. It
finds a pseudo-preimage of full MD5 with a complexity of 2116.9 and a preimage
of full MD5 with a complexity of 2123.4. The memory complexity of the attack
is 245 × 11 words.

In this paper, first, we improve several existing techniques with respect to
following four points so that they can be more efficiently applied to various hash
functions.

1. Generalization of the local-collision technique
As described in a previous paper [14], the local-collision technique can be
applied only if the two chosen neutral words are located a certain number
of steps away. Since this limitation is too restrictive, the local-collision tech-
nique could not be applied to full MD5. Another paper [12] shows a variant
of the local-collision technique; however, it is particular to HAS-160, which
is the attack target of the paper. In this paper, we generalize the local-
collision technique so that the same advantage can be obtained in various
situations. Because our new technique no longer forms a local-collision, we
call it initial-structure technique.

2. Extension of the absorption properties
When we construct the initial structure, the absorption properties must be
considered. In this paper, we newly consider cross absorption properties,
which are extended versions of the absorption properties. This can further
increase the situations where the initial structure can be constructed.

3. Partial-fixing technique for unknown carry behavior
The partial-fixing technique partially computes the step function even if a
part of the message words and chaining variables are not known. In previous
papers, only partial computations whose carried number effects are determin-
istic were considered. In this paper, we also consider partial computations
where an attacker cannot guess the carried number behavior in advance.
Then, we propose an efficient attack procedure that does not increase the
total attack complexity.

4. Efficient consistency check method
We also solve a problem of an existing technique, where the consistency of
the initial structure or the local collision is inefficiently checked, and thus
the complexity becomes too high to attack successfully in some situation.

We stress that our improved techniques are not particular to MD5, but can be
generally applied to hash functions whose message expansions are permutations
of message-word order in each round.
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Table 1. Comparison of preimage attacks on MD5

Paper Number of Complexity
attacked steps Pseudo-preimage Preimage

[4] 26 Not given †

[13] 44 (Steps 3-46) 296 †

[2] 47 296 2102

[1] 63 2112 2121

[1] 64 (Full) 2125.7 ‡ 2127 ‡

This paper 64 (Full) 2116.9 2123.4

† One-block attack.
‡ The brute force attack is used, but the computation order is optimized.

Secondly, we combine all of our improved techniques and apply them to full
MD5. Then, we optimize the attack by considering the details of MD5 structure.
A summary of our results and previous results is shown in Table 1.

The organization of this paper is as follows. In Section 2, we describe the
specification of MD5 and introduce the notation. In Section 3, we briefly de-
scribe the related work. In Section 4, we improve several existing techniques. In
Section 5, we describe the attack on MD5 in detail and evaluate its complexity.
In Section 6, we conclude this paper.

2 Description of MD5

2.1 MD5 Specification and Its Properties

This section describes the specification of MD5. For details, we refer to [11].
MD5 is one of the Merkle-Damg̊ard hash functions, that is, the hash value is

computed as follows:{
H0 ← IV,

Hi+1 ← md5(Hi, Mi) for i = 0, 1, . . . , n − 1,
(1)

where IV is the initial value defined in the specification, md5: {0, 1}128×{0, 1}512

→ {0, 1}128 is the compression function of MD5, and Hn is the output of the hash
function. Before (1) is applied, the messages string M is processed as follows.

– The messages are padded in 512-bit multiples.
– The padded string includes the length of the message represented by 64 bits.

The length string is represented as little endian and is placed at the end of
the padding part.

After this process, the message string is divided into 512-bit blocks, Mi (i =
0, 1, . . . , n − 1).
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Table 2. Boolean functions, rotation numbers, and message expansion of MD5

Φ0, Φ1, . . . , Φ15 Φj(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z)
Φ16, Φ17, . . . , Φ31 Φj(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)
Φ32, Φ33, . . . , Φ47 Φj(X, Y, Z) = X ⊕ Y ⊕ Z
Φ48, Φ49, . . . , Φ63 Φj(X, Y, Z) = Y ⊕ (X ∨ ¬Z)

s0, s1, . . . , s15 7 12 17 22 7 12 17 22 7 12 17 22 7 12 17 22
s16, s17, . . . , s31 5 9 14 20 5 9 14 20 5 9 14 20 5 9 14 20
s32, s33, . . . , s47 4 11 16 23 4 11 16 23 4 11 16 23 4 11 16 23
s48, s49, . . . , s63 6 10 15 21 6 10 15 21 6 10 15 21 6 10 15 21

π(0), π(1), . . . , π(15) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(16), π(17), . . . , π(31) 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
π(32), π(33), . . . , π(47) 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
π(48), π(49), . . . , π(63) 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

The compression function Hi+1 ← md5(Hi, Mi) is computed as follows.

1. Mi is divided into 32-bit message words mj (j = 0, 1, . . . , 15).
2. The following recurrence is done.{

p0 ← Hi

pj+1 ← Rj(pj , mπ(j)) for j = 0, 1, . . . , 63

3. Hi+1 (= p64 + Hi) is output, where “+” denotes 32-bit word-wise addition.
In this paper, we similarly use “−” to denote 32-bit word-wise subtraction.

Rj is the step function for Step j. Let Qj be a 32-bit value that satisfies pj =
(Qj−3, Qj, Qj−1, Qj−2). Rj(pj , mπ(j)) computes pj+1 as follows:{

Qj+1 ← Qj + (Qj−3 + Φj(Qj , Qj−1, Qj−2) + mπ(j) + kj) ≪ sj ,
pj+1 ← (Qj−2, Qj+1, Qj , Qj−1),

where Φj , kj , and ≪ sj are the bitwise Boolean function, constant value, and
left rotation defined in the specification, respectively. π(j) is a function for
MD5 message expansion. Details of Φj , sj , and π(j) are shown in Table 2. Note
R−1

j (pj+1, mπ(j)) is computed with almost the same complexity as that of Rj .

3 Related Works

3.1 Converting Pseudo-Preimages to a Preimage

For a given hash value HN and a compression function CF , pseudo-preimage is a
pair of (v, M), v �= IV such that CF (v, M) = HN . First, we describe the generic
algorithm for the Merkle-Damg̊ard hash functions with n-bit output, which con-
verts pseudo-preimages to a preimage [10, Fact 9.99]. Assume that there is an
algorithm that finds (H1, (M1, M2, . . . , MN−1)) such that Hi+1 = CF (Hi, Mi)
(i = 1, 2, . . . , N − 1) with the complexity of 2x and H1 looks random. Prepare
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a table that includes 2n/2−x/2 entries of (H1, (M1, M2, . . . , MN−1)). Compute
2n/2+x/2 CF (H0, M0) for random M0. One of the results will agree with one of
the entries in the table with high probability. The required complexity of the at-
tack is about 2n/2+1+x/2. Therefore, showing how to find (H1, M1) from a given
hash value within 2x, x < n − 2 is enough for a theoretical preimage attack.

3.2 Preimage Attack on 63 Steps of MD5

At SAC 2008, Aoki and Sasaki proposed a preimage attack on 63 steps of MD5
based on the splice-and-cut, partial-matching, and partial-fixing techniques [1].

The splice-and-cut technique is a way to apply the meet-in-the-middle attack.
The authors consider the first and last steps as consecutive steps, and divide the
attack target into two chunks of steps so that each chunk includes independent
message words from the other chunk. Such message words are called neutral
words. Then, a pseudo-preimage is computed by the meet-in-the-middle attack.

The partial-matching technique enables an attacker to skip several steps of an
attack target when searching for chunks. Assume that one of the divided chunks
provides the value of pi, where pi = (Qi−3, Qi, Qi−2, Qi−1), and the other chunk
provides the value of pi+3, where pi+3 = (Qi, Qi+3, Qi+2, Qi+1). pi and pi+3
cannot be directly compared; however, a part of the values, that is, 32-bits of
Qi, can be compared immediately. In such a case, one can ignore messages used
in steps i, i + 1, and i + 2 when the meet-in-the-middle attack is performed.

The partial-fixing technique enables an attacker to skip more steps. The idea
is to fix a part of the neutral words so that an attacker can partially compute
a chunk even if a neutral word for the other chunk appears. This enables the
attacker to skip more steps. For example, consider the equation for computing
Qj−3 in the inversion of the step function R−1

j (pj+1, mπ(j)):

Qj−3 = ((Qj+1 − Qj) ≫ sj) − Φj(Qj , Qj−1, Qj−2) − mπ(j) − kj . (2)

When the lower n bits of Qj−1, Qj−2, and mπ(j) are fixed and other variables
are fully fixed, the lower n bits of Qj−3 can be computed independently from
the higher 32 − n bits of Qj−1, Qj−2, and mπ(j).

3.3 Preimage Attack on HAVAL

A combination of the meet-in-the-middle and local collision was first proposed
by Aumasson et al. [2]. Sasaki and Aoki further improved this by using the
splice-and-cut technique instead of the simple meet-in-the-middle attack [14].
As a result, they succeeded in attacking full HAVAL-3, full HAVAL-4, and step-
reduced HAVAL-5, and slightly improved the complexity of the brute force attack
on full HAVAL-5.

The local-collision technique named by Sasaki and Aoki [14] enables an at-
tacker to skip several steps at the beginning of chunks. The key idea of this tech-
nique is to select two neutral words that can form a local collision. Schematic
explanation is shown in the left diagram of Figure 1. To achieve this, the se-
lected neutral words must be exactly (L · n + 1) steps away each other, where
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n ≥ 1 and L denotes the number of chaining variables, e.g., L=8 for HAVAL
and L=4 for MD5. Changes of the neutral words’ values must be guaranteed not
to give any influence to other chaining variables. To stop the difference propa-
gating through Φj , the values of the other chaining variables must be fixed so
that input differences are ignored in the output value. Such properties are called
absorption properties. Finally, changes of neutral-words’ values are checked to
be offset each other. For example, in the left diagram of Figure 1, we need to
check Q1st

j−3 + m2nd + m1st ?= Q2nd
j+5 for a given (m1st, Q1st

j−3, m
2nd, Q2nd

j+5). We call
such a checking procedure consistency check.

Because a local collision of HAVAL can be formed by only two message words
and Φj has many absorption properties, the local-collision technique can be
effectively applied to HAVAL.

3.4 Preimage Attack on HAS-160

An example of a variant of the local-collision technique is shown in Ref. [12].
Differently from Ref. [14], Ref. [12] applies the local-collision technique even
if two neutral words are located three steps away, not (L · n + 1) steps away.
However, this technique is particular to their attack target HAS-160.

4 Improved Techniques

We applied all the previously mentioned techniques to full MD5, but the attempt
failed. To attack MD5, further improvements are necessary. In this section, we
give some intuition of our improved idea. For the concrete application to MD5,
we refer to Section 5.

4.1 Initial Structure: Generalization of Local-Collision Technique

In the previous works, the local-collision technique is applicable if selected neu-
tral words are exactly (L · n + 1) steps away. However, this technique has the
following three problems.

1. The limitation of (L ·n+1) steps away is too restrictive to find good chunks.
2. If more than two message words are necessary to form a local collision, the

limitation becomes much stronger. In fact, MD5 needs three words.
3. Absorption properties of Φ are necessary to obtain a local collision, however,

Φ does not always have such properties.

The above problems are solved by our new technique. It is visualized in Figure 1.
Previous work fixes the value of Qj , Qj−1, Qj−2 and Qj+4, Qj+3, Qj+2 for

any value of m1st, Q1st, m2nd, Q2nd. However, we found the essential point is to
make the first chunk independent of (m2nd, Q2nd) and make the second chunk
independent of (m1st, Q1st). Therefore, Qj , Qj−1, Qj−2, which are included in
the first chunk, can be changed depending on the value of (m1st, Q1st). Similarly,
Qj+4, Qj+3, Qj+2 can be changed depending on (m2nd, Q2nd).



Finding Preimages in Full MD5 Faster Than Exhaustive Search 141

1st-chunk

2nd-chunk

Q1st Qj Qj-1 Qj-2

m2nd

m1st

Qj+2 Q2nd Qj+4 Qj+3

1st-chunk

2nd-chunk

(Qj-3)1st Qj Qj-1 Q1st

m2nd

Qj-1 Q2nd (Qj+1)2ndQj

m1st

match?
(2-32)

match?
(2-32)

j+2

j+5

j-2j-3

Left side describes local-collision technique; right side describes our
generalization called initial structure. Underlined variables are neutral words.
Notation (Q)x denotes a chaining variable whose value changes depending on
the value of neutral words for x-chunk.

Fig. 1. MD5 structures with old and new techniques applied

Based on this observation, we can construct several new patterns of “local
collision”. Because these patterns no longer form a local collision, we call this
technique initial structure. The following is the concept of the initial structure.

Initial structure is a few consecutive steps including at least two neutral
words named m2nd and m1st, where steps after the initial structure (2nd
chunk) can be computed independently of m1st and steps before the initial
structure (1st chunk) can be computed independently of m2nd.

In the above concept, if m1st appears in an earlier step than m2nd, the structure
can be included in the first and second chunks, hence the attack can be easily
performed. We are interested in the case where m2nd appears earlier than m1st.

An example of the initial structure of MD5 consisting of two steps is shown in
Figure 1. In this structure, 232 values of m1st, Q1st, m2nd, Q2nd are tried when we
compute two chunks. To make the second chunk independent of Q1st, we choose
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Table 3. Possible patterns of initial structure of MD5

mπ(i) mπ(i+1) mπ(i+2) mπ(i+3) mπ(i+4)

Pattern 1 ◦ ◦
Pattern 2 ◦ ◦ ◦
Pattern 3 ◦ ◦ ◦
Pattern 4 ◦ ◦ ◦

◦ denotes a neutral word that is necessary to form initial structure.
Note: Pattern 3 is the local collision usually considered.

Qj−3 to cancel the change of Q1st. Similarly, when we compute the second chunk,
we compute Qj+1 according to the value of m2nd. In the end, this structure
provides 264 free bits for both the first and second chunks, guarantees that the
first and second chunks are independent of each other, and succeeds with a
probability of 2−32 for randomly given m1st, Q1st, m2nd, Q2nd.

As the example shown in Figure 1, some initial structure patterns do not
use the absorption properties of Φ. This gives a big advantage to an attacker
compared to the previous local-collision technique because such structures can
be constructed even if Φ does not have absorption properties, e.g., Φ is XOR.

We manually searched for patterns of initial structures that are formed within
5 steps, and found that patterns shown in Table 3 can form the initial structure.

4.2 Cross Absorption Property

The cross absorption property is an extension of the absorption property. By
considering the cross absorption property, the number of possible initial structure
patterns can be increased.

The absorption properties of MD5 summarized in Ref. [13] focus on how to
ignore one of the input variables of Φj(X, Y, Z). This enables us to fix the output
of Φj(X, Y, Z) even if one of X, Y, Z changes.

Cross absorption properties enable us to fix the output of Φj(X, Y, Z) even if
two of X, Y, Z are changed. To achieve cross absorption properties, we partially
fix changing variables so that fixed bits cover all 32 bits. For example, let us
consider Φj(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z), where Y and Z are neutral words.
To fix the output, we first fix lower n bits of Y and fix lower n bits of X to 1.
Then, we fix higher 32 − n bits of Z and fix higher 32 − n bits of X to 0. As a
result, the output of Φj is fixed to Y in lower n bits and Z in higher 32− n bits
for any value of lower n bits of Z and higher 32 − n bits of Y .

By considering the cross absorption properties, more complicated initial struc-
tures shown in Table 4 can be constructed. Pattern 6 is useful because only two

Table 4. Initial structure with cross absorption properties

mπ(i) mπ(i+1) mπ(i+2) mπ(i+3) mπ(i+4)

Pattern 5 ◦ ◦
Pattern 6 ◦ ◦
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message words are involved and the length of the structure is relatively long (4
steps). See Section 5.2 for the application to MD5.

4.3 Partial-Fixing Technique for Unknown Carried Number
Behavior

The previous partial-fixing technique on MD5 [1] enables us to skip six steps at
the end of chunks by partially computing the chaining variables. Let us consider
the equation A + B, where A and B are only partially known. When known
part of A and B starts from LSB, we can uniquely compute A + B in the same
number of bits, whereas, when known part starts from an intermediate bit x,
we cannot uniquely determine intermediate bits of A + B due to the unknown
carried number from bit x−1 to x. However, by considering both possible carried
number patterns, the number of candidates of A + B can be reduced to only
two. Consequently, for each addition of values with intermediate known bits, we
obtain the correct pairs and the same number of wrong pairs.

A small amount of incorrect pairs can be filtered out with negligible com-
plexity. After we find the corresponding message by a partial matching test, we
compute the step function and check the exact carried number value step by
step. This computation costs only 1 step, that is, 2−6(= 1

64 ) MD5 computations,
and the number of remaining pairs will be reduced by checking the correctness
of carried number assumption and matching test for increased known bits. In
the end, when the number of unknown carried numbers is up to 6, we consider
all 26 possible carried number patterns, and incorrect data is filtered out with a
complexity of 1(= 26 ·2−6) MD5 computations, which is a very small extra cost.
This enables us to skip eight steps at the end of chunks. See Section 5.3 for the
application to MD5.

4.4 Efficient Consistency Check Method

In previous works, the consistency of the initial structure (or local-collision) is
checked after the partial matching test of chunk’s results is finished. This strategy
fails if the number of matched bits is small.

For example, we consider the attack procedure for the left structure in Fig-
ure 1. We compute chunks for 264 values of (m1st, Q1st) and (m2nd, Q2nd). As-
sume the partial matching test works for small numbers of bits, e.g., only 12 bits.
Ideally, we should obtain 284(= 2128 · 2−32 · 2−12) pairs where the partial 12 bits
are matched and the initial structure is properly satisfied with a complexity of
284. Therefore, by repeating the above procedure 232 times, we expect to obtain
a pair where all 128 bits are matched with a complexity of 2116(= 284 · 232).
However, the previous method computes a few steps for 2116(= 2128 ·2−12) pairs
after the 12-bit matching test, and then, checks the full-bit match test and fi-
nally checks the consistency of the initial structure, which is satisfied with a
probability of 2−32. Computing a few steps for 2116 pairs costs roughly 2116

step function computation, and repeating this procedure 232 times requires 2148,
which is worse than the brute force attack.
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We solve this problem by performing the consistency check together with
the partial matching test. This can be performed with a small amount of extra
computation and memory. Again, we consider the attack procedure for the left
structure in Figure 1. When we compute the first chunk by trying all (m1st, Q1st),
we additionally store the value of m1st +Q1st in a table. Then, when we compute
the second chunk by trying all (m2nd, Q2nd), we compute Q2nd −m2nd and com-
pare it with m1st +Q1st stored in the table. By this effort, the previous example
examines a 44-bit matching test instead of a 12-bit matching test for 2128 pairs,
and thus, the complexity becomes 284. After 232 repetation of this procedure,
we will find a 128-bit matched pair with a complexity of 2116.

5 Preimage Attacks on Full MD5

5.1 Selected Initial Structure and Chunks

When we searched for good chunks, we assumed that the partial-matching and
partial-fixing techniques could enable us to skip a maximum of 11 steps. Under
this assumption, we considered all possible patterns and positions of the initial
structure. As a result, we found that the pattern 6 in Table 4 for i = 14 skipping
steps 43-50 is the only useful pattern. This chunk separation is shown in Figure 2.

5.2 Details of Initial Structure for Full MD5

Construction of the initial structure is complicated. We need to consider the
rotation number sj and constant kj in each step. First, we show how to fix
message words and chaining variables inside the initial structure in Figure 3
and then explain how computations in the initial structure behave. We have
confirmed that the numbers and positions of fixed bits are optimal when both
of the initial structure and partial-fixing techniques are considered.

Numbers written in a small bold font near variables denote the value of each
variable. To denote bit information of variables, we use notation ab, which means

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3 4 5 6© 7 8 9 10 11 12 13 14© 15

first chunk initial
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 1 6© 11 0 5 10 15 4 9 14© 3 8 13 2 7 12

structure second chunk
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 5 8 11 14© 1 4 7 10 13 0 3 6© 9 12 15 2

second chunk skip
Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 0 7 14© 5 12 3 10 1 8 15 6© 13 4 11 2 9

skip first chunk

Fig. 2. Selected chunks for full-round MD5
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Fig. 3. Initial structure for full MD5

the one-bit value a continues for b bits. For example, 032 means all 32 bits are
0, and 015x1205 means that the first 5 bits1 are fixed to 0, the next 12 bits are
free-bits for the second chunk, and the last 15 bits are fixed to 0.

To construct the initial structure, we firstly choose m6 and Q14 as neutral
words for the first chunk and m14 and Q18 as neutral words for the second
chunk so that both chunks can produce 264 items whereas the consistency of
the initial structure checked in the dotted circle is satisfied with a probability
of 2−32. In Figure 3, we use notation 1st and 2nd to denote neutral words for
the first and second chunks, respectively. Let x and y represent a free bit in the
neutral words for the second and first chunks, respectively. Here, free bit means
the unfixed bits of neutral words where we try all values when we perform the
meet-in-the-middle attack. We secondly fix values of variables to guarantee that
p14 can be computed independently of the value of ‘x’s and p18 can be computed
independently of the value of ‘y’s. We also choose variables that are computed

1 In this paper, LSB is the first bit (= 0th bit), and MSB is the last bit (= 31st bit).
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depending on the value of neutral words for each chunk. In Figure 3, we indicate
such variables with notation ( )1st and ( )2nd.

In Remarks of this section, we will explain Q11 can be computed independently
of ‘x’s of m14. Therefore, p14 is independent of ‘x’s. Now, we explain why p18 is
guaranteed to be independent of ‘y’s by fixing values as shown in Figure 3.

Values of ‘y’s in m6 only give impact to the data line where the consistency
is checked in step 17 with a probability of 2−32. Therefore, p18 is independent of
‘y’s in m6. The remaining work is to guarantee that values of ‘y’s in Q14 do not
impact other data lines in steps 14, 15, and 16.

1. In step 14, values of y in Q14 can impact the value of Q15 through Φ14 and
through the direct addition from Q14 to Q15. To prevent these impacts, we
choose the value of Q11 so that the sum of Q11, output of Φ14, Q14 ≫ s14,
and fixed part (lower 20 bits) of m14 are always the same value. Therefore,
every time we choose Q14, we compute Q11 as follows.

Q11 = −Φ14(Q14, Q13, Q12)−k14−(m14∧0xfffff)+((−Q14) ≫ s14), (3)

where we also cancel the addition of k14 for simplicity. This cancellation
may fail because of the relationship of addition and rotation. This problem
is solved in the Remarks of this section.

2. In step 15, we arrange the values of Q15, Q14, and Q13 so that changes of ‘y’s
in Q14 is absorbed in the computation of Φ15. Because two input variables
Q15 and Q14 have free-bits, we use the cross absorption property introduced
in Section 4.2. Remember Φ15 = (Q15 ∧ Q14) ∨ (¬Q15 ∧ Q13). Because the
values of Q15 and Q13 are 0 and 1, respectively, in bit positions 0-4 and
17-31, the value of Φ15 becomes 1. In bit positions 5-16, because the values
of Q14 and Q13 are 1, the value of Φ15 becomes 1. Therefore, regardless of
the value of ‘y’s in Q14, the output of Φ15 is fixed to 132.

3. In step 16, the Boolean function is Φ16 = (Q16 ∧Q14)∨ (Q15 ∧¬Q14). If Q16
can be fixed to the same value as Q15, Q14 is absorbed in the computation
of Φ16. This is achieved by setting Q12 + Φ15 + k15 + m15 = 0 since Q16 =
Q15 + (Q12 + Φ15 + k15 + m15) ≪ 22. Remember, m15 is involved in the
message padding part. To guarantee that the length of the preimage will be
at most 232−1 bits, we fix m15 to 0. We know that Φ15 = 0xffffffff = −1.
Therefore, fixing Q12 = −k15 + 1 can achieve the desired condition.

Finally, p18 is guaranteed to be independent of ‘y’s, and the initial structure is
properly constructed for any selection of ‘x’s and ‘y’s.

Remarks. Computation for step 14 performed by equation (3) may fail and the
probability of this depends on the values of chaining variables and the message
word. We experimentally confirmed that for all 232 possible patterns of unfixed
bits in (m14, Q14), the choice of Q14 does not impact m14 with high probability.
Specifically, for any (m14, Q14), the following equation holds.

Q11 + Φ14 + k14 + (m14 ∧ 0xfffff) = ((−Q14) ≫ s14) Pr. = 1, (4)
((m14 + ((−Q14) ≫ s14)) ≪ s14) + Q14 = (m14 ≪ s14) Pr. = 1 − 2−17.(5)
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5.3 Details of Partial-Fixing for Skipping 8 Steps

As is explained in Section 4.3, meet-in-the-middle for skipping 8 steps will need
to deal with unknown carried number behavior. The number of bits matched and
number of unknown carried numbers depend on the number of rotations in each
step. For the chunk we chose, we can apply 12-bit matching including 5 unknown
carried numbers. We explain how the partial computation is performed step by
step. The schematic explanation is in Figure 4. We use a notation Xb2−b1 to
denote that values of bit positions b1 to b2 of a variable X are known.

Inverse computation for Steps 50-48. This is exactly the same as the partial-
fixing technique used in Ref. [1]. In details, the equation for computing
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Q47Q44 Q46 Q45Q43Q40 Q42 Q41

k47

m2

k43

m6

k48

m0

k44

m9

k49

m7

k45

m12

k50

m14

k46

m15

All All All All

19-0

All All All19-0

All All 19-019-0

All 19-0 19-019-0

All

All

All

All

All

28-21

19-0 19-0 19-019-9(21)

19-0 19-0 19-019-9(21)

19-9(21)

19-9(21)

19-9(21)

19-0

19-0

All All All All

All 19-12(22) All All

19-16(  22)

8-bit match (23)

4-bit match (  22)

(-k47)

All
(-k44)

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

<<< 23 <<< 23

<<< 4 <<< 6

<<< 11 <<< 10

<<< 16 <<< 15

19-0

Figures written in a small bold font denote the known bits of each variable.

Fig. 4. Partial-matching for 8 steps
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Q47 in R−1
50 (p51, m50) is as follows.

Q47 = ((Q31−0
51 −Q31−0

50 ) ≫ s50)−Φ50(Q31−0
50 , Q31−0

49 , Q31−0
48 )−m19−0

π(50) −k50.

(6)
kj is constant, hence kj is known value. Because the lower 20 bits (positions
0 to 19) of m14(= mπ(50)) are fixed and known, we can uniquely obtain the
lower 20 bits of Q47 independently of the upper 12 bits of m14. Similarly,
the lower 20 bits of Q46 and Q45 can be uniquely computed as follows:

Q46 = ((Q31−0
50 − Q31−0

49 ) ≫ s49) − Φ49(Q31−0
49 , Q31−0

48 , Q19−0
47 ) − m31−0

π(49) − k49,

(7)

Q45 = ((Q31−0
49 − Q31−0

48 ) ≫ s48) − Φ48(Q31−0
48 , Q19−0

47 , Q19−0
46 ) − m31−0

π(48) − k48.

(8)

Inverse computation for Step 47. Equation for Q44 is as follows:

Q44 = ((Q31−0
48 −Q19−0

47 ) ≫ s47)−Φ47(Q19−0
47 , Q19−0

46 , Q19−0
45 )−m31−0

π(47) −k47.

(9)
We can uniquely compute the lower 20 bits of Q48 − Q47. Let the value
after the right rotation by 23(= s47) bits be u, and then, we uniquely obtain
u28−9. We can also compute the lower 20 bits of the output of Φ47. Set the
value of m2(= mπ(47)) to −k47 in advance. Then, the equation (9) becomes
u28−9 − Φ19−0

47 . By considering two possible carried number patterns from
bit position 8 to 9, we can obtain two candidates of Q19−9

44 .
Forward computation for Step 43. m6(= mπ(43)) in bit positions 21-28 are

fixed. Then, the equation for Q44 in R43(p43, mπ(43)) is as follows.

Q44 = Q31−0
43 + (Q31−0

40 + Φ43(Q31−0
43 , Q31−0

42 , Q31−0
41 ) + m28−21

π(43) + k43) ≪ s43.

(10)
By considering two possible carried number patterns from bit 20 to 21, we
obtain two candidates of bit positions 21-28 of m6+(Q40+Φ43+k43). Let the
value after the left rotation by 23(= s43) bits be v, and thus, we obtain two
candidates of v19−12. Finally, by considering two carried number patterns
from bit 11 to 12 in the addition of Q43, we obtain two candidates of Q19−12

44
for each v19−12. (In total, we obtain 22 candidates of Q19−12

44 for each p43.)
Forward computation for Step 44. The equation for Q45 is as follows.

Q45 = Q19−12
44 +(Q31−0

41 +Φ44(Q19−12
44 , Q31−0

43 , Q31−0
42 )+m31−0

π(44) +k44) ≪ s44.

(11)
We set m9(= mπ(44)) to −k44 to ignore the addition of these values. Bits
12-19 of Φ44 can be computed. Then, we obtain two candidates of (Q41 +
Φ44)19−12. After the left rotation by 4(= s44) bits, known bits are moved to
16-23. Finally, after the addition of Q44, we obtain two candidates of Q19−16

45
for each (Q41 + Φ44)19−12. (In total, we obtain 22 candidates of Q19−16

45 for
each Q19−12

44 .)
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As a result, by comparing forward and backward computation results, we can
compare Q19−12

44 in total 8 bits with 3 unknown carried numbers and Q19−16
45

in total 4 bits with 2 unknown carried numbers. Therefore, our attack overall
performs 12-bit match with 5 unknown carried numbers.

5.4 Attack Procedure

The attack procedure for a given hash value Hn is as follows:

1. Set chaining variables in the initial structure as shown in Figure 3.
2. Set m2, m9, m15, and part of m6 and m14 as shown in Figures 3 and 4. Set

other message words to randomly chosen values but satisfy the padding.
3. For all possible values of bit positions 0-20 and 29-31 of m6 and bit positions

0-4 and 17-31 of Q14, in total 44 free-bits,
(a) Compute Q11 by equation (3),
(b) Compute Q14 +m6 for efficient consistency check. Let this value be C1st.
(c) Do the following.⎧⎨⎩

pj ← R−1
j (pj+1, mπ(j)) for j = 13, 12, . . . , 0,

p64 ← Hn − p0,
pj ← R−1

j (pj+1, mπ(j)) for j = 63, 62, . . . , 51,

(d) Compute Q19−0
47 , Q19−0

46 , and Q19−0
45 by equations (6), (7), and (8).

(e) Compute two candidates of Q19−12
44 by equation (9).

(f) Make a table of (m6, Q14, C
1st, p51, Q47, Q46, Q45, Q44).

4. For all possible values of bit positions 20-31 of m14 and all bits of Q18, in
total 44 free-bits,
(a) Compute Q15, Q16, and Q17 as shown in Figure 3.
(b) Compute ((Q18 − Q17) ≫ s17) − Φ17 − k17 for the efficient consistency

check. Let this value be C2nd.
(c) Compute pj+1 ← Rj(pj , mπ(j)) for j = 18, 19, . . . , 42.
(d) i. Compute 22 candidates of Q19−12

44 for each p43 by equation (10), and
Q19−16

45 for each Q19−12
44 by equation (11). In total, for each p43, we

obtain 24 candidates of (Q19−12
44 , Q19−16

45 ).
ii. Check whether bits 12-19 of Q44 and bits 16-19 Q45 in total 12 bits

are matched with those in the table and C2nd is matched with C1st

in the table.
iii. If matched, compute R43(p43, m6) by corresponding m6 and check

whether bits 9-11 of Q44 are matched and the carried number as-
sumption of Q44 is correct.

iv. If matched, compute R44(p44, m9) and check whether bits 0-15 of Q45
are matched and the carried number assumption of Q45 is correct.

v. Similarly, compute Q46 to Q51 and check the matching. If all bits
are matched, the corresponding (p0, M) is a pseudo-preimage.
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5.5 Complexity Evaluation

Let the complexity of 1 step function be 1
64 MD5 compression function.

Steps 1 and 2: Negligible.
Step 3a: The complexity is 244 · 1

64 .
Step 3b: The complexity is much less than 244 · 1

64 .
Step 3c: The complexity is 244 · 27

64 .
Step 3d: The complexity is 244 · 3

64 .
Steps 3e, 3f: The complexity is 244 ·21 · 1

64 and provides 245 items in the table.
Step 4a: The complexity is 244 · 3

64 .
Step 4b: The complexity is 244 · 1

64 .
Step 4c: The complexity is 244 · 25

64 .
Step 4(d)i: The complexity is 244 · 22 · 1

64 + 244 · 22+2 · 1
64 , and provides 248

candidates.
Step 4(d)ii: Comparison can be performed with negligible cost by the standard

meet-in-the-middle method. The number of remaining pairs is 249(= 245 ·248 ·
2−12 · 2−32).

Step 4(d)iii: The complexity is 243(= 249 · 1
64 ). The number of remaining pairs

is 244(= 249 · 2−3 · 2−2).
Step 4(d)iv: The complexity is 238(= 244 · 1

64 ). The number of remaining pairs
is 226(= 244 · 2−16 · 2−2).

Step 4(d)v: The complexity is negligible compared to those of the other steps.

The sum of the above complexity is 244 · 116
64 ≈ 244.86. This means that we

can obtain 244 pairs where 12 bits are matched with a complexity of 244.86.
Therefore, by repeating the above procedure 272 times, we expect to obtain a
pseudo-preimage. Finally, the complexity of finding a pseudo-preimage of MD5 is
2116.86(= 244.86·272), and this is converted to a preimage attack with a complexity
of 2123.43 ≈ 2123.4 with the conversion algorithm explained in Section 3.1.

In the attack procedure, the dominant memory complexity is for Step 3f, which
requires 245 (m6, Q14, C

1st, p51, Q47, Q46, Q45, Q44)s to be stored. Therefore the
memory complexity of our attack is at most 245 × 11 words.

Remarks

Because the value of m14, which is the lower 32-bits of the message length string,
is not fixed in our attack, we cannot fix the length of preimage in advance. There-
fore, when we convert pseudo-preimages to a preimage, the required message
length is different for each pseudo-preimage. This problem is solved by using ex-
pandable message described in [7]. Note the cost for constructing an expandable
message is negligible compared to the complexity of the preimage attack.

6 Conclusion

This paper shows a preimage attack on full MD5. Compared to the previous
preimage attacks, we developed several new techniques: the initial structure,
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which is a generalization of the previous local-collision technique, the cross
absorption properties, the partial-fixing technique for unknown carried num-
ber behavior, and the efficient consistency check method for the initial struc-
ture. By combining these techniques, our attack with a complexity of 2116.9

finds a pseudo-preimage of full MD5, and with a complexity of 2123.4 finds
a preimage of full MD5. The memory complexity of the attack is 245 × 11
words.
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