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Finding purifications with minimal entanglement
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Purification is a tool that allows to represent mixed quantum states as pure states on enlarged
Hilbert spaces. A purification of a given state is not unique and its entanglement strongly depends
on the particular choice made. Moreover, in one-dimensional systems, the amount of entanglement
is linked to how efficiently the purified state can be represented using matrix-product states (MPS).
We introduce an MPS based method that allows to find the minimally entangled representation
by iteratively minimizing the second Rényi entropy. First, we consider the thermofield double
purification and show that its entanglement can be strongly reduced especially at low temperatures.
Second, we show that a slowdown of the entanglement growth following a quench of an infinite
temperature state is possible.

I. INTRODUCTION

Simulating quantum many-body systems faces a fun-
damental difficulty due to the complexity required to rep-
resent highly entangled states. Significant progress has
been made through the observation that quantum ground
states of interest often have only limited (area-law) en-
tanglement, and thus can be represented efficiently using
matrix-product states (MPS)1–3 in one dimension (1D)
and generalized tensor-product states4 in higher dimen-
sions. Such approaches have been particularly success-
ful in the study of ground-state properties of 1D sys-
tems, where the density matrix renormalization group
(DMRG) method5 revolutionized the efficiency of numer-
ical methods.

To extend the success of DMRG to transport and non-
equilibrium phenomena, it is necessary to simulate real-
time evolution6–8. The bipartite entanglement of pure
states generically grows linearly with time, which leads
to a rapid exponential blow up in computational cost,
limiting pure-state time evolution to rather short times.
But, while the entanglement growth limits the ability to
compute the real time evolution of pure quantum states,
it need not impose the same restriction on the imaginary
time evolution of mixed states9,10. It is then natural to
ask if the time evolution of mixed states can be repre-
sented efficiently using MPS and what sets the difficulty
of such computations.

There are different techniques for simulating mixed
states using MPS methods, including a direct represen-
tation of the density matrix as a matrix product opera-
tor (MPO)11, using minimally entangled typical thermal
states (METTS)12–15, and purification16,17; in this paper
we focus on the latter. In purification, a density matrix
ρ acting on a physical Hilbert space HP is represented as
a pure state |ψ〉 in an enlarged space HP ⊗HA:

ρ = TrA |ψ〉 〈ψ| . (1)

It is always sufficient to choose HA to be identical to

HP , “doubling” each degree of freedom (DoF) as illus-
trated in Fig. 1(a). We note that the purification de-
scription can be a limitation for infinite systems18,19.
Yet on finite systems, a purification can be found for-
mally by diagonalizing the density matrix. In equilib-
rium this gives the thermofield double (TFD) purifica-
tion, |ψβ〉 = 1√

Z

∑
n e
−βEn/2 |n〉P |n〉A, where |n〉 are

the eigenvectors and En the eigenvalues of the Hamil-
tonian. It was recently argued that the TFD state can
be efficiently represented with an MPS of bond dimen-
sion that grows at most polynomially with the inverse
temperature9. The TFD is only one possible choice of
purification, since Eq. (1) is left invariant under an arbi-
trary unitary transformation Uanc which acts only on the
ancilla space HA.

This gauge freedom may be used to reduce the en-
tanglement in |ψ〉, rendering the MPS representation
more efficient20,21. Here, we propose a way to find the
minimally entangled purification. This minimum defines
the entanglement of purification Ep

22 [defined below in
Eq. (2)], which thus plays a role similar to the entan-
glement entropy in the pure case: it bounds the bond
dimension χ ≥ eEp23. However, this lower bound is ir-
relevant unless there is an efficient algorithm to find the
minimally entangled purification at a cost comparable to
DMRG [e.g., O(χ3)], which, since it constitutes a global
optimization problem over the many-body Hilbert space,
is not a priori obvious.

Below we introduce a method to find an approximately
optimal purification by sequentially applying local dis-
entangling operations to the ancilla DoF. The cost of
the disentangling procedure is comparable to DMRG,

and the resulting entanglement Ẽp reproduces the known
properties of Ep in certain limits. We use the method to
optimize both the equilibrium purification and that of a
time-dependent state. We find that the method can sig-
nificantly slow the entropy growth during real-time evo-
lution down, as we demonstrate for both the transverse
field Ising model and a disordered Heisenberg chain. For
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FIG. 1. (a) Schematic representation of purified states using
MPS. (b) A purified state is evolved in real or imaginary time
by acting on the physical degrees of freedom (e.g., using a
Trotter decomposition of the time-evolution operator). The
auxiliary degrees of freedom are only defined up to a global
unitary Uanc which can be chosen to minimize the entangle-
ment on the bonds. (c) The global Uanc is decomposed into a
network of two-site gates to produce a disentangler Udisent.

the latter, we find a slow spreading of Ẽp already for

intermediate disorder strengths. In equilibrium, Ẽp ap-
proaches half of the entropy in the TFD state at low
temperature.

Before proceeding we comment on the difference be-
tween the method presented here and two other propos-
als to compute long-time dynamics efficiently using MPS.
Some of us have shown recently that the dynamics of lo-
cal quantities in thermalizing systems can be captured
accurately using the time-dependent variational princi-
ple (TDVP)24, allowing to extract transport coefficients
and even characteristics of chaos. Another one of us pro-
posed a new truncation method to approximate the time
evolution of a density matrix, represented as an MPO,
to long times25. Both of these methods rely on the as-
sumption that the increase of the non-local information
encoded by the ever-growing entanglement entropy is ir-
relevant to the evolution of observable properties in ther-
malizing systems. These methods attempt to simulate
the correct macro-state rather than the nearly exact mi-
crostate. Thus, the “truncation error” as usually defined
in DMRG studies can be large as it is measured with
respect to the exact state. In contrast, the approach pre-
sented here attempts, by optimizing the purification, to
minimize the truncation error in order to compute the
exact micro-state.

II. PURIFICATIONS WITHIN THE MPS
FORMALISM

To represent a purification as an MPS, we take HP ∼
HA so that each “site” contains a doubled DoF. The
purification then takes the standard MPS form with an
enlarged local Hilbert space as shown in Fig. 1(a). At in-
finite temperature, the TFD purification is obtained by
maximally entangling the physical and ancilla DoF on

every site i, e.g., |ψ0〉 =
∏
i

(
1√
d

∑
σi
|σi〉P |σi〉A

)
, where

σi runs over the local Hilbert space, resulting in a χ = 1
MPS. In the standard purification approach, the finite-
temperature TFD is obtained from |ψ0〉 using imaginary-

time evolution, |ψβ〉 ∝ e−
β
2H |ψ0〉, from which thermal

expectation values are evaluated as 〈Y 〉β = 〈ψβ |Y |ψβ〉.
Here, H acts only on HP . Similarly, to compute dy-
namical properties, for instance, C(t, β) = 〈B†Y (t)B〉β ,

we define |B(t, β)〉 = e−itHB |ψβ〉, so that C(t, β) =
〈B(t, β)|Y |B(t, β)〉. By taking B = eiεX , this form is
sufficient to find quantities of interest such as the spec-
tral function −i∂εC(t, β) = AY X(t, β) = 〈[Y (t), X(0)]〉β .

The requisite time evolution (both imaginary and real)
can be simulated using standard methods6–8,26,27.

The computational complexity of such simulations is
generically linked to the bipartite von-Neumann entan-
glement entropy SLL′ = −Tr(ρLL′ log(ρLL′)), where
ρLL′ = TrRR′(|ψ〉 〈ψ|) is the reduced density matrix de-
fined by a bipartition HP = L ⊗ R and HA = L′ ⊗ R′
at any of the bonds of the MPS; the bond dimension χ
is bounded by χ ≥ eSLL′ . Since other purifications can
be obtained by acting with Uanc on the ancilla space, see
Fig. 1(b), it is desirable to exploit this choice to reduce
SLL′ . Karrasch et al.20 noticed that a natural choice is
the “backward time evolution,” Uanc = eitH , because if
B is local, this choice leaves |B(t, β)〉 invariant outside
the growing “light cone” of the perturbation. Barthel21

improved this approach by evolving both X and Y in
the spectral function AY X(t, β) = 〈[Y (t), X(0)]〉β =

〈[Y (t/2), X(−t/2)]〉β as Heisenberg operators, which al-
lows reaching times twice as long with comparable nu-
merical effort21,28. However, these prescriptions need not
be optimal; ideally, we would minimize SLL′ over all pos-
sible purifications, which would result in the entangle-
ment of purification Ep

22:

Ep[ρLR] ≡ min
|ψ〉

SLL′ [|ψ〉] = min
Uanc

SLL′ [Uanc |ψ〉] . (2)

Equivalently, given an ansatz purification |ψ〉, we search
for Uanc such that Uanc |ψ〉 has minimal entanglement;
from this perspective, Uanc is a “disentangling” opera-
tion.

III. DISENTANGLING ALGORITHM

We propose an algorithm to approximately identify the
optimal Uanc via a sequence of local disentangling oper-
ations, producing a circuit Uanc = Udisent of the form
shown in Fig. 1(c): The time evolution is applied to the
purified state using the time-evolving block-decimation
algorithm (TEBD)6. The TEBD algorithm6 is based on
a Trotter decomposition of e−itH into two-site unitaries
e−iδtHi,i+1 as illustrated in Fig. 1(b). These unitaries are
applied to the physical indices of the effective two-site
wave function

|Θ〉 =
∑

σPi ,σ
A
i ,l

σPi+1,σ
A
i+1,r

Θ
σPi σ

A
i ,σ

P
i+1σ

A
i+1

l,r |l〉 |σPi σAi 〉 |σPi+1σ
A
i+1〉 |r〉 ,

where |l〉 (and |r〉) labels a basis consisting of Schmidt
states to the left of site i (and right of site i + 1, re-
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FIG. 2. (a) Tensor network for Z2(U,Θ). (b) Effective
environment E2(U,Θ) such that Z2(U,Θ) = Tr (U E2(U,Θ)).

spectively). During a real-time evolution, we disentangle
the two-site wave function right after each Trotter step
using a unitary acting on the auxiliary space. These two-
site disentanglers can be found using an iterative scheme
based on minimizing the second Rényi entropy as a cost
function as explained below, similar to the optimizations
of a multi-scale entanglement renomormalization ansatz
(MERA)29. As the time evolution proceeds, the disen-
tangling unitary circuit Udisent is then gradually built up
by two-site unitaries, as depicted in Fig. 1(c). During
an imaginary-time evolution we use a different scheme
outlined in Sec. III C.

While the algorithm can suffer from numerical insta-
bilities, we find empirically that it converges to a pu-
rification with significantly less entanglement compared
to both backward time evolution and no disentangling
at all, as shown in the benchmark section. The method
described above is particularly suitable for correlation
functions which involve only a single purification, e.g.,
C(t, β), as there is no need to keep track of Udisent. When
two distinct purifications |B(t)〉 and |A(t)〉 are required,

one would have to compress Udisent
†
BUdisentA as a sepa-

rate MPO.

A. Two-site disentangler minimizing the entropy

We explain now how to find a two-site unitary U =

U
τAi ,τ

A
i+1

σAi ,σ
A
i+1

(i.e., acting in HA) which minimizes the en-

tanglement of an effective two-site wave function U |Θ〉,
similar as during the optimzation of MERA29. We
chose to minimize the second Rényi entropy S2(U |Θ〉) =
− log Tr

(
ρ2LL′

)
, where ρLL′ is the reduced density ma-

trix ρLL′ = TrσPi+1,τ
A
i+1,r

(U |Θ〉 〈Θ|U)30. In contrast to

the von-Neumann entropy, the second Rényi entropy
is readily expressed as S2(U |Θ〉) = − log(Z2) with
the tensor network Z2 depicted in Fig. 2(a); Z2 is to
be maximized. We solve this non-linear optimization
problem iteratively: in the n-th iteration, we consider

one Un+1 formally as independent of the other Un and
write Z2(Un+1, Un,Θ) = Tr (Un+1E2(Un,Θ)), where the
network for the “environment” E2(Un,Θ) is shown in
Fig. 2(b). It is easy to see that the unitary Un+1 maxi-
mizing this expression is given by a polar decomposition
of E2(Un,Θ), in other words we set Un+1 := Y X† where
X and Y are obtained from a singular value decompo-
sition of E2(Un,Θ) = XΛY †. The unitary minimizing
Z2(U,Θ) is then a fixed point U∗ of this iteration proce-
dure. As a starting point of the iteration, one can choose
the identity U1 := 1. At later times, one can also use
the result of Un from previous iterations (for the same
time step and at the same bond) as initial guess for the
next disentangler, which reduces the number of necessary
iterations in many cases.

Since this iteration is based on a descent, it tends to go
into local minima within the optimization space. To find
the global optimum, we can perform multiple iterations
in parallel: one starting from the identity, and others
starting from initially random unitaries (chosen accord-
ing to the Haar measure, i.e., from the so-called circular
unitary ensemble). From the unitaries obtained by the
parallel iterations, we choose the one with the smallest
final entropy.

The disentangler Un obtained by the above proce-
dure preserves the quantum numbers of symmetries in
the Hamiltonian, at least if the initial guess U0 pre-
serves them. In the presence of such a symmetry one
should choose U0 accordingly from the Haar measure on
unitaries preserving the symmetry to avoid an artificial
build-up of entanglement. In our case, we exploited the
Sz conservation in the Heisenberg chain (4) to reduce the
computational cost in the tensor contractions and singu-
lar value decompositions31,32.

B. Two-site norm disentangler

In this section, we discuss an alternative way to ob-
tain a two-site disentangler, which directly focuses on the
required bond dimension. The procedure described be-
low is equivalent to finding the “entanglement branching
operator” introduced by Harada 33 . In order to reduce
the bond dimension, we look for a two-site unitary U
(acting on the ancilla DoF) for which the trunction of
the effective two-site wave function U |θ〉 has the small-
est truncation error. To find this U , we use a similar,
iterative scheme as above: given Un, we calculate the
truncated (Un |θ〉)trunc and find the Un+1 maximizing

the overlap
∣∣∣〈θ|U†n+1(Un |θ〉)trunc

∣∣∣. Again, the new Un+1

can be found by a polar decomposition of the “environ-
ment” consisting of the corresponding tensor network for∣∣∣〈θ|U†n+1(Un |θ〉)trunc

∣∣∣, but excluding the Un+1. Since the

optimal U depends on the final bond dimension χ after
truncation, we need to gradually increase χ and repeat
the iteration procedure until the truncation error for the
given bond dimension is below a desired accuracy thresh-
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old. While we found that this gradual increase of χ also
helps to find the optimal disentangler, it substantially
increases the computational cost.

C. Global disentangling for imaginary-time
evolution

In contrast to the real-time evolution, the Trotter gate
e−δβHi,i+1 in imaginary-time evolution is non-unitary.
Thus, it can change the Schmidt values and thus gener-
ate entanglement on sites it does not even act on, which
creates the necessity for a more global scheme of disen-
tangling than the one presented above for the real-time
evolution. Instead, we perform the imaginary time evo-
lution as usual (with Uanc = 1) and disentangle only
after each nth time step in a more global fashion: in this
case, we find that generating the network of Udisent by
optimizing bonds with right and left sweeps similar as in
DMRG is more effective than the Trotter-type scheme of
even and odd bonds depicted in Fig. 1(c). Moreover, it is
straight-forward to generalize the two-site disentangling
described above to multiple sites by grouping multiple
sites. For example, we can disentangle the wave func-
tion of four sites i, i + 1, i + 2, i + 3 by grouping each
two sites as (i, i + 1) and (i + 2, i + 3) and then using
the above-described method. As the resulting disentan-
gler can perform arbitrary “on-site” rotations within each
group, it is necessary to disentangle the obtained wave
function (recursively) within each group. While such a
grouping provides additional freedom in the unitary to
be found and is thus a systematic improvement for find-
ing the optimal global disentangler, it comes at the cost
of a scaling of required computational resources which is
exponential in the number of included sites. In practice,
we limited ourselves to optimizing at most four sites at
once.

As an alternative for the global disentangling, we
tried a method along the lines of Hyatt et al. 34 . Here,
the idea is to identify pairs of sites with maximal mu-
tual information as candidates for disentangling. Using
swap gates (commonly used for TEBD with longer-range
interactions13), we bring the two sites next to each other
and disentangle them with a two-site disentangler as de-
scribed above for the real-time evolution. Yet, we find
that this approach is very limited by the fact that the
purification can not be disentangled completely (except
for β → ∞), such that we fail at some point to identify
the next candidate pair to be disentangled.

0 2 4 6 8 10

β Jx

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
L
L
′

|Ψ0〉

|gs〉P ⊗ |gs〉A

|gs〉P ⊗ |1〉A

no disentangler

optimized entropy

FIG. 3. Half-chain entanglement entropy of the finite-

temperature purification |ψβ〉 ∝ e−
β
2
H |ψ0〉 in the general-

ized Ising model (3) with L = 50 sites, for the TFD state
(Uanc = 1, upper line) and when disentangling up to four
sites at once (lower line). The parameters Jx = hz = 1 and
Jz = 0.1 are chosen to be in the vicinity of the quantum phase
transition. The diamonds on the right axis indicate the half-
chain entanglement Sgs (blue) and 2Sgs (red) of the ground
state |gs〉 obtained from DMRG.

IV. BENCHMARKS

A. Finite temperatures

To benchmark our algorithm, we study a concrete ex-
ample, the generalized transverse field Ising model

H = −Jx
L−1∑

i=1

σxi σ
x
i+1 − Jz

L−1∑

i=1

σzi σ
z
i+1 − hz

L∑

i=1

σzi . (3)

For Jz = 0, the model maps onto free fermions and ex-
hibits a quantum phase transition at hzc = Jx. The term
proportional to Jz introduces interactions and breaks in-
tegrability.

Figure 3 compares the entanglement of the optimized
purification with the entanglement of the TFD state ob-
tained by imaginary time evolution without disentan-
gling, i.e., Uanc = 1. The infinite temperature state |ψ0〉
has maximal entanglement between the physical and aux-
iliary DoF on each site, but no correlations between dif-
ferent sites, hence SLL′ = 0. For small β, the imaginary
time evolution starts to build up correlations between
neighboring sites, but it is not immediately possible to
disentangle the state with a rotation in HA. For exam-
ple, a non-trivial unitary acting on σAi and σAi+1 would

lead to a strong correlation between σPi and σAi+1, and
thus larger entanglement for a cut between sites i and
i + 1. However, due to the monogamy of entanglement,
the build-up of quantum correlations between different
sites ensures the reduction of the entanglement between
the physical and auxiliary spaces. Consequently, the dis-
entangler can reduce the entanglement at larger β. This

is most evident in the limit of large β in which e−
β
2H be-

comes a projector |gs〉 〈gs| onto the ground state |gs〉. In
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E1 − E0

E2 − E0

FIG. 4. Behavior of the position of the maximum βmax in
Fig. 3 with the parameter hz, for L = 50 sites and Jz = 0.1Jx.
Error bars indicate uncertainties in extracting βmax stemming
from a limited resolution in β and numerical instabilities of
the algorithm. For comparison, the energy gaps of the first
and second states above the ground state (extracted with
DMRG) are also shown. The critical hz/Jx in the thermody-
namic limit is indicated by the blue star on the x axis.

this limit, the TFD purification ends up with two copies
|gs〉P ⊗ |gs〉A of the ground state in HP and HA. In con-
trast, a perfect disentangling algorithm should be able
to rotate |gs〉A into an unentangled product state |1〉A,
ending up with the state |gs〉P ⊗|1〉A which has only half
as much entanglement as the TFD. The fact that we find
a purification with an entanglement close to that of the
ground state shows that our algorithm can indeed find
the minimum, i.e., it finds Ep.

Notably, we also find a maximum at intermediate β
(although our algorithm suffers from numerical instabil-
ities in this region). This can be understood from the
fact that the entanglement of purification has contribu-
tions from both quantum fluctuations and thermal fluc-
tuations, and the latter vanish for β → ∞. A similar
maximum is also present in the holographic prescription
for the entanglement of purification35,36. Figure 4 shows
that the maximum moves to larger β when tuning hz to-
wards the phase transition. We attribute this increase
of βmax to the closing energy gap which induces thermal
fluctuations at smaller temperatures (and thus additional
entanglement entropy in the purified state on top of the
ground-state entropy reached in the limit β → ∞). In
the symmetry-broken phase for hz . 0.75, the ground
state is (for the finite system almost) two-fold degener-
ate, and SLL′(β → ∞) is increased by log(2) on top of
the ground-state entanglement entropy. We still observe
a maximum of SLL′ at finite β in this phase, yet less
pronounced than in the paramagnetic phase.

B. Real time evolution at infinite temperature

Next, we consider the time evolution of a local op-
erator applied to the infinite-temperature purification
|S+
L/2(t, β = 0)〉 = e−itHS+

L/2 |ψ0〉, where S+
i = Sxi +

0 1 2 3 4 5 6

t Jx
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L
′

(a)

no disentangler

backward

optimized entropy

optimized norm

0 1 2 3

t Jx

100

101

102

b
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n
d

d
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.
χ

(b)
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i

10−6

10−4

10−2

100

s i

(c)

FIG. 5. (a) Comparison of the entanglement in the purifi-
cation state |S+

L/2(t, β = 0)〉 = e−itHS+
L/2 |ψ0〉 for the Ising

chain (3) with L = 40 sites, Jx = hz = 1, Jz = 0.1. (b)
MPS bond dimension when the truncation error is kept be-
low 10−6 in each step. (c) Decay of the Schmidt values si
on the central bond at time tJx = 2. In panels (a) and (b),
solid lines (dashed lines) show the maximum (mean) over dif-
ferent bonds. In all panels, different colors compare different
disentanglers Uanc.

iSyi . Figure 5(a) compares the resulting entanglement
for no disentangling (Uanc = 1), backward time evo-
lution (Uanc = eitH), and the optimized disentangler
(Uanc = Udisent) using the two-site disentanglers de-
scribed in Secs. III A and III B. Note that for β = 0
backward time evolution is equivalent to the Heisenberg
evolution of S+

L/2. The maximum of the entropy over

different bonds (solid lines) grows roughly linear in all
three cases, yet with very different prefactors. While the
growth is spatially almost uniform in the case Uanc = 1,
both the backward time evolution and our optimized
algorithm develop entropy only within a causal “light-
cone,” which leads to a significant reduction when the
mean over different bonds is taken (dashed lines). Fig-
ure 5(b) compares the growth of the required MPS bond
dimension when the truncation error is kept fixed. Both
backward time evolution and the optimized disentangler
minimizing the entropy require a slightly higher maximal
bond dimension close to where S+

L/2 was applied. This

apparent contradiction of a larger bond dimension de-
spite a lower entropy can be understood from the fact
that the entropy has large weight on the largest Schmidt
values, but the required bond dimension is determined by
the decay of Schmidt values in the tail. Indeed, we show
in Fig. 5(c) that the optimization of the entropy leads to
a reduction in the first few Schmidt values accompanied
by a slightly longer tail of small Schmidt values com-
pared to Uanc = 1. Nevertheless, the tail decays faster
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no disentangler

backward

optimized entropy

FIG. 6. Comparison of the entanglement in the purification
state |S+

L/2(t, β = 0)〉 = e−itHS+
L/2 |ψ0〉 for the Heisenberg

chain (4) with L = 80 sites without disorder (W = 0) (a)
and for a single disorder realization with W = 5J (b). In
both panels, different colors compare different disentanglers
Uanc, and solid lines (dashed lines) show the maximum (mean)
over different bonds,

than with backward time evolution. In contrast, when
the two-site disentangler described in Sec. III B is used,
we can indeed slightly reduce the required maximal bond
dimension as a proof of principle, even though in prac-
tice performing the optimization itself is computationally
more expensive than the speed-up gained by the reduced
bond dimension. In this case, the disentangler acts al-
most trivially in the region where S+

L/2 was applied, such

that a larger tail of the singular values is avoided. While
this optimization reduced the bond dimension during the
real-time evolution, in the case of imaginary-time evolu-
tion we were not able to reduce the bond dimension with
the same method.

As a second example, we consider the S = 1/2 Heisen-
berg chain with disordered z-directed field,

H = J

L−1∑

i=1

~Si · ~Si+1 −
L∑

i=1

hziS
z
i , (4)

where hzi is chosen uniformly in the interval [−W,W ].
This model has been established as a standard model
in the study of many-body localization (MBL)37–39 in
one dimension. Numerically, a localization transition was
found to occur at Wc ≈ 3.5J40,41. Figure 6(a) again com-
pares the entanglement growth of |S+

L/2(t, β = 0)〉 for the

three choices of Uanc in the clean Heisenberg chain, W =
0. While the entropy grows linearly when no disentangler
is used, the integrability of the Heisenberg chain and the
presence of Sz conservation restricts the entanglement
of time-evolved local operators in the Heisenberg picture
(here the “backward” evolution) to S(t) ∝ log(t)42. Our
results are compatible with the same S(t) ∝ log(t) scal-
ing when optimized, again with a smaller prefactor. In
the MBL phase [Fig. 6(b)], even Uanc = 1 displays only a
logarithmic entanglement growth, which is a characteris-
tic feature of the MBL phase43–46.
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FIG. 7. Optimized entanglement entropy Ẽp in the state
e−itHS+

L/2 |ψ0〉 for the Heisenberg model (4) with disorder

strength (a) W = 0, (b) W = J , (c) W = 3J , and (d)
W = 5J , each averaged over 30 disorder realizations. The
white and gray solid lines show the contour for the onset of
finite values at a threshold of 0.01 and log(2). The dashed
lines shows contours for the same threshold when backward
time evolution is used.

Next, we focus on the spatial spread of the entan-
glement in S+

L/2 |ψ0〉 when using the optimized disen-

tangler, tracking SLL′ as a function of time t, and bi-
partition bond x, shown in Fig. 7. In the thermalizing
regime, at small W [Figs. 7(a) and (b)], we observe the
expected linear light-cone spreading47. Deep in the MBL
phase [Fig. 7(d)] we find a qualitatively different spread-
ing which is compatible with a logarithmic light cone.
This is as expected from a generalized Lieb-Robinson

bound E‖[Ai(t), Bj ]‖ ≤ c te
|i−j|
2ξ , where ξ is the local-

ization length and c > 0 some constant48,49. At inter-
mediate disorder, near the MBL transition, we observe
a sub-linear spreading of the entanglement. Although
there are extended eigenstates in this region, the sys-
tem is expected to be subdiffusive and exhibits only slow
transport on very long time scales (inaccessible to our
numerics)50–55. Since the backward time evolution al-
ready reduces SLL′ to a zero (up to exponentially small
corrections) outside of the light cone, it is not surpris-
ing that the contours of the onset are nearly unchanged
compared to our optimized case.

V. CONCLUSIONS

We introduced an MPS based method to find a uni-
tary Uanc acting on the ancilla DoF of a purification
state, which reduces the entanglement both in equilib-
rium and during real-time evolution, at a similar cost to
the TEBD algorithm. At low temperatures, the opti-

mized entanglement entropy Ẽp is half as large as in the
TFD state, providing evidence that the algorithm actu-
ally finds the entanglement of purification Ep. We find a
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maximum of Ẽp at intermediate β, the location of which
diverges to βmax →∞ as the gap closes. During real-time
evolution, the entanglement is significantly reduced both
compared to Uanc = 1 and backward time evolution. In

the clean Heisenberg chain, Ẽp shows a linear light-cone
structure, which turns to a logarithmic spreading in the
MBL phase (at large disorder). The minimization of the
entanglement is, however, not directly accompanied by
a reduction of the required bond dimensions, as it leads
to a larger tail of small Schmidt values. This limitation
might be overcome by another choice of local disentan-
glers.
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