
Finding Recent Frequent Itemsets Adaptively
over Online Data Streams

Joong Hyuk Chang Won Suk Lee
Department of Computer Science, Yonsei University

134 Shinchon-dong Seodaemun-gu Seoul, 120-749, Korea
+82-2-2123-2716

{ jhchang, leewo }@amadeus.yonsei.ac.kr

ABSTRACT
A data stream is a massive unbounded sequence of data elements
continuously generated at a rapid rate. Consequently, the
knowledge embedded in a data stream is more likely to be
changed as time goes by. Identifying the recent change of a data
stream, specially for an online data stream, can provide valuable
information for the analysis of the data stream. In addition,
monitoring the continuous variation of a data stream enables to
find the gradual change of embedded knowledge. However, most
of mining algorithms over a data stream do not differentiate the
information of recently generated transactions from the obsolete
information of old transactions which may be no longer useful or
possibly invalid at present. This paper proposes a data mining
method for finding recent frequent itemsets adaptively over an
online data stream. The effect of old transactions on the mining
result of the data steam is diminished by decaying the old
occurrences of each itemset as time goes by. Furthermore, several
optimization techniques are devised to minimize processing time
as well as main memory usage. Finally, the proposed method is
analyzed by a series of experiments.

Categories and Subject Descriptors
H.2.8 [Database Management]: Application - Data mining

General Terms
Algorithm

Keywords
Recent frequent itemsets, Data stream, Decay mechanism,
Delayed-insertion, Pruning of itemsets

1. INTRODUCTION
A data stream is a massive unbounded sequence of data elements
continuously generated at a rapid rate. Due to this reason, it is
impossible to maintain all elements of a data stream. As a result,
data stream processing should satisfy the following requirements
[1].

First, each data element should be examined at most once to
analyze a data stream. Second, memory usage for data stream
analysis should be restricted finitely although new data elements
are continuously generated in a data stream. Third, newly
generated data elements should be processed as fast as possible.
Finally, the up-to-date analysis result of a data stream should be
instantly available when requested. In order to satisfy these
requirements, data stream processing sacrifices the correctness of
its analysis result by allowing some error.

The target application domains of a data stream are either a bulk
addition of new transactions as in a data warehouse system or an
individual addition of a continuously generated transaction as in a
network monitoring system. The former is called as an offline data
stream while the latter is called as an online data stream [2]. For
an offline data stream, it is possible to enhance the performance of
data mining through a batch operation by processing a
considerable number of newly generated transactions together [2].
Due to this reason, the up-to-date mining result of an offline data
stream is available only after a batch operation is finished.
Therefore, the granularity of generating the most up-to-date result
depends on the number of new transactions batch-processed
together. However, data mining over an online data stream should
support flexible trade-off between processing time and mining
accuracy without any fixed granule of data mining in order to
catch the sensitive change of its mining result as quickly as
possible.

Among the frequency counting algorithms [2,3] of data elements
over a data stream, the Lossy Counting algorithm [2] is the most
representative method. In the Lossy Counting algorithm, the set of
frequent itemsets in a data stream is found when a maximum
allowable error ε as well as a minimum support is given. A set of
newly generated transactions in a data stream is loaded together
into a fixed-sized buffer in main memory and they are batch-
processed. The information about the previous mining result up to
the latest batch operation is maintained in a data structure called D
containing a set of entries of a form (e, f, ∆) where e is an itemset,
f is the count of the itemset e, and ∆ is the maximum possible
error count of the itemset e. In order to update the information of
the data structure D, all of its entries are looked up in sequence.
For the entry (e, f, ∆) of an itemset e in D, if the itemset e is one of
the itemsets identified by the new transactions in the buffer, its
previous count f is incremented by its count in the new
transactions. Subsequently, if its estimated count i.e., f+∆ is less
than ε×N, it is pruned from D. On the other hand, when there is no
entry in D for a new itemset e identified by the new transactions
in the buffer, a new entry (e, f, ∆) is inserted to D. Its maximum
possible error ∆ is set to  N ′×ε where N’ denotes the number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-737-0/03/0008…$5.00.

487

of transactions that were processed up to the latest batch operation.

Generally, knowledge embedded in a data stream is more likely to
be changed as time goes by. Identifying the recent change of a
data stream quickly, specially for an online data stream, can
provide valuable information for the analysis of the data stream.
In addition, monitoring the continuous variation of a data stream
enables to find the gradual change of embedded knowledge, so
that it can be timely utilized. In order to achieve this, the effect of
obsolete information in old transactions on the current mining
result of a data stream should be eliminated effectively. As a
simple solution, it is possible to consider a sliding window
approach. It restricts the target transactions of data mining to those
transactions that are generated within the most recent period of a
fixed-sized window. However, its current mining result totally
depends on recently generated transactions in the range of the
window. Due to this reason, this approach is a primitive way of
disregarding obsolete information. In addition, all the transactions
in the window need to be maintained in order to remove their
effects on the current mining result when they are out of the range
of a sliding window.

In terms of information differentiation, the SWF algorithm [4]
uses a sliding window to find frequent itemsets in the fixed
number of recent transactions. The sliding window is composed of
a sequence of partitions. Each partition maintains a number of
transactions. The candidate 2-itemsets of all transactions in the
window are maintained separately. When the window is advanced,
the oldest partition is disregarded and a new partition containing
newly generated transactions is appended to the window. At the
same time, the candidate 2-itemsets of the advanced window are
adjusted. Subsequently, all possible candidate itemsets are
generated by these candidate 2-itemsets. The new set of frequent
itemsets is identified by scanning the transactions of the slid
window. A more flexible way of information differentiation is
presented in [5] where correlations among co-evolving time
sequences are analyzed. The missing values of the sequences are
estimated and their future values are predicted. In order to identify
the recent change of correlations adaptively, a forgetting factor is
used to diminish the effect of old correlations among sequences. A
forgetting factor determines how fast the effect of old information
is faded away. This type of an information decay model is also
introduced in NIDES [6] for anomaly intrusion detection. NIDES
models the historical behavior of a user’s activities in terms of
various measures and generates a long-term profile containing a
statistical summary for each measure. In order to concentrate on
the recent behavior of the user, the statistics of old activities in the
long-term profile are decayed as new activities are performed by
the user.

This paper proposes a method of finding recent frequent itemsets
adaptively over an online data stream. It examines each
transaction in a data stream one-by-one without any candidate
generation. The occurrence count of a significant itemset that
appears in each transaction is maintained by a prefix-tree lattice
structure in main memory. The effect of old transactions on the
current mining result is diminished by decaying the old
occurrence count of each itemset as time goes by. In addition, the
rate of decay old information is flexibly defined as needed. The
total number of significant itemsets in main memory is minimized
by delayed-insertion and pruning operations of an itemset. As a
result, its processing time is flexibly controlled while sacrificing
its accuracy.

2. PRELIMINARIES
For finding frequent itemsets, a data stream can be defined as
follows:

ⅰ) Let I={i1, i2, … , in} be a set of current items that have ever
been used as a unit information of an application domain.

ⅱ) An itemset e is a set of items such that e∈(2I-{∅}) where 2I
is the power set of I. The length |e| of an itemset e is the
number of items that form the itemset and it is denoted by
an |e|-itemset. An itemset {a,b,c} is denoted by abc.

ⅲ) A transaction is a subset of I and each transaction has a
unique transaction identifier TID. A transaction generated
at the kth turn is denoted by Tk.

ⅳ) When a new transaction Tk is generated, the current data
stream Dk is composed of all transactions that have ever
been generated so far i.e., Dk = <T1, T2, … , Tk> and the
total number of transactions in Dk is denoted by |D|k.

When a transactions Tk is generated currently, the current count
Ck(e) of an itemset e is the number of transactions that contain the
itemset among the k transactions. Likewise, the current support
Sk(e) of an itemset e is the ratio of its current count Ck(e) over |D|k.

A decay rate means the reducing rate of a weight for a fixed
decay-unit. A decay-unit determines the chunk of information to
be decayed together. A decay rate is defined by two parameters: a
decay-base b and a decay-base-life h. A decay-base b determines
the amount of weight reduction per a decay-unit and it is greater
than 1. When the weight of the current information is set to 1, a
decay-base-life h is defined by the number of decay-units that
makes the current weight be b-1. Based on these two parameters, a
decay rate d is defined as follows:

)/1(hbd −= (b>1, h≥1, b-1≤ d< 1) (1)

Theorem 1. Given a decay rate)/1(hbd −= (b>1, h≥1, b-1≤ d< 1),
the total number of transactions |D|k in the current data stream Dk
is found as follows:

|D|k=




≥+×
=

− 2 if 1||
1 if 1

1 kdD

k

k

The value of |D|k converges to)1/(1 d− as the value k increases
infinitely.

(Proof)

When the first transaction is looked up, the number of transactions
|D|1 is obviously 1 since there is no previous transaction whose
weight should be decayed. When the second transaction is looked
up, the total number of transactions |D|2 is computed by |D|1×d+1
since the weight of the first transaction is decayed. Subsequently,
when a new transaction is generated at the kth (k≥2) turn, the total
number of transactions |D|k=|D|k-1×d+1. Consequently, it can be
expressed by |D|k=dk-1+dk-2 + …+d+1=)1/()1(dd k −− . Since b-1≤
d<1, |D|k converges to)1/(1 d− as k increases infinitely. □

Similarly, the count Ck(e) of an itemset e in the current data
stream Dk is obtained as follows:

Ck(e)=Ck-1(e)×d+Wk(e), Wk(e) =
otherwise

 if

0
1 kTe∈





3. FINDING RECENT FREQUENT ITEMSETS
In this section, a method of finding recent frequent itemsets
adaptively over an online data stream is proposed based on the

488

decay mechanism described in Section 2. The different
combinations of items that appear in each transaction are
maintained in a prefix-tree lattice structure [7,8] called as a
monitoring lattice. A node in a monitoring lattice contains an item
and it denotes an itemset composed of items that are in the nodes
of its path from the root.

3.1 Count Estimation of an Itemset
In the Carma algorithm [9], the maximum possible count of an
itemset is estimated by the minimum value among the maximum
possible counts of all of its subsets. A new itemset is inserted to a
lattice of itemsets if it is potentially frequent and all of its subsets
are maintained in the lattice. Similarly, the count of an itemset
that are not maintained can be estimated by its subsets that are
maintained in a monitoring lattice. For this purpose, the terms
defined in Definition 1 and Definition 2 are used.

Definition 1. For an n-itemset e (n≥2), a set of its subsets P(e), a
set of its m-subsets Pm(e) and a set of counts for its m-subsets
PC

m(e) are formally defined as follows.
ⅰ) A set of its subsets P(e) is composed of all possible

itemsets that can be generated by one or more items of the
itemset e i.e., P(e)={α|∀α s.t. α∈2e-{e} and α≠∅ }.

ⅱ) A set of its m-subsets Pm(e) is composed of those itemsets
in P(e) that have m items (m<n) i.e., Pm(e)={α|∀α s.t.
α∈P(e) and |α|=m }.

ⅲ) A set of counts for its m-subsets PC
m(e) is composed of the

distinct counts of all itemsets in Pm(e) i.e., PC
m(e)={C(α)|

∀α s.t. α∈Pm(e) }, where C(e) denotes the count of an
itemset e over a data stream. □

Definition 2. For two itemsets e1 and e2, a union-itemset e1∪e2
and an intersection-itemset e1∩e2 are defined as follows.

ⅰ) A union-itemset e1∪e2 is composed of all items that are
members of either e1 or e2.

ⅱ) An intersection-itemset e1∩e2 is composed of all items that
are members of both e1 and e2. □

For an itemset, each of its subsets appears in at least as many
transactions as the itemset appears in. Furthermore, when all items
of an itemset always appear together in each transaction, the count
of the itemset should be identical to those of its subsets. Therefore,
the count of an itemset depends on how often its items appear
together in each transaction. Based on this observation, the
possible range of the count of an itemset can be identified by two
extreme distributions: least exclusively distributed (LED) and
most exclusively distributed (MED). When the items of an
itemset are LED, they appear together in as many transactions as
possible. On the other hand, the items of an itemset appear
exclusively as many transactions as possible when they are MED.

In a data set D, the count of an n-itemset e can be estimated by the
individual counts of its subsets. Its maximum count Cmax(e) is
found when all of its subsets are LED. It is the smallest value
among the counts of all the subsets. However, since the set of its
(n-1)-subsets can provide the most accurate information about the
count of the n-itemset, Cmax(e) can be estimated by only its (n-1)-
subsets. Therefore, when min(V) denotes the smallest value in a
set of values V, the maximum count Cmax(e) of an itemset e is
found as follows:

Cmax(e) = min(PC
n-1(e)) (2)

For two itemsets e1 and e2, the minimum count Cmin(e1∪e2) of

their union-itemset e1∪e2 can be estimated as follows.
Cmin(e1∪e2)

=




∅=∩−+
∅≠∩∩−+

2121

212121

 if)(0,
 if))()()(,0(

ee|D|)C(e)C(emax
eeeeCeCeCmax

 (3)

where |D| denotes the total number of transactions in D and
max(V) denotes the largest value in a set of values V. Based on
Equation (3), the minimum count Cmin(e) of an itemset e can also
be estimated by the counts of its (n-1)-subsets. In other words, for
each distinct pair (αi, αj) of its (n-1)-subsets i.e., αi and αj∈Pn-1(e),
the count of their union-itemset αi∪αj can be estimated. Among
the estimated counts for the itemset e, the largest count is the
guaranteed appearance count i.e., the minimum count Cmin(e) of
the itemset e as follows:

Cmin(e) = max({Cmin(αi∪αj) | ∀αi, αj ∈ Pn-1(e) and i≠j})
The maximum count Cmax(e) of an itemset e is used as the
estimated count of the itemset. Consequently, there may exist an
estimation error count since Cmax(e) is the largest possible count
that the itemset can appear in the transactions of a data set. Let the
difference between Cmax(e) and Cmin(e) be the estimation error
E(e) of the itemset.

3.2 estDec Method
Not all of itemsets that appear in a data stream are significant for
finding frequent itemsets. An itemset which has much less support
than a predefined minimum support is not necessarily monitored
since it cannot be a frequent itemset in the near future. Therefore,
the insertion of a new itemset can be delayed until it can possibly
be a frequent itemset in the near future. When the estimated
support of a new itemset is large enough, it is regarded as a
significant itemset and it is inserted to a monitoring lattice. On the
other hand, an efficient pruning technique is obviously another
way of reducing the usage of memory space. Although an itemset
in a monitoring lattice was significant enough to be monitored in
the past, if its current support becomes much less than a
predefined minimum support, it can be eliminated from the
monitoring lattice.

This section proposes an estDec method for finding recent
frequent itemsets adaptively over an online data stream. Every
node in a monitoring lattice maintains a triple (cnt, err, MRtid) for
its corresponding itemset e. The count of the itemset e is denoted
by cnt. The maximum error count of the itemset e is denoted by
err. Finally, the transaction identifier of the most recent
transaction that contains the itemset e is denoted by MRtid. The
estDec method is composed of four phases: parameter updating
phase (Phase Ⅰ), count updating phase (Phase Ⅱ), delayed-
insertion phase (Phase Ⅲ) and frequent itemset selection phase
(Phase Ⅳ). The detailed steps of these phases are illustrated in
Figure 1.

When a new transaction Tk is generated in a data stream, the total
number of transactions in the current data stream |D|k is updated
in the parameter updating phase (line 4 in Figure 1) as follows:

|D|k = |D|k-1×d+1
In the count updating phase (line 5-9), the counts of those itemsets
in a monitoring lattice that appear in the new transaction are
updated. All the paths of a monitoring lattice that are induced by
the items of the transaction are traversed and the previous triple
(cntpre, errpre, MRtidpre) of each node in the paths is updated to the
current triple (cntk, errk, MRtidk) as follows:

cntk = cntpre×
)(preMRtidkd − +1,

489

errk = errpre×
)(preMRtidkd − , MRtidk = k

When the updated support i.e., kk Dcnt ||/ of an itemset in a
monitoring lattice becomes less than a predefined threshold, the
itemset is regarded as an insignificant itemset, so that it is pruned
from the monitoring lattice as in conventional lattice-based data
mining methods [7,8]. However, if a 1-itemset is pruned from a
monitoring lattice, it is impossible to estimate its count later.
Therefore, it should not be pruned. This mechanism is called as a
pruning operation of an itemset. The threshold of this operation is
defined as a threshold for pruning Sprn which should be less than
a minimum support Smin.

After all of these itemsets are updated, the delayed-insertion phase
(line 10-22) is started in order to find any new itemset that has a
high possibility to become a frequent itemset in the near future. A
new itemset is inserted to a monitoring lattice only in the
following two cases. The first case is when a new 1-itemset
appears in a newly generated transaction. In this case, the itemset
is instantly inserted to a monitoring lattice without any estimation
process. Consequently, the count cnt of every 1-itemset in a
monitoring lattice is not an estimated value but an actual value.
The second case is when the estimated support of an n-itemset
(n≥2) that is not in the monitoring lattice is large enough to be
monitored. In this phase, among the items of the new transaction,
the items whose supports are less than Sins are not considered.
While navigating the lattice according to the remaining items of
the new transaction, the count of an insignificant itemset that is
composed of a significant itemset and one of the remaining items
is estimated by its maximum count Cmax(e) as described in Section
3.1. Due to the characteristics of a prefix lattice structure, there is
no candidate itemset generation process. This is because such an
itemset is identified systematically while navigating the lattice
according to the remaining items in the new transaction. If any of
its (|e|-1)-subsets in Pn-1(e) is not currently maintained in the
monitoring lattice, the count of the itemset e is not estimated. This
is because its Cmax(e) is always 0 in this case. Subsequently, the
estimated support of the itemset can be found by the ratio of its
count cnt over the current total number of transactions |D|k. If it is
greater than or equal to a predefined threshold, the itemset is
inserted to the monitoring lattice. This mechanism is called as a
delayed-insertion operation and the pre-defined threshold for this
insertion is defined as a threshold for delayed-insertion Sins
which should be also less than a minimum support Smin.

When an itemset e is inserted, all of its (|e|-1)-subsets should be
significant. Due to this reason, it is possible to find the upper
bound Cupper(e) of its actual count when it is inserted at the kth
transaction. In other words, among the k transactions generated so
far, at least |e|-1 transactions that contain the itemset e are
required to insert all of its subsets to the monitoring lattice in
advance. Therefore, its actual count is maximized when these |e|-1
transactions are most recently generated. The similar approach is
used in [9]. The decayed count of the itemset e for the insertion of
its subsets by these recent |e|-1 transactions is represented by a
term cnt_for_subsets as follows:

cntt_for_subsets =)1/(}1{)1|(| dd e −− − (4)
In addition, the maximum possible decayed count of the itemset e
before the recent |e|-1 transactions is denoted by
max_cnt_before_subsets and it is represented as follows:

max_cnt_before_subsets =)1|(|
)1|(| }|{| −

−− ×× e
ekins dDS (5)

Consequently, Cupper(e) can be found as follows:
Cupper(e) = max_cnt_before_subsets+cnt_for_subsets (6)

If Cmax(e) in Equation (2) is greater than the upper bound Cupper(e),
Cupper(e) is used as its count cnt. Accordingly, the current triple
(cntk, errk, MRtidk) of the itemset e in the corresponding node of
the monitoring lattice is updated as follows:

cntk = min{Cmax(e), Cupper(e)}
errk = E(e) = cntk – Cmin(e), MRtidk = k

Input: A data stream D
Output: A complete set of recent frequent itemsets Lk

d : A given decay rate
ML : A monitoring lattice

1: ML = ∅ ;
2: for each new transaction in D {
3: read current transaction Tk;
 // Parameter updating phase
4: |D|k = |D|k-1×d+1;

 // Count updating phase
5: for all itemset e s.t. e∈(kT2 -{∅}) and e∈ML {
6: cnt = cnt ×

)(MRtidkd − +1; err = err ×
)(MRtidkd − ; MRtid = k;

7: if (cnt/|D|k)<Sprn and |e|>1 // Pruning
8: Eliminate e and it's child node from ML;
9: } // of for in line 5

 // Delayed-insertion phase
10: /

kT = ItemFiltering(Tk);

11: for all itemset e s.t. e∈(
/

2 kT -{∅}) and e∉ML {
12: if |e| = 1 {
13: Insert e into ML; cnt=1; err = 0; MRtid = k;
14: } else {
15: Estimate Cmax(e) and Cmin(e);
16: if Cmax(e) > Cupper(e)
17: Cmax(e) = Cupper(e);

18: if)||/)((k
max DeC ≥ Sins {

19: Insert e into ML; cnt=Cmax(e); err= Cmax(e)-Cmin(e); MRtid=k;
20: } // of if n line 18
21: } // of else in line 14
22: } // of for in line 11

 // Frequent itemset selection phase
23: Lk = ∅;
24: for all itemset e∈ML {

25: cnt = cnt×)(MRtidkd − ; err = err ×
)(MRtidkd − ; MRtid = k;

26: if (cnt/|D|k)≥Smin
27: Lk = Lk ∪ {e};
28: } // of for in line 23
29: } // of for in line 2

Figure 1. The estDec method

An itemset pruned at present can be inserted into the monitoring
lattice in the future by the delayed-insertion operation if it appears
frequently in new transactions. Consequently, Sprn should be less
than Sins. As the gap between the two thresholds Sprn and Sins is
enlarged, the possibility of repeating the insertion and pruning of
the same itemset frequently is reduced. Furthermore, as the gap
between these two thresholds is enlarged, the accuracy of frequent
itemsets is improved while the size of a monitoring lattice is
increased.

The frequent itemset selection phase (line 23-28) is performed
only when the mining result of the current data set is required. It
produces all current frequent itemsets in a monitoring lattice by
the same way as in conventional mining methods [7,8] based on a
prefix-tree lattice structure. When this phase is performed in the
current data stream Dk, an itemset e is frequent if its current
support kDdcnt MRtidk ||/}{)(−× is greater than a predefined
minimum support Smin. Furthermore, its current support error

kDderr MRtidk ||/}{)(−× can be found as well.

490

0

1

2

3

4

5

0 ~200000 ~400000 ~600000 ~800000 ~1000000
TID

N
um

be
r o

f i
te

m
se

ts
 (x

10
00

00
0)

Sins = 10%

Sins = 30%

Sins = 50%

T10.I4.D1000K

Sm in = 0.001

 b=2, h=10000

0

10

20

30

0 ~200000 ~400000 ~600000 ~800000 ~1000000
TID

Av
er

ag
e

pr
oc

es
si

ng
 ti

m
e

(m
se

c)

Sins = 10%

Sins = 30%

Sins = 50%

T10.I4.D1000K

Sm in = 0.001

b=2, h=10000

0

100

200

300

400

500

0 ~200000 ~400000 ~600000 ~800000 ~1000000

TID

Av
er

ag
e

pr
oc

es
si

ng
 ti

m
e

(m
se

c)

Sins = 10%
Sins = 30%
Sins = 50%

T10.I4.D1000K

Sm in = 0.001, b=2, h=10000

 (a) (b) (c)

Figure 2. Performance of the estDec method for the data set T10.I4.D1000K

0

1

2

3

4

5

0 ~200000 ~400000 ~600000 ~800000 ~1000000

TID

AS
E

(x
10

-5
)

Sins = 10%

Sins = 30%

Sins = 50%

T10.I4.D1000K

Sm in = 0.001

 b=2, h=10000

0

20

40

60

80

100

0 200000 400000 600000 800000 1000000
TID

C
ov

er
ag

e
ra

te
 (%

) h=100000-CR(A)

h=300000-CR(A)

h=500000-CR(A)

h=100000-CR(B)

h=300000-CR(B)

h=500000-CR(B)

T5.I4.D1000K-AB
S min = 0.001
S ins= 10%, b = 2

 Figure 3. Accuracy of mining results Figure 4. Coverage rate for the data set T5.I4.D1000K-AB

All insignificant itemsets in a monitoring lattice can be pruned
together by examining the current support of every itemset in the
monitoring lattice. This mechanism is called as a force-pruning
operation and can be performed periodically or when the current
size of a monitoring lattice reaches a pre-defined threshold value.

4. STABILIZED ANALYSIS
When the information of a transaction is rapidly decayed, the
resulting set of recently frequent itemsets may be too sensitively
varied since it is dominated by the itemsets of newly generated
transactions. This type of fluctuation in the set of frequent
itemsets is meaningless. In order to avoid this, a safety factor γ is
introduced. It is defined by the maximum number of most recently
generated consecutive transactions that contains a new itemset
while the itemset remains as an infrequent itemset. The resulting
set of recently frequent itemsets in a data stream Dk becomes
stable when the decay-base-life h of a decay rate)/1(hbd −= is
set to be greater than or equal to its lower bound hLB defined in
Theorem 2. If a decay-base-life h is less than its lower bound hLB,
an itemset whose current count is less than the safety factor γ may
become a frequent itemset.

Theorem 2. Given a minimum support Smin, a safety factor γ and a
decay-base b, the decay-base-life h of a decay rate)/1(hbd −=
should be greater than or equal to its lower bound hLB defined as
follows:

hLB = )}1(/(log{ minSb −− γ 

(Proof)

When a new itemset e appears in most recently generated γ
consecutive transactions in a data stream Dk, its
Ck(e)=)1/()1(dd −− γ . Consequently, its support Sk(e) is always

greater than (
d

d
−
−

1
1 γ

/
d−1

1) = γd−1 since the maximum value

of |D|k is)1/(1 d− . The itemset should not be a frequent itemset
for the given safety factor γ, so that its support should be always
less than the minimum support Smin. Therefore, γd−1 <Smin

should be satisfied. Since)/1(hbd −= , the lower bound of a
decay-base-life hLB is found as follows:

hLB = )}1(/(log{ minSb −− γ  . □

5. EXPERIMENTAL RESULTS
In this section, two data sets T10.I4.D1000K and T5.I4.D1000K-
AB are used to evaluate the performance of the estDec method.
Each data set is generated by the same method as described in
[10] and the total number of items is 1,000. In all experiments, the
transactions of each data set are looked up one by one in sequence
to simulate the environment of an online data stream. In addition,
every value of a decay-base-life h used in these experiments is
above its lower bound. Each of two thresholds Sins and Sprn is
assigned relatively to the value of a predefined minimum support
Smin. These two thresholds are not necessarily to be the same in
practice. However, in all experiments, they are set to be the same
value. When the value of the threshold Sins is denoted by p%, the
actual value of the threshold Sins is equal to Smin×(p/100). Likewise,
Sprn is also equal to Smin×(p/100). All experiments are performed
on a 1.8GHz Pentium PC machine with 512MB main memory
running on Linux 7.3 and all programs are implemented in C.

Figure 2 shows the performance of the estDec method for the data
set T10.I4.D1000K. Figure 2-(a) shows the memory usage and it
is represented by the maximum number of itemsets in a
monitoring lattice. A minimum support Smin, a decay-base b and a
decay-base-life h are set to 0.001, 2 and 10,000 respectively. The
sequence of generated transactions is divided into 5 intervals each
of which consists of 200,000 transactions and a force-pruning
operation is performed in every 1,000 transactions. Since only
significant itemsets are maintained in a monitoring lattice by the
delayed-insertion and pruning of an itemset, the memory usage of
the estDec method remains the same although new transactions
are continuously generated. In addition, it decreases as the value
of Sins is increased.

Figure 2-(b) shows the average processing time in each interval of
the experiment in Figure 2-(a). The processing time is measured
by a period from the generation of a new transaction to the
delayed-insertion phase (PhasesⅠ-Ⅲ) of the estDec method. As

491

shown in this figure, the average processing time is less than
about 15 msec. It is influenced by not only the number of new
itemsets whose current support should be estimated for delayed-
insertion but also the current size of a monitoring lattice. The
number of itemsets maintained in a monitoring lattice is inversely
proportional to the value of a threshold Sins as shown in Figure 2-
(a). Therefore, as the value of Sins is increased, the average
processing time is decreased. Figure 2-(c) shows the average
processing time of the frequent itemset selection phase (Phase Ⅳ)
in each interval of the experiment in Figure 2-(a). Compared with
Figure 2-(b), the average processing time of this phase is
considerably larger. This is because it requires to search the entire
space of a monitoring lattice. However, it is also decreased as the
value of Sins is increased.

A term average support error is introduced to model the relative
accuracy of the proposed method. When two sets of mining results
R1={(ei, S1(ei)) | S1(ei)≥Smin} and R2={(ej, S2(ej)) | S2(ej)≥Smin} are
given for the same data set, the average support error ASE(R2|R1)
of R2 with respect to R1 is defined as follows:

ASE (R2|R1)

= ||/})(|))()((|)({ 12121
21221211

ReSeSeSeS
RRRe

ll
RRe

l
RRRe

l
lll

∑+−∑+∑
∩−∈∩∈∩−∈

where |R1| denotes the number of itemsets in R1. As the average
support error of R2 gets smaller, the mining result of R2 is more
similar to R1. To show the accuracy of the estDec method, Figure
3 shows ASE(RestDec|RdApriori) for the experiment in Figure 2. The
mining results of the estDec method and the dApriori algorithm
are denoted by RestDec and RdApriori respectively. The dApriori
algorithm is the Apriori algorithm [10] with the decay mechanism
proposed in Section 2. The average support error
ASE(RestDec|RdApriori) of the estDec method is influenced by the
value of Sins. As it becomes smaller, more itemsets are maintained
in a monitoring lattice, which makes the mining result of the
estDec method be more accurate. When the value of Sprn is set to
be less than the value of Sins, the accuracy is slightly improved
although this experiment is not presented in this paper.

Figure 4 shows the adaptability of the estDec method for the
change of information in a data stream. In this experiment, a data
set T5.I4.D1000K-AB is experimented. The data set is composed
of two consecutive subparts. The front part is a set of 500,000
transactions generated by an item set A while the second part is a
set of 500,000 transactions generated by an item set B. There are
no common items in the item sets A and B. In this experiment, Smin
and b are set to 0.001 and 2 respectively. In order to illustrate how
rapidly the estDec method can adapt the change of information in
a data stream, a coverage rate CR(X) is introduced. It denotes the
ratio of frequent itemsets induced by an item set X in all frequent
itemsets as follows:

CR(X) = (%)100
||

set iteman by induced itemsetsfrequent of #
×

R
 X

where |R| denotes the total number of frequent itemsets in a
monitoring lattice. As the value of a decay-base-life h becomes
smaller, the estDec method adapts more rapidly the transition of
information between the two subparts of the data set. By varying a
decay-base-life h, the adaptability of the estDec method for the
recent change of a data stream can be controlled. The similar
effect can be archived by varying a decay-base b. As the value of
a decay-base b becomes larger, the estDec method adapts more
rapidly the recent change of a data stream.

6. CONCLUDING REMARKS
Considering the continuity of a data stream, the general definition
of finding frequent itemsets used in conventional data mining
methodology may not be valid in a data stream. This is because
the old information of a data stream may be no longer useful or
possibly incorrect at present. In order to support various needs of
data stream analysis, the interesting recent range of a data stream
needs to be defined flexibly. Based on this range, a mining method
can be able to identify when a transaction becomes obsolete and
needs to be disregarded. The estDec method proposed in this
paper finds recent frequent itemsets over an online data stream by
decaying the weight of old transactions as time goes by. As a
result, the recent change of information in a data stream can be
adaptively reflected to the current mining result of the data stream.
The weight of information in a transaction of a data stream is
gradually reduced as time goes by while its reduction rate can be
flexibly controlled. Due to this reason, no transaction needs to be
maintained physically.

7. REFERENCES
[1] M. Garofalakis, J. Gehrke and R. Rastogi. Querying and

mining data streams: you only get one look. In the tutorial
notes of the 28th Int'l Conference on Very Large Databases,
Hong Kong, China, Aug. 2002.

[2] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. of the 28th Int'l
Conference on Very Large Databases, Hong Kong, China,
Aug. 2002.

[3] M. Charikar, K. Chen and M. Farach-Colton. Finding
frequent items in data streams. In Proc. of the 29th Int'l
Colloq. on Automata, Language and Programming, 2002.

[4] C.-H. Lee, C.-R. Lin and M.-S. Chen. Sliding-window
filtering: An efficient algorithm for incremental mining. In
Proc. of the 10th Int’l Conference on Information and
Knowledge Management, pages 263-270, Atlanta, GE, Nov.
2001.

[5] B.-K. Yi, N. D. Sidiropoulos, T. Johnson, H. V. Jagadish, C.
Faloutsos, and A. Biliris. Online data mining for co-evolving
time sequences. In Proc. of the 16th Int'l Conference on Data
Engineering, pages 13-22, San Diego, CA, Feb. 2000.

[6] H. S. Javitz and A. Valdes. The NIDES statistical component
description and justification. Annual report, March 1994.

[7] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic
itemset counting and implication rules for market basket data.
In Proc. of the ACM SIGMOD Int'l Conference on
Management of Data, pages 255-264, Tucson, AZ, May
1997.

[8] R. C. Agarwal, C. C. Aggarwal and V.V.V. Prasad. Depth
first generation of long patterns. In Proc. of the 6th ACM
SIGKDD Int'l Conference on Knowledge Discovery and Data
Mining, pages 108-118, Boston, MA, Sept. 2000.

[9] C. Hidber. Online association rule mining. In Proc. of the
ACM SIGMOD Int'l Conference on Management of Data,
pages 145-156, Philadelphia, PA, May 1999.

[10] R. Agrawal, and R. Srikant. Fast algorithms for mining
association rules. In Proc. of the 20th Int'l Conference on
Very Large Databases, Santiago, Chile, Sept. 1994.

492

