
Finding Recent Frequent Itemsets Adaptively 
over Online Data Streams 

Joong Hyuk Chang  Won Suk Lee 
Department of Computer Science, Yonsei University 

134 Shinchon-dong Seodaemun-gu Seoul, 120-749, Korea 
+82-2-2123-2716 

{ jhchang, leewo }@amadeus.yonsei.ac.kr 
 
 
ABSTRACT 
A data stream is a massive unbounded sequence of data elements 
continuously generated at a rapid rate. Consequently, the 
knowledge embedded in a data stream is more likely to be 
changed as time goes by. Identifying the recent change of a data 
stream, specially for an online data stream, can provide valuable 
information for the analysis of the data stream. In addition, 
monitoring the continuous variation of a data stream enables to 
find the gradual change of embedded knowledge. However, most 
of mining algorithms over a data stream do not differentiate the 
information of recently generated transactions from the obsolete 
information of old transactions which may be no longer useful or 
possibly invalid at present. This paper proposes a data mining 
method for finding recent frequent itemsets adaptively over an 
online data stream. The effect of old transactions on the mining 
result of the data steam is diminished by decaying the old 
occurrences of each itemset as time goes by. Furthermore, several 
optimization techniques are devised to minimize processing time 
as well as main memory usage. Finally, the proposed method is 
analyzed by a series of experiments. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Application - Data mining 

General Terms 
Algorithm 

Keywords 
Recent frequent itemsets, Data stream, Decay mechanism, 
Delayed-insertion, Pruning of itemsets 

1. INTRODUCTION 
A data stream is a massive unbounded sequence of data elements 
continuously generated at a rapid rate. Due to this reason, it is 
impossible to maintain all elements of a data stream. As a result, 
data stream processing should satisfy the following requirements 
[1]. 

 

 

 

 

 

 

First, each data element should be examined at most once to 
analyze a data stream. Second, memory usage for data stream 
analysis should be restricted finitely although new data elements 
are continuously generated in a data stream. Third, newly 
generated data elements should be processed as fast as possible. 
Finally, the up-to-date analysis result of a data stream should be 
instantly available when requested. In order to satisfy these 
requirements, data stream processing sacrifices the correctness of 
its analysis result by allowing some error. 

The target application domains of a data stream are either a bulk 
addition of new transactions as in a data warehouse system or an 
individual addition of a continuously generated transaction as in a 
network monitoring system. The former is called as an offline data 
stream while the latter is called as an online data stream [2]. For 
an offline data stream, it is possible to enhance the performance of 
data mining through a batch operation by processing a 
considerable number of newly generated transactions together [2]. 
Due to this reason, the up-to-date mining result of an offline data 
stream is available only after a batch operation is finished. 
Therefore, the granularity of generating the most up-to-date result 
depends on the number of new transactions batch-processed 
together. However, data mining over an online data stream should 
support flexible trade-off between processing time and mining 
accuracy without any fixed granule of data mining in order to 
catch the sensitive change of its mining result as quickly as 
possible. 

Among the frequency counting algorithms [2,3] of data elements 
over a data stream, the Lossy Counting algorithm [2] is the most 
representative method. In the Lossy Counting algorithm, the set of 
frequent itemsets in a data stream is found when a maximum 
allowable error ε as well as a minimum support is given. A set of 
newly generated transactions in a data stream is loaded together 
into a fixed-sized buffer in main memory and they are batch-
processed. The information about the previous mining result up to 
the latest batch operation is maintained in a data structure called D 
containing a set of entries of a form (e, f, ∆) where e is an itemset, 
f is the count of the itemset e, and ∆ is the maximum possible 
error count of the itemset e. In order to update the information of 
the data structure D, all of its entries are looked up in sequence. 
For the entry (e, f, ∆) of an itemset e in D, if the itemset e is one of 
the itemsets identified by the new transactions in the buffer, its 
previous count f is incremented by its count in the new 
transactions. Subsequently, if its estimated count i.e., f+∆ is less 
than ε×N, it is pruned from D. On the other hand, when there is no 
entry in D for a new itemset e identified by the new transactions 
in the buffer, a new entry (e, f, ∆) is inserted to D. Its maximum 
possible error ∆ is set to  N ′×ε  where N’ denotes the number 
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of transactions that were processed up to the latest batch operation. 

Generally, knowledge embedded in a data stream is more likely to 
be changed as time goes by. Identifying the recent change of a 
data stream quickly, specially for an online data stream, can 
provide valuable information for the analysis of the data stream. 
In addition, monitoring the continuous variation of a data stream 
enables to find the gradual change of embedded knowledge, so 
that it can be timely utilized. In order to achieve this, the effect of 
obsolete information in old transactions on the current mining 
result of a data stream should be eliminated effectively. As a 
simple solution, it is possible to consider a sliding window 
approach. It restricts the target transactions of data mining to those 
transactions that are generated within the most recent period of a 
fixed-sized window. However, its current mining result totally 
depends on recently generated transactions in the range of the 
window. Due to this reason, this approach is a primitive way of 
disregarding obsolete information. In addition, all the transactions 
in the window need to be maintained in order to remove their 
effects on the current mining result when they are out of the range 
of a sliding window. 

In terms of information differentiation, the SWF algorithm [4] 
uses a sliding window to find frequent itemsets in the fixed 
number of recent transactions. The sliding window is composed of 
a sequence of partitions. Each partition maintains a number of 
transactions. The candidate 2-itemsets of all transactions in the 
window are maintained separately. When the window is advanced, 
the oldest partition is disregarded and a new partition containing 
newly generated transactions is appended to the window. At the 
same time, the candidate 2-itemsets of the advanced window are 
adjusted. Subsequently, all possible candidate itemsets are 
generated by these candidate 2-itemsets. The new set of frequent 
itemsets is identified by scanning the transactions of the slid 
window. A more flexible way of information differentiation is 
presented in [5] where correlations among co-evolving time 
sequences are analyzed. The missing values of the sequences are 
estimated and their future values are predicted. In order to identify 
the recent change of correlations adaptively, a forgetting factor is 
used to diminish the effect of old correlations among sequences. A 
forgetting factor determines how fast the effect of old information 
is faded away. This type of an information decay model is also 
introduced in NIDES [6] for anomaly intrusion detection. NIDES 
models the historical behavior of a user’s activities in terms of 
various measures and generates a long-term profile containing a 
statistical summary for each measure. In order to concentrate on 
the recent behavior of the user, the statistics of old activities in the 
long-term profile are decayed as new activities are performed by 
the user. 

This paper proposes a method of finding recent frequent itemsets 
adaptively over an online data stream. It examines each 
transaction in a data stream one-by-one without any candidate 
generation. The occurrence count of a significant itemset that 
appears in each transaction is maintained by a prefix-tree lattice 
structure in main memory. The effect of old transactions on the 
current mining result is diminished by decaying the old 
occurrence count of each itemset as time goes by. In addition, the 
rate of decay old information is flexibly defined as needed. The 
total number of significant itemsets in main memory is minimized 
by delayed-insertion and pruning operations of an itemset. As a 
result, its processing time is flexibly controlled while sacrificing 
its accuracy. 

2. PRELIMINARIES 
For finding frequent itemsets, a data stream can be defined as 
follows: 

ⅰ) Let I={i1, i2, … , in} be a set of current items that have ever 
been used as a unit information of an application domain. 

ⅱ) An itemset e is a set of items such that e∈(2I-{∅}) where 2I 
is the power set of I. The length |e| of an itemset e is the 
number of items that form the itemset and it is denoted by 
an |e|-itemset. An itemset {a,b,c} is denoted by abc. 

ⅲ) A transaction is a subset of I and each transaction has a 
unique transaction identifier TID. A transaction generated 
at the kth turn is denoted by Tk. 

ⅳ) When a new transaction Tk is generated, the current data 
stream Dk is composed of all transactions that have ever 
been generated so far i.e., Dk = <T1, T2, … , Tk> and the 
total number of transactions in Dk is denoted by |D|k. 

When a transactions Tk is generated currently, the current count 
Ck(e) of an itemset e is the number of transactions that contain the 
itemset among the k transactions. Likewise, the current support 
Sk(e) of an itemset e is the ratio of its current count Ck(e) over |D|k. 

A decay rate means the reducing rate of a weight for a fixed 
decay-unit. A decay-unit determines the chunk of information to 
be decayed together. A decay rate is defined by two parameters: a 
decay-base b and a decay-base-life h. A decay-base b determines 
the amount of weight reduction per a decay-unit and it is greater 
than 1. When the weight of the current information is set to 1, a 
decay-base-life h is defined by the number of decay-units that 
makes the current weight be b-1. Based on these two parameters, a 
decay rate d is defined as follows: 

)/1( hbd −=  (b>1, h≥1, b-1≤ d< 1)        (1) 

Theorem 1. Given a decay rate )/1( hbd −=  (b>1, h≥1, b-1≤ d< 1), 
the total number of transactions |D|k in the current data stream Dk 
is found as follows: 

|D|k=




≥+×
=

− 2 if    1||
1    if                        1

 
1 kdD

k

k
 

The value of |D|k converges to )1/(1 d−  as the value k increases 
infinitely. 

(Proof) 

When the first transaction is looked up, the number of transactions 
|D|1 is obviously 1 since there is no previous transaction whose 
weight should be decayed. When the second transaction is looked 
up, the total number of transactions |D|2 is computed by |D|1×d+1 
since the weight of the first transaction is decayed. Subsequently, 
when a new transaction is generated at the kth (k≥2) turn, the total 
number of transactions |D|k=|D|k-1×d+1. Consequently, it can be 
expressed by |D|k=dk-1+dk-2 + …+d+1= )1/()1( dd k −− . Since b-1≤ 
d<1, |D|k converges to )1/(1 d−  as k increases infinitely.     □ 

Similarly, the count Ck(e) of an itemset e in the current data 
stream Dk is obtained as follows: 

Ck(e)=Ck-1(e)×d+Wk(e),  Wk(e) =
otherwise

   if
      

0
1 kTe∈



  

3. FINDING RECENT FREQUENT ITEMSETS 
In this section, a method of finding recent frequent itemsets 
adaptively over an online data stream is proposed based on the 
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decay mechanism described in Section 2. The different 
combinations of items that appear in each transaction are 
maintained in a prefix-tree lattice structure [7,8] called as a 
monitoring lattice. A node in a monitoring lattice contains an item 
and it denotes an itemset composed of items that are in the nodes 
of its path from the root. 

3.1 Count Estimation of an Itemset 
In the Carma algorithm [9], the maximum possible count of an 
itemset is estimated by the minimum value among the maximum 
possible counts of all of its subsets. A new itemset is inserted to a 
lattice of itemsets if it is potentially frequent and all of its subsets 
are maintained in the lattice. Similarly, the count of an itemset 
that are not maintained can be estimated by its subsets that are 
maintained in a monitoring lattice. For this purpose, the terms 
defined in Definition 1 and Definition 2 are used.  

Definition 1. For an n-itemset e (n≥2), a set of its subsets P(e), a 
set of its m-subsets Pm(e) and a set of counts for its m-subsets 
PC

m(e) are formally defined as follows. 
ⅰ) A set of its subsets P(e) is composed of all possible 

itemsets that can be generated by one or more items of the 
itemset e i.e., P(e)={α|∀α  s.t. α∈2e-{e} and α≠∅ }. 

ⅱ) A set of its m-subsets Pm(e) is composed of those itemsets 
in P(e) that have m items (m<n) i.e., Pm(e)={α|∀α  s.t. 
α∈P(e) and |α|=m }. 

ⅲ) A set of counts for its m-subsets PC
m(e) is composed of the 

distinct counts of all itemsets in Pm(e) i.e., PC
m(e)={C(α)| 

∀α  s.t. α∈Pm(e) }, where C(e) denotes the count of an 
itemset e over a data stream.        □  

Definition 2. For two itemsets e1 and e2, a union-itemset e1∪e2 
and an intersection-itemset e1∩e2 are defined as follows. 

ⅰ) A union-itemset e1∪e2 is composed of all items that are 
members of either e1 or e2. 

ⅱ) An intersection-itemset e1∩e2 is composed of all items that 
are members of both e1 and e2.        □  

For an itemset, each of its subsets appears in at least as many 
transactions as the itemset appears in. Furthermore, when all items 
of an itemset always appear together in each transaction, the count 
of the itemset should be identical to those of its subsets. Therefore, 
the count of an itemset depends on how often its items appear 
together in each transaction. Based on this observation, the 
possible range of the count of an itemset can be identified by two 
extreme distributions: least exclusively distributed (LED) and 
most exclusively distributed (MED). When the items of an 
itemset are LED, they appear together in as many transactions as 
possible. On the other hand, the items of an itemset appear 
exclusively as many transactions as possible when they are MED. 

In a data set D, the count of an n-itemset e can be estimated by the 
individual counts of its subsets. Its maximum count Cmax(e) is 
found when all of its subsets are LED. It is the smallest value 
among the counts of all the subsets. However, since the set of its 
(n-1)-subsets can provide the most accurate information about the 
count of the n-itemset, Cmax(e) can be estimated by only its (n-1)-
subsets. Therefore, when min(V) denotes the smallest value in a 
set of values V, the maximum count Cmax(e) of an itemset e is 
found as follows: 

Cmax(e) = min(PC
n-1(e))         (2) 

For two itemsets e1 and e2, the minimum count Cmin(e1∪e2) of 

their union-itemset e1∪e2 can be estimated as follows. 
Cmin(e1∪e2) 

=




∅=∩−+
∅≠∩∩−+

2121

212121

 if                )(0, 
 if   ))()()(,0( 

ee|D|)C(e)C(emax
eeeeCeCeCmax

       (3) 

where |D| denotes the total number of transactions in D and 
max(V) denotes the largest value in a set of values V. Based on 
Equation (3), the minimum count Cmin(e) of an itemset e can also 
be estimated by the counts of its (n-1)-subsets. In other words, for 
each distinct pair (αi, αj) of its (n-1)-subsets i.e., αi and αj∈Pn-1(e), 
the count of their union-itemset αi∪αj can be estimated. Among 
the estimated counts for the itemset e, the largest count is the 
guaranteed appearance count i.e., the minimum count Cmin(e) of 
the itemset e as follows: 

Cmin(e) = max({Cmin(αi∪αj) | ∀αi, αj ∈ Pn-1(e) and i≠j}) 
The maximum count Cmax(e) of an itemset e is used as the 
estimated count of the itemset. Consequently, there may exist an 
estimation error count since Cmax(e) is the largest possible count 
that the itemset can appear in the transactions of a data set. Let the 
difference between Cmax(e) and Cmin(e) be the estimation error 
E(e) of the itemset. 

3.2 estDec Method 
Not all of itemsets that appear in a data stream are significant for 
finding frequent itemsets. An itemset which has much less support 
than a predefined minimum support is not necessarily monitored 
since it cannot be a frequent itemset in the near future. Therefore, 
the insertion of a new itemset can be delayed until it can possibly 
be a frequent itemset in the near future. When the estimated 
support of a new itemset is large enough, it is regarded as a 
significant itemset and it is inserted to a monitoring lattice. On the 
other hand, an efficient pruning technique is obviously another 
way of reducing the usage of memory space. Although an itemset 
in a monitoring lattice was significant enough to be monitored in 
the past, if its current support becomes much less than a 
predefined minimum support, it can be eliminated from the 
monitoring lattice. 

This section proposes an estDec method for finding recent 
frequent itemsets adaptively over an online data stream. Every 
node in a monitoring lattice maintains a triple (cnt, err, MRtid) for 
its corresponding itemset e. The count of the itemset e is denoted 
by cnt. The maximum error count of the itemset e is denoted by 
err. Finally, the transaction identifier of the most recent 
transaction that contains the itemset e is denoted by MRtid. The 
estDec method is composed of four phases: parameter updating 
phase (Phase Ⅰ), count updating phase (Phase Ⅱ), delayed-
insertion phase (Phase Ⅲ) and frequent itemset selection phase 
(Phase Ⅳ). The detailed steps of these phases are illustrated in 
Figure 1. 

When a new transaction Tk is generated in a data stream, the total 
number of transactions in the current data stream |D|k is updated 
in the parameter updating phase (line 4 in Figure 1) as follows: 

|D|k = |D|k-1×d+1 
In the count updating phase (line 5-9), the counts of those itemsets 
in a monitoring lattice that appear in the new transaction are 
updated. All the paths of a monitoring lattice that are induced by 
the items of the transaction are traversed and the previous triple 
(cntpre, errpre, MRtidpre) of each node in the paths is updated to the 
current triple (cntk, errk, MRtidk) as follows: 

cntk = cntpre×
)( preMRtidkd − +1,  
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errk = errpre×
)( preMRtidkd − ,  MRtidk = k 

When the updated support i.e., kk Dcnt ||/  of an itemset in a 
monitoring lattice becomes less than a predefined threshold, the 
itemset is regarded as an insignificant itemset, so that it is pruned 
from the monitoring lattice as in conventional lattice-based data 
mining methods [7,8]. However, if a 1-itemset is pruned from a 
monitoring lattice, it is impossible to estimate its count later. 
Therefore, it should not be pruned. This mechanism is called as a 
pruning operation of an itemset. The threshold of this operation is 
defined as a threshold for pruning Sprn which should be less than 
a minimum support Smin. 

After all of these itemsets are updated, the delayed-insertion phase 
(line 10-22) is started in order to find any new itemset that has a 
high possibility to become a frequent itemset in the near future. A 
new itemset is inserted to a monitoring lattice only in the 
following two cases. The first case is when a new 1-itemset 
appears in a newly generated transaction. In this case, the itemset 
is instantly inserted to a monitoring lattice without any estimation 
process. Consequently, the count cnt of every 1-itemset in a 
monitoring lattice is not an estimated value but an actual value. 
The second case is when the estimated support of an n-itemset 
(n≥2) that is not in the monitoring lattice is large enough to be 
monitored. In this phase, among the items of the new transaction, 
the items whose supports are less than Sins are not considered. 
While navigating the lattice according to the remaining items of 
the new transaction, the count of an insignificant itemset that is 
composed of a significant itemset and one of the remaining items 
is estimated by its maximum count Cmax(e) as described in Section 
3.1. Due to the characteristics of a prefix lattice structure, there is 
no candidate itemset generation process. This is because such an 
itemset is identified systematically while navigating the lattice 
according to the remaining items in the new transaction. If any of 
its (|e|-1)-subsets in Pn-1(e) is not currently maintained in the 
monitoring lattice, the count of the itemset e is not estimated. This 
is because its Cmax(e) is always 0 in this case. Subsequently, the 
estimated support of the itemset can be found by the ratio of its 
count cnt over the current total number of transactions |D|k. If it is 
greater than or equal to a predefined threshold, the itemset is 
inserted to the monitoring lattice. This mechanism is called as a 
delayed-insertion operation and the pre-defined threshold for this 
insertion is defined as a threshold for delayed-insertion Sins 
which should be also less than a minimum support Smin. 

When an itemset e is inserted, all of its (|e|-1)-subsets should be 
significant. Due to this reason, it is possible to find the upper 
bound Cupper(e) of its actual count when it is inserted at the kth 
transaction. In other words, among the k transactions generated so 
far, at least |e|-1 transactions that contain the itemset e are 
required to insert all of its subsets to the monitoring lattice in 
advance. Therefore, its actual count is maximized when these |e|-1 
transactions are most recently generated. The similar approach is 
used in [9]. The decayed count of the itemset e for the insertion of 
its subsets by these recent |e|-1 transactions is represented by a 
term cnt_for_subsets as follows: 

cntt_for_subsets = )1/(}1{ )1|(| dd e −− −         (4) 
In addition, the maximum possible decayed count of the itemset e 
before the recent |e|-1 transactions is denoted by 
max_cnt_before_subsets and it is represented as follows: 

max_cnt_before_subsets = )1|(|
)1|(| }|{| −

−− ×× e
ekins dDS      (5) 

Consequently, Cupper(e) can be found as follows: 
Cupper(e) = max_cnt_before_subsets+cnt_for_subsets    (6) 

If Cmax(e) in Equation (2) is greater than the upper bound Cupper(e), 
Cupper(e) is used as its count cnt. Accordingly, the current triple 
(cntk, errk, MRtidk) of the itemset e in the corresponding node of 
the monitoring lattice is updated as follows: 

cntk = min{Cmax(e), Cupper(e)} 
errk = E(e) = cntk – Cmin(e),  MRtidk = k 

Input:  A data stream D 
Output: A complete set of recent frequent itemsets Lk 
 

d : A given decay rate 
ML : A monitoring lattice 

1: ML = ∅ ; 
2: for each new transaction in D { 
3:  read current transaction Tk; 
 // Parameter updating phase 
4: |D|k = |D|k-1×d+1; 
 
 // Count updating phase 
5:  for all  itemset  e  s.t. e∈( kT2 -{∅}) and e∈ML  { 
6:   cnt = cnt ×

)( MRtidkd − +1; err = err ×
)( MRtidkd − ; MRtid = k; 

7:         if  (cnt/|D|k)<Sprn  and  |e|>1    // Pruning 
8:    Eliminate e and it's child node from ML; 
9:  } // of for in line 5 
 
 // Delayed-insertion phase 
10:   /

kT = ItemFiltering(Tk); 

11:  for all  itemset  e  s.t. e∈(
/

2 kT -{∅}) and e∉ML  { 
12:   if  |e| = 1 { 
13:           Insert e into ML; cnt=1; err = 0; MRtid = k; 
14:   } else { 
15:           Estimate  Cmax(e) and Cmin(e); 
16:           if  Cmax(e) > Cupper(e)  
17:              Cmax(e) = Cupper(e); 

18:           if )||/)(( k
max DeC ≥ Sins  { 

19:              Insert e into ML; cnt=Cmax(e); err= Cmax(e)-Cmin(e); MRtid=k;
20:           } // of if n line 18 
21:   } // of else in line 14 
22:  } // of for in line 11 
 
 // Frequent itemset selection phase 
23:  Lk = ∅; 
24:  for all  itemset  e∈ML { 

25:       cnt = cnt× )( MRtidkd − ; err = err ×
)( MRtidkd − ; MRtid = k;  

26:   if  (cnt/|D|k)≥Smin 
27:     Lk = Lk ∪ {e}; 
28:   } // of for in line 23 
29:  } // of for in line 2 

Figure 1. The estDec method 

An itemset pruned at present can be inserted into the monitoring 
lattice in the future by the delayed-insertion operation if it appears 
frequently in new transactions. Consequently, Sprn should be less 
than Sins. As the gap between the two thresholds Sprn and Sins is 
enlarged, the possibility of repeating the insertion and pruning of 
the same itemset frequently is reduced. Furthermore, as the gap 
between these two thresholds is enlarged, the accuracy of frequent 
itemsets is improved while the size of a monitoring lattice is 
increased. 

The frequent itemset selection phase (line 23-28) is performed 
only when the mining result of the current data set is required. It 
produces all current frequent itemsets in a monitoring lattice by 
the same way as in conventional mining methods [7,8] based on a 
prefix-tree lattice structure. When this phase is performed in the 
current data stream Dk, an itemset e is frequent if its current 
support kDdcnt MRtidk ||/}{ )( −×  is greater than a predefined 
minimum support Smin. Furthermore, its current support error 

kDderr MRtidk ||/}{ )( −×  can be found as well. 

490



0

1

2

3

4

5

0 ~200000 ~400000 ~600000 ~800000 ~1000000
TID

N
um

be
r o

f i
te

m
se

ts
 (x

10
00

00
0)

Sins = 10%

Sins = 30%

Sins = 50%

T10.I4.D1000K

Sm in  = 0.001

 b=2,  h=10000

 

0

10

20

30

0 ~200000 ~400000 ~600000 ~800000 ~1000000
TID

Av
er

ag
e 

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

Sins = 10%

Sins = 30%

Sins = 50%

T10.I4.D1000K

Sm in = 0.001

b=2,  h=10000

 

0

100

200

300

400

500

0 ~200000 ~400000 ~600000 ~800000 ~1000000

TID

Av
er

ag
e 

pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

Sins = 10%
Sins = 30%
Sins = 50%

T10.I4.D1000K

Sm in = 0.001,  b=2,  h=10000

 
 (a) (b) (c) 

Figure 2. Performance of the estDec method for the data set T10.I4.D1000K 
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 Figure 3. Accuracy of mining results Figure 4. Coverage rate for the data set T5.I4.D1000K-AB 

All insignificant itemsets in a monitoring lattice can be pruned 
together by examining the current support of every itemset in the 
monitoring lattice. This mechanism is called as a force-pruning 
operation and can be performed periodically or when the current 
size of a monitoring lattice reaches a pre-defined threshold value. 

4. STABILIZED ANALYSIS 
When the information of a transaction is rapidly decayed, the 
resulting set of recently frequent itemsets may be too sensitively 
varied since it is dominated by the itemsets of newly generated 
transactions. This type of fluctuation in the set of frequent 
itemsets is meaningless. In order to avoid this, a safety factor γ is 
introduced. It is defined by the maximum number of most recently 
generated consecutive transactions that contains a new itemset 
while the itemset remains as an infrequent itemset. The resulting 
set of recently frequent itemsets in a data stream Dk becomes 
stable when the decay-base-life h of a decay rate )/1( hbd −=  is 
set to be greater than or equal to its lower bound hLB defined in 
Theorem 2. If a decay-base-life h is less than its lower bound hLB, 
an itemset whose current count is less than the safety factor γ may 
become a frequent itemset. 

Theorem 2. Given a minimum support Smin, a safety factor γ and a 
decay-base b, the decay-base-life h of a decay rate )/1( hbd −=  
should be greater than or equal to its lower bound hLB defined as 
follows: 

hLB =  )}1(/(log{ minSb −− γ   

(Proof) 

When a new itemset e appears in most recently generated γ 
consecutive transactions in a data stream Dk, its 
Ck(e)= )1/()1( dd −− γ . Consequently, its support Sk(e) is always 

greater than (
d

d
−
−

1
1 γ

/
d−1

1 ) = γd−1  since the maximum value 

of |D|k is )1/(1 d− . The itemset should not be a frequent itemset 
for the given safety factor γ, so that its support should be always 
less than the minimum support Smin. Therefore, γd−1 <Smin 

should be satisfied. Since )/1( hbd −= , the lower bound of a 
decay-base-life hLB is found as follows: 

hLB =  )}1(/(log{ minSb −− γ  .        □  

5. EXPERIMENTAL RESULTS 
In this section, two data sets T10.I4.D1000K and T5.I4.D1000K-
AB are used to evaluate the performance of the estDec method. 
Each data set is generated by the same method as described in 
[10] and the total number of items is 1,000. In all experiments, the 
transactions of each data set are looked up one by one in sequence 
to simulate the environment of an online data stream. In addition, 
every value of a decay-base-life h used in these experiments is 
above its lower bound. Each of two thresholds Sins and Sprn is 
assigned relatively to the value of a predefined minimum support 
Smin. These two thresholds are not necessarily to be the same in 
practice. However, in all experiments, they are set to be the same 
value. When the value of the threshold Sins is denoted by p%, the 
actual value of the threshold Sins is equal to Smin×(p/100). Likewise, 
Sprn is also equal to Smin×(p/100). All experiments are performed 
on a 1.8GHz Pentium PC machine with 512MB main memory 
running on Linux 7.3 and all programs are implemented in C. 

Figure 2 shows the performance of the estDec method for the data 
set T10.I4.D1000K. Figure 2-(a) shows the memory usage and it 
is represented by the maximum number of itemsets in a 
monitoring lattice. A minimum support Smin, a decay-base b and a 
decay-base-life h are set to 0.001, 2 and 10,000 respectively. The 
sequence of generated transactions is divided into 5 intervals each 
of which consists of 200,000 transactions and a force-pruning 
operation is performed in every 1,000 transactions. Since only 
significant itemsets are maintained in a monitoring lattice by the 
delayed-insertion and pruning of an itemset, the memory usage of 
the estDec method remains the same although new transactions 
are continuously generated. In addition, it decreases as the value 
of Sins is increased. 

Figure 2-(b) shows the average processing time in each interval of 
the experiment in Figure 2-(a). The processing time is measured 
by a period from the generation of a new transaction to the 
delayed-insertion phase (PhasesⅠ-Ⅲ) of the estDec method. As 
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shown in this figure, the average processing time is less than 
about 15 msec. It is influenced by not only the number of new 
itemsets whose current support should be estimated for delayed-
insertion but also the current size of a monitoring lattice. The 
number of itemsets maintained in a monitoring lattice is inversely 
proportional to the value of a threshold Sins as shown in Figure 2-
(a). Therefore, as the value of Sins is increased, the average 
processing time is decreased. Figure 2-(c) shows the average 
processing time of the frequent itemset selection phase (Phase Ⅳ) 
in each interval of the experiment in Figure 2-(a). Compared with 
Figure 2-(b), the average processing time of this phase is 
considerably larger. This is because it requires to search the entire 
space of a monitoring lattice. However, it is also decreased as the 
value of Sins is increased. 

A term average support error is introduced to model the relative 
accuracy of the proposed method. When two sets of mining results 
R1={(ei, S1(ei)) | S1(ei)≥Smin} and R2={(ej, S2(ej)) | S2(ej)≥Smin} are 
given for the same data set, the average support error ASE(R2|R1) 
of R2 with respect to R1 is defined as follows: 

ASE (R2|R1)  
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where |R1| denotes the number of itemsets in R1. As the average 
support error of R2 gets smaller, the mining result of R2 is more 
similar to R1. To show the accuracy of the estDec method, Figure 
3 shows ASE(RestDec|RdApriori) for the experiment in Figure 2. The 
mining results of the estDec method and the dApriori algorithm 
are denoted by RestDec and RdApriori respectively. The dApriori 
algorithm is the Apriori algorithm [10] with the decay mechanism 
proposed in Section 2. The average support error 
ASE(RestDec|RdApriori) of the estDec method is influenced by the 
value of Sins. As it becomes smaller, more itemsets are maintained 
in a monitoring lattice, which makes the mining result of the 
estDec method be more accurate. When the value of Sprn is set to 
be less than the value of Sins, the accuracy is slightly improved 
although this experiment is not presented in this paper. 

Figure 4 shows the adaptability of the estDec method for the 
change of information in a data stream. In this experiment, a data 
set T5.I4.D1000K-AB is experimented. The data set is composed 
of two consecutive subparts. The front part is a set of 500,000 
transactions generated by an item set A while the second part is a 
set of 500,000 transactions generated by an item set B. There are 
no common items in the item sets A and B. In this experiment, Smin 
and b are set to 0.001 and 2 respectively. In order to illustrate how 
rapidly the estDec method can adapt the change of information in 
a data stream, a coverage rate CR(X) is introduced. It denotes the 
ratio of frequent itemsets induced by an item set X in all frequent 
itemsets as follows: 

CR(X) = (%)100
||

set iteman by   induced itemsetsfrequent  of #
×

R
 X  

where |R| denotes the total number of frequent itemsets in a 
monitoring lattice. As the value of a decay-base-life h becomes 
smaller, the estDec method adapts more rapidly the transition of 
information between the two subparts of the data set. By varying a 
decay-base-life h, the adaptability of the estDec method for the 
recent change of a data stream can be controlled. The similar 
effect can be archived by varying a decay-base b. As the value of 
a decay-base b becomes larger, the estDec method adapts more 
rapidly the recent change of a data stream. 

6. CONCLUDING REMARKS 
Considering the continuity of a data stream, the general definition 
of finding frequent itemsets used in conventional data mining 
methodology may not be valid in a data stream. This is because 
the old information of a data stream may be no longer useful or 
possibly incorrect at present. In order to support various needs of 
data stream analysis, the interesting recent range of a data stream 
needs to be defined flexibly. Based on this range, a mining method 
can be able to identify when a transaction becomes obsolete and 
needs to be disregarded. The estDec method proposed in this 
paper finds recent frequent itemsets over an online data stream by 
decaying the weight of old transactions as time goes by. As a 
result, the recent change of information in a data stream can be 
adaptively reflected to the current mining result of the data stream. 
The weight of information in a transaction of a data stream is 
gradually reduced as time goes by while its reduction rate can be 
flexibly controlled. Due to this reason, no transaction needs to be 
maintained physically. 
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